异型进气道沿程结冰参数变化的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
航空发动机的进口部件,如支板、整流帽罩等在一定的气象和飞行条件下会出现结冰现象,一旦冰层迅速增厚,将会减小流通面积,改变流道的形状,以及使发动机性能恶化,结冰严重时会使发动机不能正常工作并危及飞行器的安全。进入发动机进口的气流一般要经过一段进气道,对于战斗机为了隐身要求,进气道形状一般都是非圆截面的异形进气道。这时发动机进口的结冰参数与外界大气的结冰参数就有很大的差别。本文主要研究结冰参数沿进气道的变化规律及发动机进口部件结冰的影响。
     本文以S型、Y型和蛇形这三种进气道为模型,采用欧拉—欧拉法,对飞机零攻角、低来流Ma和均匀来流条件下(液态水含量、温度、速度)的进气道沿程的空气—过冷水滴两相流场与温度场进行了数值计算,得到了进气道沿程、出口截面上和发动机进口部件表面结冰参数的分布和变化特性。
     研究结果表明:
     一、二元S型进气道随来流Ma的增加,进气道出口截面上的温度畸变指数逐渐增大,液态水含量畸变指数先增大后减小,当Ma=0.2时液态水含量畸变最大;进气道内迎风壁面附近的液态水含量较大;当Ma=0.5时进气道入口的气动降温可达17K左右。
     二、二元Y型进气道在Ma=0.3时,在进气道来流迎风壁面处,液态水含量较大,而在沿程方向总压较低的两个区域内水滴浓度较低,且此区域内存在一组速度对涡。进气道进口的气动温降达到6K到7K左右,而在出口区域静温较进口静温高2K到3K左右。
     三、二元蛇形进气道在Ma=0.3时,在进气道来流迎风壁面处,液态水含量较大;在靠近进气道内上表面的近壁区速度较小,液态水滴浓度较低,且进气道扩张段内的上半部存在速度几乎滞止的区域。
     四、空气—过冷水滴两相流在经过二元S型进气道到达发动机进口部件处,空气相静温在帽罩滞止区较高,沿流向逐渐降低并在支板根部达到最低值,当Ma=0.4时进口部件上最低静温比来流低11K左右;随着Ma的增大,水滴浓度较大的区域由出口截面的左半区域逐渐向中间移动,帽罩上的水滴浓度较高区域的面积逐渐增大。
Ice accretion may occur on the entry components of an aero-engine, such as the struts and the centre conical body under some meteoric and flight conditions. Once the ice becomes thicker and thicker, the mass flow rate of airflow would reduce, that would lead to engine performance deterioration. If the ice accretes severely, the engine couldn’t work normally and even endanger the aircraft. In generally, the airflow entering into the engine may pass through an intake, whose cross section is generally non-circular shaped because of the requirement of stealth. Then the icing parameters at the engine entry will be very different from that in the outside atmosphere. In order to understand the variation characteristics of the icing parameters along the intake and their effects on ice accretion on entry parts of aero-engine, a numerical study is conducted in this thesis.
     With the Euler-Euler method, the two-phase flow and heat transfer of air and super-cooled water droplets along the S-intake, Y-intake and Serpentine-intake at low Mach number under atmospheric icing conditions were numerically simulated. The distribution and variation characteristics of the icing parameters along the intakes and on the outlet were studied.
     The results are as following:
     (1) With the increase of Ma, the distortion index of temperature on the outlet of the two dimensional S-intake increases, while the distortion index of liquid water content increases at first and then decreases with a maximum distortion at Ma = 0.2; the liquid water content near the windward wall of the intake channel is relatively larger than that of other regions; the air temperature drop relative to incoming flow at near the entrance of the intake is up to about 17K at Ma = 0.5.
     (2) The liquid water content is relatively larger in windward wall of the two-dimensional Y-Intake at Ma = 0.3, while that of region where the total pressure is low along the intake is lower. And there is a group of vortex in this region. The air temperature drop at the intake inlet is about 6K to 7K, while the air temperature incensement at the outlet is about 2K to 3K.
     (3) The liquid water content is relatively larger in windward wall of the two-dimensional Serpentine-intake at Ma = 0.3, while that of near wall region of the upper surface is lower. And there are local regions where the flow is almost stagnant in the upper part of expansion section of the intake.
     (4) The air temperature in the stagnation region of the centre conical body is relatively higher, which decreases in the downstream and reaches a minimum at the struts root. When Ma = 0.4 the lowest air temperature is 11K lower than that of incoming flow. With the increase of Ma, the area where the concentration of water droplets is relatively higher moves gradually from the left region to the middle region on the outlet and the corresponding area on the centre conical body increases.
引文
[1]袁燮纲,飞机防冰系统,航空专业教材编审组出版,1996
    [2] Chaput, M., Use of water vapor for engine deicing applications, 2007 SAE Aircraft &Engine Icing Conference and Exhibition, Seville, Spain, 2007
    [3] McVey, Oliver, Pullen, Ramani et al, Inclement weather & aircraft engine icing, GE Aviation, 2007
    [4]航空发动机手册第十六册,航空工业出版社,2001
    [5]赵坚行,燃烧数值模拟,科学出版社,2002
    [6] Caruso, S. C., LEWICE droplet trajectory calculations on a parallel computer, AIAA 1993-0172, 1993
    [7] Bourgault, Y., Habashi, W. G., Dompierre, J. et al, An Eulerian approach to supercooled droplets impingement calculations, AIAA 1997-0176, 1997
    [8] Tong, X-L and Luke, E.A., Eulerian simulations of icing collection efficiency using a singularity diffusion model, AIAA 2005-1246, 2005
    [9] Luliano, E., Brandi, V., Mingione, G. et al, Water impingement prediction on multi-element airfoils by means of Eulerian and Lagrangian approach with viscous and inviscid air flow, AIAA 2006-1270, 2006
    [10] Sutikno Wirogo & Shashidhar Srirambhatla,An Eulerian Method To Calculate The Collection Efficiency On Two And Three Dimensional Bodies AIAA-2003-1073 ,2003
    [11] A.Hamed,K.Das,D.Basu Numerical simulations of ice droplet trajectories and collection efficiency on aeroengine rotating machinery,AIAA 2205-1248,2005
    [12] Bidwell, C. S., Collection efficiency and ice accretion calculations for a Boeing 737-300 inlet, NASA TM-107347, 1996
    [13] Farag, K. A. and Bragg, M. B., Three dimensional droplet trajectory code for propellers of arbitrary geometry, AIAA 1998-0197, 1998
    [14] Nathman, J. K. and McComas, A., Icing collection efficiency from direct simulation, AIAA 2007-0505, 2007
    [15] Scott Bartlett,Mike Stringfield and Tom Tibbals,Determination of Liquid Water Content in the AEDC Engine Test Cell,AIAA-92-0165,1992
    [16] Michael Papadakis and Kuohsing E.Hung et al,Experimental Investigation of Water Droplet Impingement on Airfoils,Finite Wings,and S-Duct Engine Inlet,NASA/TM-02-211700,2002
    [17] C.Scott Bartlett and William J.Phares Sverdrup Technology,Icing Testing of a Large Full-Scale Inlet at the Arnold Engineering Development Center,AIAA-93-0299,1993
    [18] M.Papadakis,Wichita KSR.Elangovan,G.A.Freund et al,Experimental Water Droplet Impingement Data on Two-Dimensional Airfoils,Axisymmetric Inlet and Boeing 737-300 Engine Inlet,AIAA-87-0097,1987
    [19] J.Luttrell and T.West,F-22 Inlet Shed Ice Particle Sizing Test,AIAA 2001-0091,2001
    [20] C.S.Bidwell,S.R.Mohler et al,Collection Efficiency and Ice Accretion Calculations for aSphere,a Swept MS(1)-317 Wing,a Swept NACA-0012 Wing Tip,an Axisymmetric Inlet,and a Boeing 737-300 Inlet,AIAA-95-0755,1995
    [21] Papadakis, M., Kuohsing, E. H., Vu, G. T. et al, Experimental investigation of water droplet impingement on airfoil, finite wings, and s-duct engine inlet, NASA TM-2002-211700, 2002
    [22] Render, P., Pan, H., Sherwood, M. et al, Studies into the hail ingestion characteristics of turbofan engines, AIAA 1993-2174, 1993
    [23] Luttrell, J. and West, T., F-22 inlet shed ice particle sizing test, AIAA 2001-0091, 2001
    [24] 1杨73倩-1,76常士楠,袁修干,水滴撞击特性的数值分析方法研究,航空学报,2002,23(2):
    [25]杨倩,常士楠,袁修干,发动机进气道水滴撞击特性分析,北京航空航天大学学报,2002,28(3):362-365
    [26]张大林,杨曦,昂海松,过冷水滴撞击结冰表面的数值模拟,航空动力学报,2003,18(1):87-91
    [27]王世忠,航空发动机进口支板的积冰机理和数值模拟研究,南京航空航天大学硕士学位论文,2003年
    [28]陈宝,李长坤,翼型结冰过程中过冷水滴运动的数值模拟研究,气动研究与实验,2006,3:23-1
    [29]范训,发动机进气道沿程结冰参数变化方法研究,南京航空航天大学硕士学位论文,2008
    [30]王世忠,航空发动机进口支板的积冰机理和数值模拟研究,南京航空航天大学硕士学位论文,2003年
    [31]陈宝,李长坤,翼型结冰过程中过冷水滴运动的数值模拟研究,气动研究与实验,2006,3:23-1
    [32]林麒,郭荣伟.大攻角下S弯进气道内的气流特性,南航科技报告NHJB-87-4370
    [33]林麒,郭荣伟.S弯进气道内旋流的有源涡控研究[J]航空学报.1989,10(1) A35-40
    [34]翁小侪,郭荣伟.一种腹下S弯进气道低速大攻角下气动特性实验,航空动力学报,1000-8055(2008)09-1573-06,2008
    [35] R H Nichols,丛敏,圆截面S形进气道中的流动计算,飞航导弹,1993年第9期,1993
    [36]郭东明,超音速S型进气道流场数值模拟,西北工业大学,2006
    [37]李博,一种Y型Bump进气道的设计及试验研究,南京航空航天大学博士学位论文,2009
    [38] S.Lee,E.Loth,A.Broeren et al,Simulation of Icing on a Cascade of Stator Blades,AIAA-2006-208,2006
    [39] Marlin D.Breer and Mark P.Goodman,Three-Dimensional Water Droplet Trajectory Code Validation Using an ECS Inlet Geometry,NASA-cr-191097,1993
    [40] D.G.Maltezos,SUNY,Farmingdale,Particle Trajectory Computer Program for Icing Analysis of Axisymmetric Bodies,AIAA87-0027,1987
    [41] G.Mingione and V.Brandi,A 3D Ice Accretion Simulation Code,AIAA99-16159,1999
    [42] Mark A.Reissig,Ice Accumulation Potential Of An Aircraft Screen Inlet,AIAA99-0622,1999
    [43] M.Milanez,G.F.Naterer,EULERIAN FORMULATION FOR DROPLET TRACKING IN DISPERSED PHASE OF TURBULENT MYLTIPHASE FLOW,AIAA 2002-3182,2002
    [44]郭东明,刘振侠,三维进气道湍流流场数值模拟,空计算技术,06, 36(1):90-93
    [45]任楠,姜向禹,短S弯进气道流场数值模拟研究.,空发动机, 2007, 33(4):12-14
    [46]朱宇,王霄,短S形进气道流动特性数值模拟研究,飞机设计,2004,4:1-6
    [47]李博,梁德旺,Y形进气道流场数值研究.南京航空航天大学学报,2004, 36(1):6-10
    [48]黄国平,杨德华,梁德旺,李博,利用边条涡抑制Y形进气道流畅畸变,航空学报,2000, 2(2):113-117
    [49] Rajesh K. Singh, S.N.Singh, and V. Seshadri Performance and Flow Characteristics of Double-Offest Y-Shaped Aircraft Intake Ducts,AIAA 1230-1243,2008
    [50]黄顺洲,陆德雨,进口温度畸变对发动机稳定性影响的数值研究,2001,14(1):46-51
    [51]陶立权,孙鹏,总压畸变对风扇流场影响的全流道数值研究,2009,24(3):643-650
    [52] SFliomwosn[,D E]., GPh.,. DD.e Tvheleospism, Uennti vaenrds iatyp polfic Mataionnc hoefs tae rN Ienwst iWtutael lo Ff uSnccietinocnes afnodr CTeocmhpnloelxo gTyu, r2b0u0le2n t
    [53] Silveira, R. A., da, Maliska, C. R., Estivam, D. A. et al, Evaluation of Collection Efficiency Methods for Icing Analisys, 17th international congress of mechanical engineering November 10-14, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700