基于双轮驱动的电动汽车驱动系统研究与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电动汽车以其具有的节能、低噪声、能源多样化、零排放污染等突出优点,将成为二十一世纪的重要交通工具之一。因此发展电动汽车早已被公认为解决未来能源与环境问题的最有希望的措施之一。由于电机在控制方面的优异性能,使电控驱动技术的进步必将对电动汽车的全面发展做出积极的推动作用。特别是装备多个电机的电动车,由于其特殊的布置形式使其在提高汽车操纵稳定性方面具有令人瞩目的潜力。
     电机驱动系统是电动汽车的心脏,也是电动汽车研制的关键技术之一,它直接决定电动汽车的性能。本文以后轮双轮毂电机驱动的电动汽车为研究对象,以电动汽车动力学模型为基础,深入研究了以轮胎滑移率为控制变量的最优控制算法理论、稳定性;介绍了直接横摆力偶矩的控制方法,在电动汽车的操纵及行驶稳定性控制等方面的研究。
     本文应用MATLAB/Simulink等仿真软件,建立系统的仿真模型,以验证系统控制的稳定性,仿真结果表明该驱动系统具有良好的性能。
     无刷直流电机是电动汽车驱动系统主控制器的执行元件,本文简要介绍了其结构、运行原理、模型及直接转矩的控制方法。
     以INFINEON XC164系列微控制器作为系统的核心控制芯片,设计开发了整车控制器,论文对系统的有关硬件电路的设计及软件的实现也进行了详细的介绍。
     本文以自行设计开发的电动汽车驱动系统为基础,对系统进行了详细的试验研究。试验结果表明本文提出的基于最优滑移率控制的电动汽车驱动系统的可行性,并具有良好的性能。
For the virtue of high energy efficiency, low noise, energy diversification and zero release, the electric vehicle (EV) must be the one of the most important vehicle. The development of EV was considered as one of the most likely measure to solve the problem of energy and environment already. The excellent performance of eclectic machine in control makes the technology of electric controlled driving as an important role in promoting the developing of EV. The EV with multi-motor has a big potential in control stability for its special arrangement.
     The thesis takes the Multi-rear Wheel droved electric vehicle as investigated subject and takes the model of EV as researching basement. It has researched the optimum theory based on the control variable of tire slippage deeply. At the same time the thesis has introduced the method of directly transverse swinging control and the control of EV's steering stability.To verify the stability of the controlling system, the thesis established the simulation model with MATLAB / Simulink. The result of the simulation shows that the driving system has a good performance.
     The thesis has introduce the structure, principle model and the method of directly torque control of brushless motor which is taken as the main action element of EV's controller.
     To develop the test platform of driving system and the controller for the entire vehicle, the article takes the micro controller of INFINEON XC164 as the core controlling chip. The thesis has introduced the system's hard and software detailedly.
     At last the article has takes detailed test on the test platform of EV driving system designed by ourselves. The result of the test shows that the theory of EV's driving system based on optimal slippage control which is designed by ourselves is feasible.
引文
[1] Yoichi Hori. Future Vehicle Driven by Electricity and Control Research on Four Wheel Motored "UOT Electric March Ⅱ"[J]. Proc. of AMC 2002, invited paper, pp.1-14.
    [2] 陈清泉,詹宜君.21世纪绿色交通工具—电动汽车[M],北京:清华大学出版社,2001.
    [3] (美)Ernest H,Wakefield.电动汽车的发展史:电池动力车辆[M],北京:北京理工大学出版社,1998.
    [4] 陈清泉,孙逢春编译.混合电动车辆基础[M],北京:北京理工大学出版社,2001.
    [5] 胡骅,宋慧.电动汽车[M],北京:人民交通出版社,2002.
    [6] 万刚.中国电动汽车的现状和发展[J],中国环保产业,2003,(2):30-33.
    [7] 罗旭.双电机独立驱动电动车稳定性控制研究与试验车设计[D],硕士论文,中国科学院电工研究所,2004年.
    [8] 余志生.汽车理论[M],机械工业出版社,北京,2004.
    [9] Shuibo Zhang, Houjun Tang, Zhengzhi Han, Yong Zhang. Controller design for vehicle stability enhancement. Science Direct[J]. Control Engineering Practice 14(2006) 1413-1421.
    [10] 张金迎.基于虚拟现实的汽车行驶动力学研究[D],浙江大学硕士学位论文,2006.1.
    [11] Ju-Sang Lee, Young-Jae Ryoo, Young-Chel Lim, Peter Freere et al. A Neural network model of electric differential system for electric vehicle [J], 26th Annual Conference of the IEEE, Vol.1, 2000, pp. 83~88.
    [12] Ackermann J. et al. Advantage of active steering four vehicle Dynamics Control[J]. 99ME013, 1999.
    [13] 李佩琦,易翔翔,侯福深.国外电动汽车发展现状及对我国电动汽车发展的启示[J],北京工业大学学报,2004,30(1):49~54.
    [14] 苗立冬,何仁,徐建平等.汽车电动转向技术发展综述[J],长安大学学报(自然科学版),2004,24(1):79~84.
    [15] 谢军.四轮驱动全方位主动转向电动车系统的研究[D],博士学位论文,杭州:浙江大学,1996.
    [16] 林贵军,朱伟.新型差速器的研究与分析[J],湖北航天科技,2001,(1); 39-44
    [17] 郭平辉,差力差速器设计[J],机械设计,1998,(9);36-37.
    [18] Shiro Matsugaura et al. Advanced Direct Drive System for New Concept Electric Vehicle "KAZ' [J]. Proceedings of the EVS18[CD-ROM], 2001.
    [19] GMC, GM'S autonomy concept vehicle reinvents automobile, http://www.gm.com/.2002.
    [20] D, Johnston, TM4 Motor-Wheel Driver and Control System: Performance, Benefits and Advantages[J], Proceedings of the EVS17 [CD-ROM], 2000.
    [21] Y. Wang and M. Nagai. Integrated control of four-wheel-steer and yaw moment to improve dynamic stability margin[J]. In Proc. 35th IEEE Conf. Decision and Control, 1996, pp. 1783-1784
    [22] S. Sakai, H. Sado, and Y, Hori. Novel skid avoidance method without vehicle chassis speed for electric vehicle[J], In Proc. International Power Electronics Conference (IPEC), Vol.4, 2000, pp. 1979-1984.
    [23] S.Sakai, and Y,Hori. Robustified model matching control for motion control of electric vehicle[J], In Proc. 5th Advance Motion Control, 1998, pp. 574-579.
    [24] Shin-ichiro Sakai, Hideo Sado, and Yoichi Hori. Motion control in an electric vehicle with 4 independently driven in-wheel motors[J]. IEEE Trans. On Mechatronics, Vol.4, No.1, 1999, pp.9-16.
    [25] Shin-ichiro Sakai, and Yoichi Hori. Advanced vehicle motion control of electric vehicle based on the fast motor torque response[J], In, Proc. of AVEC2000, pp.729-726.
    [26] Shin-ichiro Sakai, et al. Experimental studies on vehicle motion stabilization with 4 wheel motored EV[J]. In. Proc. The 18th Electric Vehicle Symposium (EVS) [CDROM], Berlin, Germany, 2001.
    [27] 葛英辉.轮式驱动电动汽车控制系统的研究[D].浙江大学博士学位论文,2004.7
    [28] 葛英辉,李春生..新的轮毂电机驱动电动车电子差速系统研究[J],中小型电机,2003,30(6):45~49.
    [29] 葛英辉,李春生,倪光正.DSP2407在电动车电子差速控制中的应用[J],电力电子技术,2003,37(5):1~4.
    [30] 万刚,陈辛波,俞卓平等.四论电子差速转向控制系统,中国,发明专利,02136498.2,2004年2月18日.
    [31] 赵辉.轮式驱动电动汽车的研究与试验[J],电机技术,1999(4),pp.45-47.
    [32] 赵红茹.电动汽车电子差速控制及驱动系统的研究[J],哈尔滨工业大学, 1998.
    [33] 喻凡.林逸编著.汽车系统动力学[M],北京机械工业出版社 2005.7.
    [34] Gordon T. Vehicle dynamics lecture notes[M]. University of Michigan, Ann Arbor, 2004..
    [35] Bakker, E., L. Nyborg, and H. B. Pacejka (1987). Tyre modeling for Use in Vehicle Dynamic Studies[J]. Technical Report 870421,Society of Automotive Engineers, Warren dale PA.
    [36] Canudas de Wit, C., R. Horowitz, and P. Tsiotras (1999). Model-based observers for Tire/Road contact friction prediction. In H. Nijmeijer and T. Fossen (Eds.), New Directions in Nonlinear Observer Design[J], pp. 23-42. Springer-Verling.
    [37] Hiroshi Fujimoto, Takeo Saito & Toshihiko Noguchi, Motion Stabilization Control of Electric Vehicle under Snowy Conditions Based on Yaw-Moment Observer[J], IEEE International Workshop on Advanced Motion Control.
    [38] Sakai. S, Sado.H, and Hori. Y. Novel skid avoidance method for electric vehicle with independently controlled 4 in-wheel motors[J]. In Proc. The 1999 IEEE International Symposium on Industrial Electronics, pp.934-939, Bled, Slovenia,1999.
    [39] 余卓平,高晓杰,张立军.应用车辆稳定性控制的直接横摆力矩及车轮变滑移率联合控制研究[J].汽车工程.2006(Vol.28)No.9:844-848.
    [40] 余卓平,左建令,张立军.路面附着系数估算技术的发展现状综述[J].汽车工程.2006(Vol.28)No.6:546-549.
    [41] Choi, S. and D.-W. Cho (1998). Control of wheel slip ratio using sliding mode controller with pulse width modulation. In Proceedings of the 4th International Symposium on Advanced Vehicle Control[J], Nagoja, Japan, pp. 629-635. Society of Automotive Engineers.
    [42] Gustafsson, F. (1997). Slip-based tire-road friction estimation[J]. Automatic 33, 1087-1099.
    [43] Kawabe, T., M. Nakazawa, I. Notsu, and Y. Watanabe (1997). A sliding mode controller for wheel slip ratio control system[J]. Vehicle system dynamic(27), 393-408.
    [44] Petersen, I., T. A. Johansen, J. Kalkkuhl, and J. L udemann (2002). Wheel slip control in ABS brakes using gain scheduled constrained LQR[J]. In Proc. European Contr. Conf., Porto, pp. 606-611.
    [45] Chisci, L. (1999). Fast algorithm for constrained in the horizon LQ problem[J]. International Journal Control 72, 1020-1026.
    [46] Rantzer, A. and M. Johansson (2000). Piecewise linear quadratic optimal control[J]. IEEE Trans. Automatic Control 45,629-637.
    [47] Gahinet, P., P. Apkarian, and M. Chilali (1996). A parameter dependent Lyapunov function and real parametric uncertainty[J]. IEEE Trans. Automatic Control 41, 436-442.
    [48] 胡寿松.最优控制理论及应用[M],机械工业出版社,北京,2005.
    [49] Gabriel Leen, Donal Heffernan, Alan Dunne, 《Digital Networks in the Automotive Vehicle》http://www.iee.org.
    [50] Matlab/Simulinks Release Notes for Release 14 with Service Pack 2.MathWorks:2004.
    [51] 王晓明,王玲.电动机的DSP控制——TI公司DSP应用[M].北京:北京航空航天大学出版社,2004.
    [52] Bimal K.Bose著,王聪等译,现代电力电子学与交流传动[M],机械工业出版社,北京,2006.
    [53] 孙逢春,程夕明.电动汽车动力驱动系统现状及发展[J].汽车工程,2000,22(4):220~224.
    [54] 王晓远,田亮,冯华.无刷直流电机直接转矩模糊控制研究[J],中国电机工程学报,Vol.26 No.15 Aug.2006.
    [55] 李永坚等.一种新型直接转矩控制方法的仿真研究[J].电机电器技术,2003(5):21-23.
    [56] 袁登科等.一种改善低速转矩脉动的直接转矩控制系统[J].铁道学报,2005(4).16-19.
    [57] Matsui N., Satoh H. Autocompension of torque ripple of direct drive motor by torque observer[J]. IEEE Trans. IA., 1993; 29: 187-194.
    [58] Kang S., Sul S. Direct torque control of the brushless DC motor with nonideal trapezoidal back EMF[J]. IEEE., 1995; 392-398.
    [59] XC164CS 16-Bit Single-Chip Microcontroller Data Sheet. Infineon Technologies AG V2.1, Jun. 2003.
    [60] XC164-16 16-Bit Single-Chip Microcontroller with C166SV2 Core V2.1Volume 2 (of 2): Peripheral Units User's Manual, Infineon Technologies AG, March 2004.
    [61] XC164-16 16-Bit Single-Chip Microcontroller with C166SV2 Core V2.1 Volume 1 (of 2): System Units User's Manual, Infineon Technologies AG, March 2004.
    [62] +2.5 V to +5.5 V, 230 mA Dual Rail-to-Rail.Voltage Output 8-/10-/12-Bit DACs AD5302/AD5312/AD5322 datasheet Analog Devices, Inc., 1999.
    [63] Flemming, W. J. (2001). Overview of Automotive Sensors[J]. IEEE Sensors Journal 1(4), 296-308.
    [64] 程军.亿恒(西门子)C166系列16位单片机原理与开发[M].北京:北京航空航 天大学出版社,1996.
    [65] 董辉.汽车用传感器[M].北京理工大学出版社.2000.7.
    [66] Analog Devices. ADXRS300 Data Sheet.
    [67] Microcontrollers Development Tools TITLE: JTAG Connector V2.10 Infineon Technologies 2000.
    [68] 邬宽明.CAN总线原理和应用系统设计[M].北京航空航天大学出版社,1996.
    [69] 饶运涛,邹继军,郑勇芸.现场总线CAN原理与应用技术[M].北京:北京航空航天大学出版社.2003.
    [70] 杨涤,等.系统实时仿真开发环境与应用[M],清华大学出版社,2002.
    [71] 刘学瑜,等.dSPACE实时仿真系统在高压共轨ECU开发中的应用[J].现代车用动力.2003(1):20~22.
    [72] 夏文川,刘原,卢兰光,李建秋,欧阳明高.燃料电池控制系统自动代码生成[J].汽车工程.2005(Vol.27)No.6.
    [73] 沈勇,庞宝刚,宋吉伟.动力系统嵌入式ECU开发平台的实现[J].柴油机.Vol.27 No.2(2005).
    [74] Real-Time Workshop User's Guide. The Math Works Inc. September 2000.
    [75] Tasking Embedded Development Environment Manual. verl.13. Altium. 2004.
    [76] C166/ST10 v8.6 CrossView Pro Debugger User's Manual. ver10.152.Altium.2005
    [77] 徐立.全国无线电干扰标准化技术委员会D分会.汽车电磁兼容标准与试验.2005.
    [78] 刘云江.电子产品的电磁兼容设计与测试[M].机械工业出版社.北京.2004.
    [79] 沙斐.电磁兼容讲义[M].北京交通大学电磁兼容实验室.2005.9.
    [80] Can specification Version 2.0. Robert BOSCH GmbH.1991.
    [81] ISO 11519-3: Vehicle area network (VAN), 1994: 10~47.
    [82] ISO 11519-2: Low-speed controller area network (CAN), 1994: 22~63.
    [83] Philips Semiconductor. PCA82C250 CAN Controller Interface Data Sheet, 2000: 1~8.
    [84] OSEK/VDX Time-Triggered operating system. OSEK/VDX. version 1.0, 2001.
    [85] S. Poledna, G. Kroiss. The Time-Triggered Communication Protocol TTPTM/C.Real-Time Magazine, 1998, (4): 13~16.
    [86] H. Kopetz, M. Holzmann, W. Elmenreich. A Low-cost Time-Triggered SensorNetwork: TTP/A, 1999: 7~11.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700