磁性原子和磁性分子在不同表面的扫描隧道谱学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
扫描隧道显微镜(scanning tunneling microscope,STM)不仅能够获得表面和表面吸附体系的高分辨图像,还能探测表面的局域扫描隧道谱(scanningtunneling spectroscopy,STS),甚至能够对表面吸附体系进行操纵。近三十年来,STM作为一种非常重要的科学分析仪器,在物理、化学、材料和生物等诸多学科领域得到了广泛的应用。在本论文中,我们利用超高真空低温扫描隧道显微镜对单层石墨/Ru(0001)、石墨和Ru(0001)表面的吸附物电子学性质进行了研究。
     第一章是本论文的基础,简单介绍了STM的发明、发展以及基本工作原理,另外还特别介绍了实验中所使用的超高真空低温扫描隧道显微镜的结构以及实验中所用到的一些工作模式。
     在第二章中,我们利用STM/STS主要对比研究了Ru (0001)表面外延生长的单层、双层石墨。研究发现在一个很宽的能量范围内,单层石墨表面摩尔纹较高区域的电子态密度和双层石墨表面的局域电子态密度相同。和双层石墨表面一样,单层石墨较高区域在费米面以下0.5 V处也有一个狄拉克点。另外,研究发现单层石墨的局域功函数远低于HOPG的功函数,并且呈周期性分布,其中摩尔纹的较高区域和较低区域的功函数差别约为200 meV;而双层石墨的功函数比单层石墨大,向HOPG恢复。分析后我们认为单层石墨表面的局域势垒高度值偏小以及呈周期分布是因为表面存在着周期分布的正的表面电偶极矩。
     在第三章中,我们主要研究了在MG/Ru(0001)表面吸附的钴酞菁(CoPc)分子,发现只有CoPc分子在MG/Ru(0001)表面上出现了很明显的整流效应,并且该整流效应只存在于中心Co上。通过CoPc直接吸附在Ru(0001)表面的对比实验,以及对这两个体系的理论计算分析,我们发现,由于MG的脱耦合作用,大大减弱了分子与衬底间的相互作用,而中心Co上的d轨道相对于费米面的不对称分布使CoPc的中心Co在MG/Ru(0001)表面表现出了整流效应。
     在第四章中,我们选用高定向热解石墨(HOPG)作为衬底继续研究CoPc分子与衬底的相互作用。结合STM形貌、STS的谱学和第一性原理计算的方法,我们发现CoPc分子与衬底之间的相互作用很弱,因此在针尖—CoPc分子—HOPG之间形成双势垒隧穿结。通过分析CoPc分子上通过LUMO轨道的双势垒隧穿引起的双峰位置与针尖高度关系,我们还发现需要在3d金属酞菁分子与HOPG之间引入电容的量子修正。
     在第五章中,我们主要阐述单个钴(Co)原子及其团簇在Ru(0001)表面的近藤效应。结合STM的横向操纵技术,我们发现,在Ru(0001)表面的单个Co原子、Co二聚体和线状三聚体的近藤共振具有峰宽不变、而峰型变化的特点;而一旦Co原子形成三角形密排三聚体或者更大的密排团簇时,近藤共振就消失不见了。另外,利用STM的纵向操纵技术,针尖变成具有近藤效应的近藤针尖,用这样的针尖来探测样品表面具有近藤效应的单个Co原子时,新得到的近藤共振主要由针尖上的近藤共振决定。
Scanning tunneling microscope (STM) can not only obtain high-resolutionimages of the surface and surface adsorption system in real space, but also probethe scanning tunneling spectroscopy (STS) of them, and can manipulate thesurface-adsorbate. In the nearly three decades, as an important scientific analyticalinstrument, STM has been widely utilized in physical science, chemical and materialscience, biology. In this thesis, we use ultra-high vacuum low temperature scanningtunneling microscopy (UHV LT-STM) to study the electronics properties of theadsorbate on monolayer graphene/Ru(0001), Highly Oriented Pyrolytic Graphite(HOPG) and Ru(0001) surface.
     The ChapterⅠis the basis of this thesis, we briefly introduced the invention,development and simple fundamental principle of STM, in addition, and theinstrument structure and work mode of the UHV LT-STM used in our experiment.
     In ChapterⅡ, the epitaxial monolayer and bilayer graphene (MG and BG) onRu(0001) surface was studied comparatively. We found that the local density of states(LDOS) of the high sites of MG is the same with that of the BG in a wide energyrange, and there is a Dirac point on the high regions of MG as BG at about 0.5 Vbelow Fermi energy. In addition, it is found that the local work function (LWF) ofMG is around 3.5 eV, and the LWF difference between the high and low sites of MGis about 100 to 200 meV. But LWF of BG is larger than that of MG. We concludedthat the LWF of MG surface is too small value and periodic distribution is due to theexistence of periodic surface dipole moment.
     In ChapterⅢ, we mainly studied the cobalt phthalocyanine (CoPc) adsorbed onMG/Ru(0001) surface. We found that there is an obvious rectification effect inthe central Co ion of the CoPc molecules. Through the comparative studies ofthe CoPc molecules adsorbed on Ru(0001) surface, and combined with the theoreticalcalculations of these two systems, we found that the interaction between the CoPcmolecules and Ru(0001) surface become much weaker due to the decoupling effect ofthe MG. And the asymmetry of the d orbital of the central Co ion relative tothe Fermi energy results in the rectification effect on the central Co ion.
     In ChapterⅣ, highly oriented pyrolytic graphite (HOPG) was chosen asthe substrate to study the interaction between CoPc molecules and the substrate further. Combined with the STM/STS and the first principles calculation, we foundthat the interaction between the CoPc molecules and the substrate is very weak, soa double barrier tunneling junction (DBTJ) is formed, the two tunnel barriers in thejunction are the vacuum gap between the STM tip and the molecule, and the vacuumgap between the molecule and HOPG. By analyzing the double barrier tunnelingthrough the LUMO orbital of CoPc molecules, we find that the quantum correctionsshould be introduced to the capacitance of this two tunnel barriers.
     In ChapterⅤ,we mainly studied the Kondo effect of single cobalt (Co) atomsand clusters in Ru(0001) surface. Combined with the lateral manipulation andSTM/STS, we found that the width of Kondo peaks is almost unchanged fromsingle Co atoms to dimer then linear trimer, only their line shape is little changed. Butwhen the Co atoms form a triangle compact trimer or larger compact clusters,the Kondo peak disappear. We can obtained tips with Kondo resonance by the use ofvertical manipulation, use these tips to detect the Kondo resonance of the single Coatoms on Ru(0001) surface, the new Kondo resonance is mainly contributed bythe Kondo resonance on the tip.
引文
1G. Binnig and H. Rohrer, Helv. Phys. Acta. 55, 726 (1982).
    2G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Appl. Phys. Lett. 40, 178 (1982).
    3G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).
    4G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Phys. Rev. Lett. 50, 120 (1983).
    5陈成钧,扫描隧道显微学引论(中国轻工业出版社, 1996).
    6D. M. Eigler and E. K. Schweizer, Nature 344, 524 (1990).
    7B. Neu, G. Meyer, and K. H. Rieder, Mod Phys Lett B 9, 963 (1995).
    8G. Meyer, B. Neu, and K. H. Rieder, Appl Phys a-Mater 60, 343 (1995).
    9T. A. Jung, R. R. Schlittler, J. K. Gimzewski, H. Tang, and C. Joachim, Science 271, 181(1996).
    10L. Bartels, G. Meyer, and K. H. Rieder, Appl Phys Lett 71, 213 (1997).
    11S. W. Hla, L. Bartels, G. Meyer, and K. H. Rieder, Phys Rev Lett 85, 2777 (2000).
    12S. W. Hla, K. F. Braun, B. Wassermann, and K. H. Rieder, Phys Rev Lett 93, 208302 (2004).
    13K. F. Braun and S. W. Hla, Nano Lett 5, 73 (2005).
    14M. J. Comstock, J. W. Cho, A. Kirakosian, and M. F. Crommie, Phys Rev B 72, 153414(2005).
    15M. T. Cuberes, R. R. Schlittler, and J. K. Gimzewski, Appl Phys Lett 69, 3016 (1996).
    16H. Tang, M. T. Cuberes, C. Joachim, and J. K. Gimzewski, Surf Sci 386, 115 (1997).
    17J. G. Hou and A. D. Zhao, Nano 1, 15 (2006).
    18D. M. Eigler, C. P. Lutz, and W. E. Rudge, Nature 352, 600 (1991).
    19S. W. Hla, J Vac Sci Technol B 23, 1351 (2005).
    20L. Bartels, G. Meyer, K. H. Rieder, D. Velic, E. Knoesel, A. Hotzel, M. Wolf, and G. Ertl, PhysRev Lett 80, 2004 (1998).
    21P. Avouris, R. E. Walkup, A. R. Rossi, T. C. Shen, G. C. Abeln, J. R. Tucker, and J. W. Lyding,Chem Phys Lett 257, 148 (1996).
    22P. Avouris, R. E. Walkup, A. R. Rossi, H. C. Akpati, P. Nordlander, T. C. Shen, G. C. Abeln,and J. W. Lyding, Surf Sci 363, 368 (1996).
    23G. Dujardin, R. E. Walkup, and P. Avouris, Science 255, 1232 (1992).
    24R. Martel, P. Avouris, and I. W. Lyo, Science 272, 385 (1996).
    1A. K. Geim and K. S. Novoselov, Nat Mater 6, 183 (2007).
    2N. D. Mermin and H. Wagner, Phys Rev Lett 17, 1133 (1966).
    3N. D. Mermin, Physical Review 176, 250 (1968).
    4N. David, P. T., and W. S, World Scientific, Singapore (2004).
    5P. Le Doussal and L. Radzihovsky, Phys Rev Lett 69, 1209 (1992).
    6K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V.Grigorieva, and A. A. Firsov, Science 306, 666 (2004).
    7P. R. Wallace, Physical Review 71, 622 (1947).
    8K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L.Stormer, Solid State Commun 146, 351 (2008).
    9K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V.Dubonos, and A. A. Firsov, Nature 438, 197 (2005).
    10Y. B. Zhang, Y. W. Tan, H. L. Stormer, and P. Kim, Nature 438, 201 (2005).
    11Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill, and P.Avouris, Science 327, 662 (2010).
    12C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, Science 321, 385 (2008).
    13R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R.Peres, and A. K. Geim, Science 320, 1308 (2008).
    14M. D. Stoller, S. J. Park, Y. W. Zhu, J. H. An, and R. S. Ruoff, Nano Lett 8, 3498 (2008).
    15F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson, and K. S.Novoselov, Nat Mater 6, 652 (2007).
    16J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Q. Wei, and P. E. Sheehan, Nano Lett 8, 3137(2008).
    17G. Ko, H. Y. Kim, J. Ahn, Y. M. Park, K. Y. Lee, and J. Kim, Curr Appl Phys 10, 1002 (2010).
    18J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner, and B. H. Weiller, Acs Nano 3,301 (2009).
    19X. S. Li, et al., Science 324, 1312 (2009).
    20K. S. Kim, et al., Nature 457, 706 (2009).
    21E. Sutter, P. Albrecht, and P. Sutter, Appl Phys Lett 95, 133109 (2009).
    22F. J. Himpsel, K. Christmann, P. Heimann, D. E. Eastman, and P. J. Feibelman, Sur. Sci. Lett.115, 159 (1982).
    23Y. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Phys Rev Lett 100 (2008).
    24Y. S. Dedkov, M. Fonin, and C. Laubschat, Appl Phys Lett 92 (2008).
    25A. L. V. de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, J. J. Hinarejos, F. Guinea, and R.Miranda, Phys Rev Lett 100, 056807 (2008).
    26D. Martoccia, et al., Phys Rev Lett 101, 126102 (2008).
    27P. W. Sutter, J. I. Flege, and E. A. Sutter, Nat Mater 7, 406 (2008).
    28P. Sutter, M. S. Hybertsen, J. T. Sadowski, and E. Sutter, Nano Lett 9, 2654 (2009).
    29B. Wang, M. Caffio, C. Bromley, H. Fruchtl, and R. I. Schaub, Acs Nano 4, 5773 (2010).
    30S. Y. Kwon, C. V. Ciobanu, V. Petrova, V. B. Shenoy, J. Bareno, V. Gambin, I. Petrov, and S.Kodambaka, Nano Lett 9, 3985 (2009).
    31Y. Murata, E. Starodub, B. B. Kappes, C. V. Ciobanu, N. C. Bartelt, K. F. McCarty, and S.Kodambaka, Appl Phys Lett 97 (2010).
    32J. Coraux, et al., New J Phys 11 (2009).
    33I. Pletikosic, M. Kralj, P. Pervan, R. Brako, J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely,Phys Rev Lett 102 (2009).
    34Z. Klusek, et al., Appl Surf Sci 252, 1221 (2005).
    35J. Coraux, A. T. N'Diaye, C. Busse, and T. Michely, Nano Lett 8, 565 (2008).
    36D. Eom, et al., Nano Lett 9, 2844 (2009).
    37A. Varykhalov and O. Rader, Phys Rev B 80 (2009).
    38P. Wu, W. H. Zhang, Z. Y. Li, J. L. Yang, and J. G. Hou, J Chem Phys 133 (2010).
    39Y. Cui, Q. Fu, and X. H. Bao, Phys Chem Chem Phys 12, 5053 (2010).
    40Y. Cui, Q. Fu, H. Zhang, D. L. Tan, and X. H. Bao, J Phys Chem C 113, 20365 (2009).
    41Y. Cui, Q. Fu, D. L. Tan, and X. H. Bao, Chemphyschem 11, 995 (2010).
    42J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, J Am ChemSoc 131, 14136 (2009).
    43K. Donner and P. Jakob, J Chem Phys 131, 164701 (2009).
    44Y. Pan, M. Gao, L. Huang, F. Liu, and H. J. Gao, Appl Phys Lett 95 (2009).
    45Z. H. Zhou, F. Gao, and D. W. Goodman, Surf Sci 604, L31 (2010).
    46S. Marchini, S. Gunther, and J. Wintterlin, Phys Rev B 76, 075429 (2007).
    47Y. Pan, D. X. Shi, and H. J. Gao, Chinese Phys 16, 3151 (2007).
    48Y. Pan, H. G. Zhang, D. X. Shi, J. T. Sun, S. X. Du, F. Liu, and H. J. Gao, Adv Mater 21, 2777(2009).
    49A. B. Preobrajenski, M. L. Ng, A. S. Vinogradov, and N. Martensson, Phys Rev B 78, 073401(2008).
    50B. Wang, M. L. Bocquet, S. Marchini, S. Gunther, and J. Wintterlin, Phys Chem Chem Phys10, 3530 (2008).
    51D. E. Jiang, M. H. Du, and S. Dai, J Chem Phys 130, 074705 (2009).
    52E. Sutter, D. P. Acharya, J. T. Sadowski, and P. Sutter, Appl Phys Lett 94 (2009).
    53T. Brugger, S. Gunther, B. Wang, J. H. Dil, M. L. Bocquet, J. Osterwalder, J. Wintterlin, and T.Greber, Phys Rev B 79, 045407 (2009).
    54L. M. Kong, et al., J Phys Chem C 114, 21618 (2010).
    55B. Wang, M. L. Bocquet, S. Guenther, and J. Wintterlin, Phys Rev Lett 101 (2008).
    56A. L. V. de Parga, F. Calleja, B. Borca, M. C. G. Passeggi, J. J. Hinarejos, F. Guinea, and R.Miranda, Phys Rev Lett 101, 099704 (2008).
    57B. Borca, S. Barja, M. Garnica, J. J. Hinarejos, A. L. V. d. Parga, R. Miranda, and F. Guinea,Semicond. Sci. Technol. 25, 034001 (1 (2010).
    58G. Kresse and J. Furthmuller, Phys Rev B 54, 11169 (1996).
    59G. Kresse and J. Furthmuller, Comp Mater Sci 6, 15 (1996).
    60G. Kresse and D. Joubert, Phys Rev B 59, 1758 (1999).
    61J. P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 77, 3865 (1996).
    62W. Moritz, B. Wang, M. L. Bocquet, T. Brugger, T. Greber, J. Wintterlin, and S. Gunther, PhysRev Lett 104, 136102 (2010).
    63B. Wang, S. Gunther, J. Wintterlin, and M. L. Bocquet, New J Phys 12, 1 (2010).
    64X. Y. Peng and R. Ahuja, Phys Rev B 82 (2010).
    65M. Gao, et al., Appl Phys Lett 96 (2010).
    66P. Byszewski, Z. Klusek, S. Pierzgalski, S. Datta, E. Kowalska, and M. Poplawska, Journal ofElectron Spectroscopy and Related Phenomena 130, 25 (2003).
    67Y. B. Zhang, V. W. Brar, F. Wang, C. Girit, Y. Yayon, M. Panlasigui, A. Zettl, and M. F.Crommie, Nature Physics 4, 627 (2008).
    68V. W. Brar, et al., Phys Rev Lett 104, 036805 (2010).
    69D. Martoccia, M. Bjorck, C. M. Schleputz, T. Brugger, S. A. Pauli, B. D. Patterson, T. Greber,and P. R. Willmott, New J Phys 12 (2010).
    70A. J. Jason, Physical Review 156, 266 (1967).
    71G. Binnig, K. H. Frank, H. Fuchs, N. Garcia, B. Reihl, H. Rohrer, F. Salvan, and A. R.Williams, Phys Rev Lett 55, 991 (1985).
    72T. Jung, Y. W. Mo, and F. J. Himpsel, Phys Rev Lett 74, 1641 (1995).
    73M. Pivetta, F. Patthey, ccedil, ois, M. Stengel, A. Baldereschi, and W.-D. Schneider, Phys RevB 72, 115404 (2005).
    74P. Ruffieux, et al., Phys Rev Lett 102, 086807 (2009).
    75C. L. Lin, S. M. Lu, W. B. Su, H. T. Shih, B. F. Wu, Y. D. Yao, C. S. Chang, and T. T. Tsong,Phys Rev Lett 99, 216103 (2007).
    76B. Borca, et al., Phys Rev Lett 105, 036804 (2010).
    77R. Smoluchowski, Physical Review 60, 661 (1941).
    78K. T. Chan, J. B. Neaton, and M. L. Cohen, Phys Rev B 77 (2008).
    79P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J. Kelly,Phys Rev B 79 (2009).
    80J. F. Jia, K. Inoue, Y. Hasegawa, W. S. Yang, and T. Sakurai, J. Vac. Sci. Technol. B 15, 1861(1997).
    81T. Filleter, K. V. Emtsev, T. Seyller, and R. Bennewitz, Appl Phys Lett 93 (2008).
    82H. Hibino, H. Kageshima, M. Kotsugi, F. Maeda, F. Z. Guo, and Y. Watanabe, Phys Rev B 79(2009).
    83E. Wigner and J. Bardeen, Physical Review 48, 84 (1935).
    84C. Oshima and A. Nagashima, J Phys-Condens Mat 9, 1 (1997).
    85H. Zhang, Q. Fu, Y. Cui, D. L. Tan, and X. H. Bao, Chinese Sci Bull 54, 2446 (2009).
    86W. Mizutani, T. Ishida, N. Choi, T. Uchihashi, and H. Tokumoto, Appl Phys a-Mater 72, S181(2001).
    87R. Schuster, J. V. Barth, J. Wintterlin, R. J. Behm, and G. Ertl, Ultramicroscopy 42-44, 533(1992).
    88H. B. Michaelson, J Appl Phys 48, 4729 (1977).
    89J. T. Sun, S. X. Du, W. D. Xiao, H. Hu, Y. Y. Zhang, G. Li, and H. J. Gao, Chinese Phys B 18,3008 (2009).
    90M. Gsell, P. Jakob, and D. Menzel, Science 280, 717 (1998).
    91T. K. Shimizu, A. Mugarza, J. I. Cerda, M. Heyde, Y. Qi, U. D. Schwarz, D. F. Ogletree, andM. Salmeron, J. Phys. Chem. C 112, 7445 (2008).
    92W. Feng, S. L. Lei, Q. X. Li, and A. D. Zhao, submitted to Journal of Physical Chemistry C(2011).
    93W. L. Ling, J. C. Hamilton, G. E. T. K. Thu¨rmer a, J. d. l. Figuera, R. Q. Hwang, C. B. Carter,N. C. Bartelt, and K. F. McCarty, Surface Science 600, 1735 (2006).
    94Y. S. Dedkov, A. M. Shikin, V. K. Adamchuk, S. L. Molodtsov, C. Laubschat, A. Bauer, and G.Kaindl, Phys. Rev. B 64, 035405 (2001).
    95Y. S. Dedkov, M. Fonin, U. Rudiger, and C. Laubschat, Applied Physics Letters 93 (2008).
    96A. Varykhalov, J. Sánchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A. Rybkin, D.Marchenko, and O. Rader, Phys. Rev. Lett. 101, 157601 (2008).
    97H. Zhang, Q. Fu, Y. Cui, D. L. Tan, and X. H. Bao, J. Phys. Chem. C 113, 8296 (2009).
    98P. Sutter, J. T. Sadowski, and E. A. Sutter, J Am Chem Soc 132, 8175 (2010).
    1A. Aviram and M. A. Ratner, Chem Phys Lett 29, 277 (1974).
    2A. S. Martin, J. R. Sambles, and G. J. Ashwell, Phys Rev Lett 70, 218 (1993).
    3R. M. Metzger, Chem Phys 326, 176 (2006).
    4J. Zhao, C. Zeng, X. Cheng, K. Wang, G. Wang, J. Yang, J. G. Hou, and Q. Zhu, Phys Rev Lett95, 045502 (2005).
    5A. Iovan, D. B. Haviland, and V. Korenivski, Appl Phys Lett 88 (2006).
    6B. Wang, Y. S. Zhou, X. L. Ding, K. D. Wang, X. P. Wang, J. L. Yang, and J. G. Hou, J PhysChem B 110, 24505 (2006).
    7A. Troisi and M. A. Ratner, J Am Chem Soc 124, 14528 (2002).
    8A. Troisi and M. A. Ratner, Nano Lett 4, 591 (2004).
    9S. A. V. Slyke, C. H. Chen, and C. W. Tang, Appl Phys Lett 69, 2160 (1996).
    10P. C. Kao, S. Y. Chu, Z. X. You, S. J. Liou, and C. A. Chuang, Thin Solid Films 498, 249( 2006).
    11Z. Bao, A. J. Lovinger, and A. Dodabalapur, Appl Phys Lett 69, 3066 (1996).
    12R. W. I. d. Boer, A. F. Stassen, M. F. Craciun, C. L. Mulder, A. Molinari, S. Rogge, and A. F.Morpurgo, Appl Phys Lett 86 (2005).
    13S. M. Tracey, S. N. B. Hodgson, and A. K. Ray, Journal of Sol-Gel Science and Technology 13,219 (1998).
    14P. Peumans and S. R. Forrest, Appl Phys Lett 79, 126 (2001).
    15L. Chen, Z. P. Hu, A. D. Zhao, B. Wang, Y. Luo, J. L. Yang, and J. G. Hou, Phys Rev Lett 99(2007).
    16J. K. Gimzewski, E. Stoll, and R. R. Schlittler, Surf Sci 181, 267 (1987).
    17K. W. Hipps, X. Lu, X. D. Wang, and U. Mazur, J Phys Chem-Us 100, 11207 (1996).
    18X. Lu, K. W. Hipps, X. D. Wang, and U. Mazur, J Am Chem Soc 118, 7197 (1996).
    19X. Lu and K. W. Hipps, J Phys Chem B 101, 5391 (1997).
    20M. S. Xu, J. B. Xu, K. Xue, J. An, J. Z. He, and I. H. Wilson, J Nanosci Nanotechno 2, 139(2002).
    21S. Yoshimoto, A. Tada, K. Suto, and K. Itaya, The Journal of Physical Chemistry B 107(24),5836 (2003).
    22D. E. Barlow, L. Scudiero, and K. W. Hipps, Langmuir 20, 4413 (2004).
    23U. Mazur, M. Leonetti, W. A. English, and K. W. Hipps, J Phys Chem B 108, 17003 (2004).
    24A. D. Zhao, et al., Science 309, 1542 (2005).
    25Z. H. Cheng, L. Gao, Z. T. Deng, Q. Liu, N. Jiang, X. Lin, X. B. He, S. X. Du, and H. J. Gao,J Phys Chem C 111, 2656 (2007).
    26L. Gao, et al., Phys Rev Lett 99, 106402 (2007).
    27Z. P. Hu, L. Chen, A. D. Zhao, Z. Y. Li, B. Wang, J. L. Yang, and J. G. Hou, J Phys Chem C112, 15603 (2008).
    28Y. F. Zhang, et al., J Phys Chem C 113, 14407 (2009).
    29Z. Y. Li, B. Li, J. L. Yang, and J. G. Hou, Accounts Chem Res 43, 954 (2010).
    30K. Nilson, J. Ahlund, M. N. Shariati, E. Gothelid, P. Palmgren, J. Schiessling, S. Berner, N.Martensson, and C. Puglia, J Phys Chem C 114, 12166 (2010).
    31J. Y. Grand, T. Kunstmann, D. Hoffmann, A. Haas, M. Dietsche, J. Seifritz, and R. Moller,Surf Sci 366, 403 (1996).
    32M. Lackinger and M. Hietschold, Surf Sci 520, L619 (2002).
    33Y. Bai, F. Buchner, M. T. Wendahl, I. Kellner, A. Bayer, H. P. Steinruck, H. Marbach, and J. M.Gottfried, J Phys Chem C 112, 6087 (2008).
    34P. Amsalem, L. Giovanelli, J. M. Themlin, and T. Angot, Phys Rev B 79 (2009).
    35T. Takami, C. Carrizales, and K. W. Hipps, Surf Sci 603, 3201 (2009).
    36Y. F. Wang, J. Kroger, R. Berndt, and W. A. Hofer, J Am Chem Soc 131, 3639 (2009).
    37J. D. Baran, J. A. Larsson, R. A. J. Woolley, Y. Cong, P. J. Moriarty, A. A. Cafolla, K. Schulte,and V. R. Dhanak, Phys Rev B 81, 075413 (2010).
    38M. Casarin, M. Di Marino, D. Forrer, M. Sambi, F. Sedona, E. Tondello, A. Vittadini, V.Barone, and M. Pavone, J Phys Chem C 114, 2144 (2010).
    39Y. F. Wang, J. Kroger, R. Berndt, H. Vazquez, M. Brandbyge, and M. Paulsson, Phys Rev Lett104 (2010).
    40P. Sautet and C. Joachim, Surf Sci 271, 387 (1992).
    41S.-H. Chang, S. Kuck, J. Brede, L. Lichtenstein, G. Hoffmann, and R. Wiesendanger, PhysRev B 78, 233409 (2008).
    42R. Cuadrado, J. I. Cerda, Y. F. Wang, G. Xin, R. Berndt, and H. Tang, J Chem Phys 133,154701 (2010).
    43Q. M. Guo, Z. H. Qin, K. Zang, C. D. Liu, Y. H. Yu, and G. Y. Cao, Langmuir 26, 11804(2010).
    44Y.-S. Fu, et al., Phys Rev Lett 99, 256601 (2007).
    45P. Jiang, X. C. Ma, Y. X. Ning, C. L. Song, X. Chen, J. F. Jia, and Q. K. Xue, J Am Chem Soc130, 7790 (2008).
    46X. Chen, et al., Phys Rev Lett 101, 197208 (2008).
    47M. Bernien, et al., Phys Rev Lett 102, 047202 (2009).
    48C. Iacovita, M. V. Rastei, B. W. Heinrich, T. Brumme, J. Kortus, L. Limot, and J. P. Bucher,Phys Rev Lett 101, 116602 (2008).
    49M. Cinchetti, K. Heimer, J. P. Wustenberg, O. Andreyev, M. Bauer, S. Lach, C. Ziegler, Y. L.Gao, and M. Aeschlimann, Nat Mater 8, 115 (2009).
    50M. Pomerantz, A. Aviram, R. A. Mccorkle, L. Li, and A. G. Schrott, Science 255, 1115 (1992).
    51T. G. Gopakumar, F. Muller, and M. Hietschold, J Phys Chem B 110, 6060 (2006).
    52J. Ahlund, J. Schnadt, K. Nilson, E. Gothelid, J. Schiessling, F. Besenbacher, N. Martensson,and C. Puglia, Surf Sci 601, 3661 (2007).
    53T. G. Gopakumar, J. Meiss, D. Pouladsaz, and M. Hietschold, J Phys Chem C 112, 2529(2008).
    54Y. L. Huang, H. Li, J. Ma, H. Huang, W. Chen, and A. T. S. Wee, Langmuir 26, 3329 (2010).
    55Y. F. Wang, X. R. Zhang, Y. C. Ye, D. J. Liang, Y. Wang, and K. Wu, Acta Phys-Chim Sin 26,933 (2010).
    56N. Tsukahara, et al., Phys Rev Lett 102 (2009).
    57G. Kresse and J. Furthmuller, Phys Rev B 54, 11169 (1996).
    58G. Kresse and J. Furthmuller, Comp Mater Sci 6, 15 (1996).
    59G. Kresse and D. Joubert, Phys Rev B 59, 1758 (1999).
    60J. P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 77, 3865 (1996).
    61S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys Rev Lett 93, 236802 (2004).
    62G. V. Nazin, X. H. Qiu, and W. Ho, Phys Rev Lett 95, 166103 (2005).
    63G. V. Nazin, S. W. Wu, and W. Ho, P Natl Acad Sci USA 102, 8832 (2005).
    64W. Feng, S. L. Lei, Q. X. Li, and A. D. Zhao, submitted to Journal of Physical Chemistry C(2011).
    65I. Sy zi, Prog. Theor. Phys. 6, 306 (1951).
    66M. Mekata, Phys Today 56, 12 (2003).
    67M. Takano, T. Shinjo, M. Kiyama, and T. Takada, J. Phys. Soc. Japan 25, 902 (1968).
    68B. Moulton, J. J. Lu, R. Hajndl, S. Hariharan, and M. J. Zaworotko, AngewandteChemie-International Edition 41, 2821 (2002).
    69J. L. Atwood, Nat Mater 1, 91 (2002).
    70J. H. Mao, H. G. Zhang, Y. H. Jiang, Y. Pan, M. Gao, W. D. Xiao, and H. J. Gao, Journal of theAmerican Chemical Society 131, 14136 (2009).
    71U. Mazur and K. W. Hipps, J Phys Chem-Us 98, 8169 (1994).
    72U. Mazur and K. W. Hipps, J Phys Chem-Us 99, 6684 (1995).
    73U. Mazur and K. W. Hipps, J Phys Chem B 103, 9721 (1999).
    74A. Stabel, P. Herwig, K. Mullen, and J. P. Rabe, Angew Chem Int Edit 34, 1609 (1995).
    75M. Pokrifchak, T. Turner, I. Pilgrim, M. R. Johnston, and K. W. Hipps, J Phys Chem C 111,7735 (2007).
    76F. Jackel, X. Yin, P. Samori, N. Tchebotareva, M. D. Watson, A. Venturini, K. Mullen, and J. P.Rabe, Synthetic Met 147, 5 (2004).
    77F. Jackel, Z. Wang, M. D. Watson, K. Mullen, and J. P. Rabe, Chem Phys Lett 387, 372(2004).
    78M. A. Reed, C. Zhou, C. J. Muller, T. P. Burgin, and J. M. Tour, Science 278, 252 (1997).
    79C. Kergueris, J.-P. Bourgoin, S. Palacin, D. Esteve, C. Urbina, M. Magoga, and C. Joachim,Phys Rev B 59, 12505 (1999).
    80E. G. Emberly and G. Kirczenow, Phys Rev B 64, 235412 (2001).
    81J. Tersoff and D. R. Hamann, Phys Rev Lett 50, 1998 (1983).
    82J. Tersoff and D. R. Hamann, Phys Rev B 31, 805 (1985).
    1J. Repp, G. Meyer, F. E. Olsson, and M. Persson, Science 305, 493 (2004).
    2G. Pacchioni, L. Giordano, and M. Baistrocchi, Phys Rev Lett 94, 226104 (2005).
    3F. E. Olsson, S. Paavilainen, M. Persson, J. Repp, and G. Meyer, Phys Rev Lett 98, 176803(2007).
    4M. Sterrer, T. Risse, U. Martinez Pozzoni, L. Giordano, M. Heyde, H.-P. Rust, G. Pacchioni, andH.-J. Freund, Phys Rev Lett 98, 096107 (2007).
    5N. Nilius, T. M. Wallis, and W. Ho, Phys Rev Lett 90, 046808 (2003).
    6G. V. Nazin, X. H. Qiu, and W. Ho, Phys Rev Lett 95, 166103 (2005).
    7N. A. Pradhan, N. Liu, C. Silien, and W. Ho, Phys Rev Lett 94, 076801 (2005).
    8N. A. Pradhan, N. Liu, C. Silien, and W. Ho, Nano Letters 5, 55 (2005).
    9L. Gross, F. Mohn, P. Liljeroth, J. Repp, F. J. Giessibl, and G. Meyer, Science 324, 1428 (2009).
    10D. Porath, Y. Levi, M. Tarabiah, and O. Millo, Phys Rev B 56, 9829 (1997).
    11S. W. Wu, N. Ogawa, and W. Ho, Science 312, 1362 (2006).
    12G. V. Nazin, S. W. Wu, and W. Ho, P Natl Acad Sci USA 102, 8832 (2005).
    13S. W. Wu, G. V. Nazin, X. Chen, X. H. Qiu, and W. Ho, Phys Rev Lett 93, 236802 (2004).
    14G. Mikaelian, N. Ogawa, X. W. Tu, and W. Ho, J Chem Phys 124, 131101 (2006).
    15B. Li, C. Zeng, J. Zhao, J. Yang, J. G. Hou, and Q. Zhu, J. Chem. Phys. 124, 064709 (2006).
    16J. G. Hou, B. Wang, J. Yang, X. R. Wang, H. Q. Wang, Q. Zhu, and X. Xiao, Phys Rev Lett 86,5321 (2001).
    17J. G. Hou, BingWang, J. Yang, K. Wang, W. Lu, Z. Li, H. Wang, D. M. Chen, and Q. Zhu, PhysRev Lett 90, 246803 (2003).
    18S. W. Chen, R. S. Ingram, M. J. Hostetler, J. J. Pietron, R. W. Murray, T. G. Schaaff, J. T. Khoury,M. M. Alvarez, and R. L. Whetten, Science 280, 2098 (1998).
    19B. Wang, H. Wang, H. Li, C. Zeng, J. G. Hou, and X. Xiao, Phys Rev B 63, 035403 (2000).
    20U. Banin, Y. W. Cao, D. Katz, and O. Millo, Nature 400, 542 (1999).
    21O. Millo, D. Katz, Y. Cao, and U. Banin, Phys Rev Lett 86, 5751 (2001).
    22M. R. Hummon, A. J. Stollenwerk, V. Narayanamurti, P. O. Anikeeva, M. J. Panzer, V. Wood,and V. Bulovic, Phys Rev B 81 (2010).
    23T. G. Gopakumar, F. Muller, and M. Hietschold, J Phys Chem B 110, 6060 (2006).
    24T. G. Gopakumar, J. Meiss, D. Pouladsaz, and M. Hietschold, J Phys Chem C 112, 2529 (2008).
    25X. H. Qiu, G. V. Nazin, and W. Ho, Phys Rev Lett 92, 206102 (2004).
    26G. V. Nazin, X. H. Qiu, and W. Ho, J Chem Phys 122, 181105 (2005).
    27T. Christen and M. Büttiker, Phys Rev Lett 77, 143 (1996).
    28X. Zhao and J. Wang, Phys Rev B 60, 16730 (1999).
    29J. Wang, H. Guo, J.-L. Mozos, C. C. Wan, G. Taraschi, and Q. Zheng, Phys Rev Lett 80, 4277(1998).
    30V. Gasparian, T. Christen, and M. Büttiker, Phys. Rev. A 54, 4022 (1996).
    31A. D. Zhao, et al., Science 309, 1542 (2005).
    32B. J. Palys, D. M. W. Vandenham, W. Briels, and D. Feil, J. Raman Spectrosc. 26, 63 (1995).
    33W. L. Deng and K. W. Hipps, J Phys Chem B 107, 10736 (2003).
    34S.-i. Kobayashi and Y. Cho, Phys Rev B 82, 245427 (2010).
    35W. Ho, 18th International Vacuum Congress,in Bei Jing (2010).
    1W. J. de Haas, J. H. de Boer, and G. J. van den Berg, Physica C 1, 1115 (1934).
    2G. J. Van den Berg, Progress in Low Temperature Physics 4, 194 ( 1964).
    3P. W. Anderson, Physical Review 124, 41 (1961).
    4J. Kondo, Prog. Theor. Phys. 32, 37 (1964).
    5J. R. Schrieffer and P. A. Wolff, Physical Review 149, 491 (1966).
    6F. T. Hedgcock and C. Rizzuto, Physical Review 163, 517 (1967).
    7K. G. Wilson, Rev. Mod. Phys. 47, 773 (1975).
    8A. A. Abrikosov, Physics 2, 5 (1965).
    9H. Suhl, Physics 2, 39 (1965).
    10G. Gruner and A. Zawadowski, Rep. Prog. Phys. 37, 1497 (1974).
    11B. Horvati , D. Sokcevi , and V. Zlati , Phys Rev B 36, 675 (1987).
    12T. A. Costi, A. C. Hewson, and V. Zlatic, Journal of Physics: Condensed Matter 6, 2519(1994).
    13A. C. Hewson, The Kondo problem to heavy fermions (Cambridge University Press,Cambridge, 1993).
    14P. Coleman, in Lectures on the Physics of Highly Correlated Electron Systems VI, edited by F.Mancini (American Institute of Physics, New York, 2002), p. 79.
    15J. T. Li, W. D. Schneider, R. Berndt, and B. Delley, Phys Rev Lett 80, 2893 (1998).
    16V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Science 280, 567(1998).
    17U. Fano, Physical Review 124, 1866 (1961).18赵爱迪,分子尺度量子态探测与调控的扫描隧道显微学研究博士毕业论文,中国科技大学(2006).
    19L. Vitali, R. Ohmann, S. Stepanow, P. Gambardella, K. Tao, R. Huang, V. S. Stepanyuk, P.Bruno, and K. Kern, Phys Rev Lett 101 (2008).
    20P. Wahl, L. Diekhoner, M. A. Schneider, L. Vitali, G. Wittich, and K. Kern, Phys Rev Lett 93(2004).
    21M. A. Schneider, L. Vitali, N. Knorr, and K. Kern, Phys Rev B 65 (2002).
    22N. Knorr, M. A. Schneider, L. Diekhoner, P. Wahl, and K. Kern, Phys Rev Lett 88 (2002).
    23P. Wahl, A. P. Seitsonen, L. Diekhoner, M. A. Schneider, and K. Kern, New J Phys 11, 113015(2009).
    24N. Neel, J. Kroger, L. Limot, K. Palotas, W. A. Hofer, and R. Berndt, Phys Rev Lett 98 (2007).
    25P. Wahl, P. Simon, L. Diekh ner, V. S. Stepanyuk, P. Bruno, M. A. Schneider, and K. Kern,Phys Rev Lett 98, 056601 (2007).
    26N. Neel, J. Kroger, and R. Berndt, Phys Rev B 82 (2010).
    27T. Jamneala, V. Madhavan, W. Chen, and M. F. Crommie, Phys Rev B 61, 9990 (2000).
    28K. Nagaoka, T. Jamneala, M. Grobis, and M. F. Crommie, Phys Rev Lett 88 (2002).
    29C. Jayaprakash, H. R. Krishna-murthy, and J. W. Wilkins, Phys Rev Lett 47, 737 (1981).
    30B. A. Jones and C. M. Varma, Phys Rev Lett 58, 843 (1987).
    31B. A. Jones, C. M. Varma, and J. W. Wilkins, Phys Rev Lett 61, 125 (1988).
    32R. López, R. Aguado, and G. Platero, Phys Rev Lett 89, 136802 (2002).
    33A. Georges and Y. Meir, Phys Rev Lett 82, 3508 (1999).
    34L. D. Leo and M. Fabrizio, Phys Rev B 69, 245114 (2004).
    35P. Simon, R. López, and Y. Oreg, Phys Rev Lett 94, 086602 (2005).
    36W. Chen, T. Jamneala, V. Madhavan, and M. F. Crommie, Phys Rev B 60, R8529 (1999).
    37T. Jamneala, V. Madhavan, and M. F. Crommie, Phys Rev Lett 87 (2001).
    38J. Bork, Y.-h. Zhang, L. Diekh ner, L. Borda, P. Simon, J. Kroha, PeterWahl, and K. Kern, NatPhys 7, 901 (2011).
    39G. Kresse and J. Furthmuller, Phys Rev B 54, 11169 (1996).
    40G. Kresse and J. Furthmuller, Comp Mater Sci 6, 15 (1996).
    41G. Kresse and D. Joubert, Phys Rev B 59, 1758 (1999).
    42J. P. Perdew, K. Burke, and M. Ernzerhof, Phys Rev Lett 77, 3865 (1996).
    43V. Madhavan, W. Chen, T. Jamneala, M. F. Crommie, and N. S. Wingreen, Phys Rev B 64(2001).
    44N. A. W. Holzwarth and J. R. Chelikowsky, Solid State Communications 53, 171 (1985).
    45T. Pelzer, G. Ceballos, F. Zbikowski, B. Willerding, K. Wandelt, U. Thomann, C. Reu , T.Fauster, and J. Braun, J. Phys.: Condens. Matter 12, 2193 (2000).
    46V. Madhavan, T. Jamneala, K. Nagaoka, W. Chen, J. L. Li, S. G. Louie, and M. F. Crommie,Phys Rev B 66 (2002).
    47A. F. Otte, M. Ternes, K. von Bergmann, S. Loth, H. Brune, C. P. Lutz, C. F. Hirjibehedin, andA. J. Heinrich, Nat Phys 4, 847 (2008).
    48H. B. Heersche, Z. de Groot, J. A. Folk, L. P. Kouwenhoven, H. S. J. van der Zant, A. A.Houck, J. Labaziewicz, and I. L. Chuang, Phys Rev Lett 96 (2006).
    49A. F. Otte, M. Ternes, S. Loth, C. P. Lutz, C. F. Hirjibehedin, and A. J. Heinrich, Phys Rev Lett103 (2009).
    50S. L. Kawahara, J. Lagoute, V. Repain, C. Chacon, Y. Girard, J. Klein, and S. Rousset, PhysRev B 82 (2010).
    51V. V. Savkin, A. N. Rubtsov, M. I. Katsnelson, and A. I. Lichtenstein, Phys Rev Lett 94,026402 (2005).
    52P. Blonski, et al., Phys Rev B 81 (2010).
    53D. Goldhaber-Gordon, J. G res, M. A. Kastner, H. Shtrikman, D. Mahalu, and U. Meirav,Phys Rev Lett 81, 5225 (1998).
    54B. R. Bu ka and P. Stefan′ski, Phys Rev Lett 86, 5128 (2001).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700