上海城市河流整治成效及其影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河流是城市宝贵的自然财富,已成为城市优先发展的重要廊道。上海城市河流作为城市水体的重要组成部分,在维系城市生态系统的平衡与健康中所发挥的重要作用、在城市经济和社会生活等诸多领域内所发挥的运输和服务等功能等都尤为凸显。由于长期受工业化和城市化等因素的综合影响,上海城市河流受到的损害和干扰程度严重,因而对城市河流的整治和水环境的修复已成为本地区内环境保护的重要课题之一。从上海城市河流整治的背景中获知:河流整治工作中比较缺乏对河流或河道的环境综合效应的考察,对制约城市河流整治成效的影响因素认识不足,从而直接影响到河流整治的效果。基于城市河流整治的实际出发,以综合借鉴规划环境评价、流域管理、河流健康和跟踪评价等河流整治新理念为指导思想,以探讨和解决上海城市河流整治实践中的现实矛盾和问题为出发点,尝试对上海城市河流整治成效及其影响因素展开研究,具有比较重要的理论和现实意义。
     本文通过对国内外城市河流整治的综述,重点回顾与总结了城市河流整治所取得的成功经验和突出问题,特别是分析了国内城市河流整治的现状及其与发达国家的差距,以便准确和系统地把握国内外城市河流整治的发展趋势,在说明开展整治成效及其影响因素研究必要性的同时,为整治成效研究的目标制定和评价指标体系的科学构建提供依据和参考。具体评述中,侧重于总结美国、英国、欧盟、日本和澳大利亚等国家城市河流整治的成功经验,如美国的“公众舒适性评价”和“流域管理的概念”、欧盟的“ICPR工作组”及“WFD”框架、日本的“多种河流整治新要求”及澳大利亚“河流健康的概念”等;归纳国内城市河流整治中所面临的主要和突出的问题,如水体污染严重、水面率减少、河流功能单一等。
     由国内外城市河流整治的综述为主要依据,本文尝试探讨城市河流整治成效及其影响因素的理论和方法学基础。探讨涉及指导思想、理论体系、方法体系、指标体系和跟踪评价等方面,重点是要在明确进行城市河流整治成效评价的同时,结合整治中的现状和诸多问题,初步构建起整治成效评价的指标体系和针对影响因素的跟踪评价。评价指标体系在满足代表性、整体性、前瞻性和可操作性等评价原则的前提下,为满足整治成效评价的需要,适当借鉴RIVPACS、IBI、ICPR中常用的“多指标综合评价”和“层次分析法”的评价思想,将评价指标体系设计为“四个评价方面”和“两个评价等级”。对整治成效的相关影响因素进行跟踪评价是基于整治工作的实际需要,通过诸如现场采样、实验室分析、数学模型推理等多种途径,尝试将定性的评价结论以量化,从而深究制约城市河流整治成效的影响因素,并提出合理的、有针对性的对策和措施。
     依托上海市水务局科研项目“上海城区中小河道黑臭水体水质修复与维护研究”(编号:沪水科2004-05),本文较为深入地调研了大量上海城市河流黑臭整治工程可行性报告、河流整治现状调查报告等资料。背景调研的结果表明:上海城市河流整治过程中,河流现状调查的工作仍有待加强;河流整治中修复技术的选择与整治成效休戚相关。在充分掌握上海城市河流整治背景的前提下,经分析比较的方法选取18条上海城区中小河流作为主要“研究对象”,进行整治成效及其影响因素的研究。通过构建上海城市河流整治成效的评价指标体系,并进行分析和计算得到评价结果。上海城市河流整治成效的评价结果确认“水动力条件”、“水系连通性”、“修复技术成本”和“整治后续维护措施”等因素为目前制约上海城市河流整治成效的主要影响因素。在对这些主要影响因素的跟踪评价研究中,按照“评价方案”、“成因分析”、“发展转化”和“克服手段”的顺序分别对各影响因素进行了较为初步的跟踪评价,在一定范围内指出了今后改善上海城市河流整治成效的方向。
     对“水动力条件”影响因素跟踪评价的实证研究建立在较微观的层面上,以现场勘察和实验室分析为主要研究手段。选取样本河流之一的木渎港和水动力条件相对较好的主干河道苏州河作为实证研究的主要研究对象。实验方案设计中充分考虑水系连通性、自然涨落潮及季节变化等水动力条件的重要表征因子对城市河流水质及河流整治成效的综合影响。水动力条件跟踪评价的结果表明:(1)从野外勘测和分析实验结果中得出水动力条件对上海城市河流整治成效影响的内在规律大致为“水系连通性因素>自然涨落潮因素>季节变化因素>天文大小潮因素”,确认水系连通性因素与河流水动力条件有着最为密切的联系;(2)城市河流水动力条件不佳加剧了河流水体黑臭现象,并直接作用于河流整治成效,成为整治后河流水质不稳定的隐患和后续维护困难的重要原因;(3)水动力条件对上海城市河流整治成效的制约,从一个侧面反映出开展城市河流整治成效及其影响因素研究的重要性和迫切性。基于跟踪评价结果的考虑,提出在整治的全过程中重视改善城市河流水动力条件,并以此提出相应的对策和措施。
Rivers are the natural resources in urban areas. In urban area of Shanghai and as a great component in urban water bodies, rivers have been playing an important role in maintaining the urban ecosystem as well as transporting and serving functions within urban economic development and social lives. Due to the integrated influences of industrialization and urbanization, urban rivers have seriously damaged and interfered by human activities. Thus, river restorations and aquatic improvements have become one of the key issues in environmental protection for the metropolis of Shanghai. Based upon the background of river restoration in Shanghai, there was relatively lack of assessing the environmental factors systematically during the process of river or watercourse restoration. Furthermore, it is also believed that the understanding of the restrictive factors were insufficient, which directly make adverse impacts to the effects of restoration. Consequently, attempt to establish the effect and its influence factors assessment in the process of river restoration is of great theoretical and practical significance.
    On the purpose of understanding the tendency that being developed in urban river restoration, a review of the urban river restorations has been carried out in this thesis. The review emphasized on the benefits or experience of the United States, Britain, European Union, Japan and Australia, including the "Public Comfort Assessment" and "Management of Drainage Area" in the US, "ICPR Group" and "Water Framework Directive" in the EU, "Multi-requirements of River Restoration" in Japan, "River Health Assessment" in Australia; concluded the pressing problems that being confronted during domestic river restorations, such as heavy polluted of water bodies, the ratio of water areas decreased, singleness of the river function, etc.
    According to the review, the thesis intended to discuss the theories and methods being applied into the effect assessment of urban river restoration in Shanghai. Discussions involved in guidelines, theories, methods, system of environmental target and follow-up assessment. Among these aspects, the key points are inclined to establishing the system of environmental target for the effect assessment as well as the follow-up assessment aim to the influencing factors. Under the foundation of representation, synthesis, prediction and maneuverability, the thesis borrowed some ideas from the "multi-target overall assessment" and "Analytical hierarchy process (AHP)", the target was designed as four "Components" with two "Hierarchies". Several measures like field sampling, lab analyzing, modeling, etc. were considered in the follow-up assessment so that the influencing factor assessment could be developed from the qualitative level to the quantitative level. As a result, the countermeasures for improving the urban river restoration would be provided according to the assessment.
    Based upon the project of Shanghai Water Authority, Restoration and Remediation of Small Malodorous Black River in Urban Area of Shanghai (No.:Hushuike2004-05), the thesis
    investigated a great number of feasibility reports as well as the status reports of the river restoration projects in Shanghai. The results of the background investigation indicated that the focus of status investigation should continuously be strengthened and there is a close relationship between the technologies and the restoration effects. After comparison and analysis, 18 rivers in the urban area of Shanghai were selected as the model of the effect assessment. The effect assessment of the urban river restoration in Shanghai confirmed that "Hydrodynamics condition", "River system connectedness", "Cost of the restoration technologies", "Subsequent measures for maintaining the river restoration effects", etc. were the major influencing factors of river restoration. As to the follow-up assessment, the thesis attempted to assess the influencing factors respectively. The sequence of the follow-up assessment was followed by the assessment strategies, analysis of the causes and measures of counteract the limiting factors. To some extent, the effect assessment pointed out the direction of improving the effects of river restoration in Shanghai.
    The case study of the follow-up assessment acted on the hydrodynamics condition was mainly used the methods of field sampling and analytical data. One of the model rivers that belong to the scope of the rivers being assessed previously, named Mudu Creek was involved in the follow-up assessment. The Suzhou River, which is a main watercourse in Shanghai and with relatively good condition in hydrodynamics, was also assessed to make a comparison with the Mudu Creek. The experiment suggested four dimensions of hydrodynamic impacts (impact of river system connectedness, impact of natural flood and ebb, impact of seasonal conversion, impact of astronomic tides), and the results indicated that: (1) The rough regulation of four dimensions is that impact of river system connectedness > impact of natural flood and ebb> impact of seasonal conversion > impact of astronomic tides, and water system connectedness could be thought as the closest relationship with hydrodynamics. (2) The influencing factor of hydrodynamics aggravated the malodorous and black conditions of the urban rivers and with direct adverse impacts to the river restoration effects. (3) The influencing factors of hydrodynamics to the urban river restoration in Shanghai demonstrated the importance and urgency of the study on the effect and its influencing factors. The thesis emphasized that hydrodynamics condition should be continually improved within the whole processes of urban river restoration.
引文
[1]. Bash J S, Ryan C M. Stream Restoration and Enhancement Projects: Is Anyone Monitoring?[J] Environmental Management, 2002, 29(6):877-885.
    [2]. Bateman I J, Cole M A, Georgiou S, et al. Comparing contingent valuation and contingent ranking: A case study considering the benefits of urban fiver water quality improvements[J]. Journal of Environmental Management, 2006, 79(3):221-231.
    [3]. Bernard J, Turtle R. Stream Corridor Restoration: Principles, Processes, and Practice[M]. USDA, Natural Resources Conversation Service, 1998.
    [4]. Boon PJ. Davies B R. Pctts G E. Global Perspectives on fiver conversation: science, policy and practice[M]. New York: Wiley, 496-502, 2000.
    [5]. Brierley G, Fryirs K, Outhet D, et al. Application of the River Styles framework as a basis for river management in New South Wales, Australia[J]. Applied Geography, 2002,22(1):91-122.
    [6]. Bubb J, Lester J. 1994. Anthropogenic heavy-metal inputs to lowland river system, a case study-The River Stout, UK[J]. Water Air and Soil Pollution, 78(3-4):279-296.
    [7]. Carol A H, Robert B G, Susan K W. Citizen involvement in sustalnability-centred environmental assessment follow-up[J]. Environmental Impact Assessment Review, 2005.
    [8]. Che X, Shang J, Wang J. Strategic Environmental Assessment and its development in China[J]. Environmental Impact Assessment Review, 2002, 22(1): 101-109.
    [9]. Chevteuil M, Carru A M, Chesterikoff A, et al. 1995. Contamination of fish from different areas of the river Seine (France) by organic (PCB and pesticides) and metallic (Cc, Cr, Cu, Fe, Mn, Pb and Zn) micropollutants[J]. The Science of the Total Environment, 162:31-42.
    [10]. Ciarana O F. Environmental agreements, EIA follow-up and aboriginal participation in environmental management: The Canadian experience[J]. Environmental Impact Assessment Review, 2007.
    [11]. Curt C, Vilagines R.1997. Time series analysis on chlorides, nitrates, ammonium and dissolved oxygen concentration in the seine river near Paris[J]. The Science of the Total Environment, 208:59-69.
    [12]. David W M. Water pollution control: the case for local control and accountability[J]. Marine Policy, 1993, 17(5):422-425.
    [13]. Feng H, Cochran J K, Lwiza H, et al. Distribution of heavy metal and PCB contaminants in the sediments of an urban estuary: The Hudson River[j]. Marine Environmental Research, 1999, 45(1):69-88.
    [14]. Femando C, Begona M, Angel R, et al. Implementation of a new environmental impact assessment for municipal waste landfills as tool for planning and decision-making process[J]. Renewable and Sustainable Energy Reviews, 2007, 11 (1):98-115.
    [15]. Ferrier R C, Edwards A C, Hirst D, et. al. Water quality of Scottish rivers: spatial and temporal trends[J]. The Science of the Total Environment, 2002, 265:327-342.
    [16]. Ferrier R C, Edwards A C. Sustainability of Scottish water quality in the early 21st century.[J] The Science of the Total Environment, 2002, 265:327-342.
    [17]. George Tchobanoglous Franklin, L Burton. Wastewater Engineering treatment, Disposal and Reuse[M]. New York: McGraw Hill College, 1990:994-995.
    [18]. Gerald E, Galloway M. River basin management in the 21st century: Blending development with economic, ecological, and cultural sustainability[J]. Water International, 1997, 22 (2):82-89.
    [19]. Gilles B, Josette G, Andre F, et al. Modeling the Response of Water Quality in the Seine River Estuary to Human Activity in its Watershed Over the Last 50 Years[J]. Estuaries, 2001, 24(6):977-993.
    [20]. Graham A G, Robin M S. An efficient biofilm removal method for bacterial cells exposed to drinking water[J]. Journal of Microbiological Methods. 1999, 34:203-214.
    [21]. Harremoes P, Napstjert L, Rye C, et al. Impact of rain runoff on oxygen in an urban river[J]. Water Science and Technology, 1996, 34(12):41-48.
    [22]. Hart B T, Davies P E, Humphrey C L, et al. Application of the Australian river bioassessment system (AUSRIVAS) in the Brantas River, East Java, Indonesia[l]. Journal of Environmental Management, 2001, 62(1):93-100.
    [23]. Hermans C, Eriekson J, Noordewier T, et al. Collaborative environmental planning in river management: An application of multicriteria decision analysis in the White River watershed in Vermont[J]. Journal of Environmental Management, 2006.
    [24]. Imhoff K R. Methods of Instrcam Aeration by Mechanical Means. Igncnicar Ambient[J]. 1989, 18(1): 12-25.
    [25]. Inglis G L, Kross J E. Evidence for systemic changes in the benthic fauna of tropical estuaries as a result of urbanization[i]. Marine Pollution Bullctin, 2000, 41(7-12)367-376.
    [26]. Jean C, Daniel C, Dominique A, et al. Trace metal distribution, partition and fluxes in thc seine estuary(France) in low discharge regime[J]. Marine Chemistry, 1994(47):145-158.
    [27]. Jennifer G. D., Nanda S. K. Two-dimensional depth-averaged model simulation of suspended sediment concentration distribution in a groync field[J]. Journal of Hydrology, 2006, 327(3-4):426-437.
    [28]. Jeremy C, Joe H. The Water Framework Directive and the Strategic Environmental Assessment Directive: Exploring the linkages[J]. Environmental Impact Assessment Review, 2006.
    [29]. Joan A, Sanchez C, Luis P. Study on the hydronamics of the Ebro River lower course using tritium as a radiotracer[J]. Water Research, 1999, 33(10):2345-2356.
    [30]. Judith R. Policy Review of British Waterways[M]. The In House Policy Consultancy, 2005.
    [31]. Julius Solnes. Environmental quality indexing of large industrial development alternatives using AHP[J]. Environmental Impact Assessment Review, 2003, 23(3):283-303.
    [32]. Larisa Pozdnyakova, Anatoly Pozdnyakov, Renduo Zhang. Application of geophysical methods to evaluate hydrology and soil properties in urban areas[J]. Urban Water, 2001, 3(3):205-215.
    [33]. Lawrence A B, Robert D B. An ecological framework for the planning, design and management of urban river grcenways[J]. Landscape and Urban Planning, 1995, 33(1-3):211-225.
    [34]. Leslie B W. The Restoration of the Tidal Thames[M]. 1982.
    [35]. Letcher R A, Croke B F, Jakeman A J. Integrated assessment modeling for water resource allocation and management: A generalized conceptual framework[J]. Environmental Modeling & Software, 2007, 22(5):733-742.
    [36]. Loomis J. Environmental valuation techniques in water resources decision[J]. Journal of Water Resources planning and Management, 2000.
    [37]. Marina I, Margherita L, Angela N, et al. Integrated environmental assessment of Voltumo River in South Italy[J]. Science of the Total Environmental, 2004, 327(1-3):123-134.
    [38]. Marsdenu M W, Mackay D W. Water quality in Scotland: the view of regulator[J]. The Science of the Total Environment, 2001, 265:369-386.
    [39]. Mashauri, Damas A. Water quality management and sustainability, environmental flows and river basin management[J]. Physics and Chemistry of the Earth, Parts A/B/C, 2003, 28(20-27): 1095-1096.
    [40]. National Research Council, Committee on Restoration of Aquatic Ecosystems. Restoration of Aquatic Ecosystems[M]. Washionton D C: National Academy Press, 1992.
    [41]. Nicholas P, Reuben A H. Hydrodynamic and morphodynamic rcsponsc to river engineering documented by fixed-discharged analysis, Lower Missouri River, USA[J]. Journal of Hydrology, 2005, 302(1-4):70-91.
    [42]. Norse D, Tschirlcy J B. Links between science and policy making[J]. Agriculture, Ecosystems and Environment, 2000, 82(1-3): 15-26.
    [43]. Ohsaki Y, Matsucda T, Kurokawa Y. Distribution of polychlorinatcd dibenzo-p-dioxins, polychlorinatcd dibcnzofurans and non-ortho coplanar polychlorinatcd biphcnyls in river and offshores sediment[J]. Environmental Pollution, 1997, 96(1):79-88.
    [44]. Paffoni C. Seine Center, the New Flexible Colombcs Sewage Treatment Plant—from Theory to Practice[J]. Water Science and Technology. 2001, 44(2-3):49-56.
    [45]. Pcterson S A. Sediment removal as a lake restoration technique. Corvallis Env Rcs Lab, USEPA EPA-600/3-81-013.56, 1981.
    [46]. Power M, Attrill M J, Thomas R M. Heavy metal concentration trends in the Thames Estuary[J]. Water Research, 1999, 33(7): 1672-1680.
    [47]. Rauch W, Henzc M, Koncsos, et al. River water quality modeling: Ⅰ state of the Art[J]. Water Science and Technology, 1998, 38(11):237-244.
    [48]. Robson A J, Ncal C. A summary of regional water quality for Eastern UK rivers[J]. The Science of the Total Environment, 1997, 194/195:15-37.
    [49]. Rona V, Horst B, Wim S. Development of the heavy metal pollution trends in several European Rivers: an analysis of point and diffuse sources[J]. Water Science and Technology, 1999, 39(12):215-223.
    [50]. S Shrcstha, F Kazama. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin, Japan[J]. Environmental Modeling & Software, 2007, 22(4):464-475.
    [51]. Smith M J, Kay W R, Edward D H, et al. AusRivAS: using macro invertebrates to assess ecological condition of rivers in Western Australia. Freshwater Biology, 1999:91-124.
    [52]. Snaddon C D, Wisbart M J, Davies B R. Some implications of inter-basin water transfers for river ecosystem functioning and water resources management in southern Africa[J]. Aquatic Ecosystem Health & Management, 1998, 1(2):159-182.
    [53]. Stuben D, Walpersdorf E. Application of lake marl at lake Arendsee, NE Germany first results of a geochemical monitoring during the restoration experiment[J]. The Sci of the Total Environ, 1998, 218:33-44.
    [54]. Theresa Mau-Crimmins, J. E. de Stcigucr, Donald Dennis[J]. Forest Policy and Economics, 2005, 7(4): 501-514.
    [55]. Timothy R. Lazaro. Urban Hydrology: A Multidisciplinary Perspcctivc-Resvised Edition[M]. Lancaster: Technomic Publishing Company, 1990:29-84.
    [56]. Tung-Jer Hu, Hsiao-Wcn Wang and Hong-Yuan Lee. Assessment of environmental conditions of Nan-Shih stream in Talwan[J]. Ecological Indicators, 2006, 7(2):430-441.
    [57]. Tyson J M, Foster V. Valuing environmental benefits from river quality improvements[J]. Water Science and Technology, 1995, 32(5-6):111-115.
    [58]. Vink R, Bchrcndt H, Salomons W. Development of the heavy metal pollution trends in several European rivers: an analysis of point and diffuse sources. Water Science and Technology, 1999, 39(12):215-223.
    [59]. Walker W J, McNutt R P. Maslansa C K. The potential contribution of urban runoff to surface sediments of the Passaic River: sources and chemical characteristics. Chemosphere, 1999, 38(2):363-377.
    [60]. Ward J V. Riverine landscapes: biodiversity patterns, diversity regimes and aquatic conservation[J]. Biological Conservation, 1998, (47):269-278.
    [61]. Wiese S B O, Emmerson R H C, Macloed C L, et al. Trends in the solid phase partitioning of metals in the Thames Estuary sediment during the recent decades. Estuaries, 1997, 20(3):494-503.
    [62]. William W R. Alternative Oxygenation Possibilities for Large Polluted Rivers[J]. Water Resources Research, 1971, 7(3): 566-577.
    [63]. Winn P J, Young R M, Edwards A M. Planning for the rising tides: the Humber Estuary Shoreline Management Plan[J]. The Science of the Total Environment, 2003, 314(1): 13-30.
    [64]. Yamamoto K, Fukushima M, Kakutan N, et al. Contamination of vinyl chloride in shallow urban river in Osaka, Japan. Water Research, 2001, 32(5):561-566.
    [65]. Young G J, John C R. Global Water Resources Issues[M]. Cambridge University Press, 1994.
    [66]. Yutaka T, Juha I. Evolution of river management in Japan: from focus on economic benefits to a comprehensive view. Global Environmental Change, 2004(14):63-70.
    [67].白晓慧,杨万东,陈华林.城市内河沉积物对水体污染修复的影响研究[J].环境科学学报.2002,23(5):562-564.
    [68].包存宽.实施战略环评的基本框架——以上海市为例[M].同济大学博士后士学位论文,2002.6.
    [69].常青.北方城市河流生态恢复与重建模式研究——以滹沱河石家庄市区段和海河天津市区段为例[M].南开大学硕士学位论文,2004.5.
    [70].车越.中国东部平原河网地区水源地的环境管理:理论、方法与实践[M].华东师范大学博士论文,2005.5.
    [71].陈荷生,邹国燕等.利用生态浮床技术治理污染水体[J].中国水利.2005,5:50-53.
    [72].陈荷生.太湖底泥的生态疏浚工程[J].水利水电科技进展,2004,24(6):34-37.
    [73].陈蓝图.我国城市水污染防治立法若干问题研究tM].湖南师范大学硕士论文,2002.4.
    [74].陈泉生.西方国家环境法的发展[OL].http://www.fzu.edu.cn/h19/cqspring/article/article-039.htm.
    [75].陈世军,张谌.松花江哈尔滨江段黑臭现象分析[J].黑龙江科技信息,2002,(8):69-69.
    [76].陈伟,徐左正,叶舜涛,等.苏州河支流综合整治工程[J].给水排水,2002,28(2):31-34.
    [77].陈一申,吴国豪,黄解田,等.苏州河水环境污染现状分析[J].上海环境科学,1997,16(1):11-15.
    [78].董晓丹,周琪,周晓东.我国河流湖泊污染的防治技术及发展趋势[J].地质与资源,2004,13(1):26-29.
    [79].董哲仁,曾向辉等.生态-生物方法水体修复技术[J].中国水利,2002,(3):8-11.
    [80].方宇翘,裘祖楠,张国莹等.城市河流中黑臭现象的研究[J].中国环境科学,1993,13(4):256-262.
    [81].方宇翘,张国莹.苏州河水的黑臭现象研究[J].上海环境科学,1993,12(12):21-26.
    [82].方子云,汪达.国际水资源保护和管理的最近动态——水与可持续发展[J].水资源保护,2001(1):1-6.
    [83].官宝红,吴国华等.京杭运河杭州段水污染源特征与截污措施建议[J].给水排水,2005,(2):1-5.
    [84].郭济凯.北京城市河道整治[J].北京水利,1995(2):40-41.
    [85].国家环保总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [86].郝静敏.战略环境评价(SEA)理论体系的研究及其在渤海石油开发中的实践[M].天津大学硕士论文,2003.7.
    [87].胡国臣,王忠,常晓青.预防水体黑臭的水质指标研究[J].上海环境科学,1999,18(11):523-525.
    [88].胡荣梅,鞠华.苏南太湖地区主要城市水环境污染综合防治研究(上)[J].环境科学,1986,7(4):35.
    [89].胡荣梅,鞠华.苏南太湖地区主要城市水环境污染综合防治研究(下)[J].环境科学,1986,7(5):14-23.
    [90].胡雪峰,许世远,陈振楼.上海市郊中小河流水污染现状及对策[J].农业环境保护,2002,21(3):204-207.
    [91].黄兴伟.泰晤士河由“死”复生的启示.中国三峡建设,2004,1:36.
    [92].姜斌,刘倩,虞玉诚.美国城市发展对淡水生态系统的影响[OL].http://www.watersite.com.cn/syjj-1.
    [93].姜彤.莱茵河流域水环境管理的经验对长江中下游综合治理的启示[J].水资源保护,2002(3):45-50.
    [94].鞠美庭,朱坦.对我国规划环境影响评价中几个重要问题的思考[J].上海环境科学,2003(增刊):80-83.
    [95].匡桂云,张效国.苏州河整治的阶段性成果[J].净水技术,200l,20(1):7-9.
    [96].李芳.国外著名河流治理的成功范例分析及与苏州河治理比较[M].同济大学硕士学位论文,2004.3.
    [97].李锦秀,杜斌,孙以三.水动力条件对富营养化影响规律探讨[J].水利水电技术,2002,36(5):15-19.
    [98].李明光,龚辉,李志琴等.开展规划环境影响评价的若干问题探讨[J].环境保护,2003,(1):34-36.
    [99].李相然.城市化环境效应与环境保护[M].北京:中国建材工业出版社,2004.
    [100].李柞泳,丁晶,彭荔红.环境质量评价原理与方法[M].北京:化学工业出版社,2004.
    [101].梁从诫.2005年:中国的环境危局与突围[M].北京:社会科学文献出版社,2006.
    [102].刘冬燕.苏州河生态恢复过程中浮游植物群落的生态学研究[M].华东师范大学博士论文,2003.5.
    [103].刘鸿志,卢雪云.中外河流水污染治理比较[J].世界环境,2001(4):27-30.
    [104].刘树坤.日本城市河道的景观建设和管理[J].海河水利,2003(3):68-70.
    [105].刘晓涛.城市河流治理规划若干问题的探讨[J].水利规划设计,2001(3):28-33.
    [106].刘晓涛.关于城市河流治理若干问题的探讨[J].上海水务,2001(3):1-5.
    [107].马占青.水污染控制与废水生物处理[M].北京:中国水利水电出版社,2003.
    [108].潘岳.中国环境问题的思考——潘岳副局长在第一次全国环境政策法制工作会议上的讲话[EB/OL].2007.www.scpa.gov.cn/info/ldih/200701/t20070118_99754.htm
    [109].钱嫦萍,陈振楼,王东启.城市河流黑臭的原因分析及生态危害[J].城市环境,2002,16(3):21-23.
    [110].钱正英.水利建设创新的方向——创造人与河流和谐共存与发展的环境[EB/OL].2006.http://www.cae.cn/expadvs/content.jsp?id=2746.
    [111].阮仁良,黄长缨.苏州河水质黑臭评价方法和标准的探讨[J].上海水务,2002(3):32-36.
    [112].芮元鹏.我国环境影响评价体系及其在环境管理中的拓展研究[M].北京工业大学硕士论文,2003.12.
    [113].宋庆辉,杨志峰.对我国城市河流综合管理的思考[J].水科学进展,2002,13(3):377-382.
    [114].苏州河环境综合整治指挥部.苏州河的功能定位与综合整治目标.上海环境科学,1997,16(1):6-7.
    [115].汤建中,宋韬,江心英等.城市河流污染治理的国际经验[J].世界地理研究,1998,7(2):114-119.
    [116].唐涛,蔡庆华,刘建康.河流生态系统健康及其评价[J].应用生态学报,2002,13(9):1191-1194.
    [117].汪结春.上海地区河流整治的成效研究[M].上海交通大学MPA硕士学位论文,2006.
    [118].汪结春.上海市河道长效管理机制探讨[J].河海大学学报(哲学社会科学版),2004,6(2):62-64.
    [119].汪松年,阮仁良.上海市水资源普查报告[M].上海:上海科学技术出版社,2001.
    [120].王同生.莱茵河的水资源保护和流域治理[J].水资源保护,2002,4:60-62.
    [121].王文雯.城市河流治理生态效应优化模式探索[M].山东师范大学硕士学位论文,2004.5.
    [122].王耘,程江,黄民生.上海城区中小河道黑臭水体修复关键技术初探[J].净水技术,2006(2):6-11.
    [123].魏永军.环境影响评价中河流调查、监测方法的探讨[J].江苏环境科技,2003,16(2):22-23.
    [124].吴阿娜.河流健康状况评价及其在河流管理中的应用[M].华东师范大学硕士论文,2005.5.
    [125].徐祖信.河流污染治理规划理论与实践[M].北京:中国环境科学出版社,2003.
    [126].徐祖信.河流污染治理技术与实践[M].北京:中国水利水电出版社,2003.
    [127].许士国,高永敏,刘盈斐.现代河道规划设计与治理——建设人与自然和谐的水边环境[M].北京: 中国水利水电出版社,2005.
    [128].薛建枫.贯彻新的治水思路 加快珠江治理与发展[J].人民珠江,2002(2):
    [129].阎水玉,王祥荣.城市河流在城市生态建设中的意义和应用方法[J].城市环境与城市生态,1999,12(6):36-38.
    [130].杨吉山.上海地区近五十年来河网水系、水质演变及对浦东新区水环境治理的建议[M].华东师范大学硕士学位论文,2001.
    [131].杨凯.平原河网地区水系结构特征及城市化响应研究[M].华东师范大学博士论文,2006.
    [132].杨芸.多自然型河流治理法对河流生态环境的影响[J].四川环境,1999,18(1):19-24.
    [133].余国营,徐小清,张晓华.富营养化与污染物间的相互作用及生态效应[J].生态学杂志,2000,19(4):12-17.
    [134].张希柱,林卫东.关于规划环境影响评价的探讨[J].大众科技,2006,(4):164-166.
    [135].赵彦伟,杨志峰.河流健康:概念、评价方法与方向[J].地理科学,2005,25(1):119-124.
    [136].赵彦伟,杨志峰.河流生态系统修复的时空尺度探讨[J].水土保持学报,2005,19(3):196-200.
    [137].中国水势网.2002.英国环保局报告显示英国城市水道水质逐年大幅度得到改善[EB/OL].http://www.waterinfo.com.cn/newscenter/guoji/200210160004.htm.
    [138].朱国平,王秀茹,王敏等.城市河流的近自然综合治理研究进展[J].中国水土保持科学,2006,4(1):92-97.
    [139].朱坦.战略环境评价[M].天津:南开大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700