一种混联式混合动力客车能量管理及模式切换协调控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合动力客车整车能量管理策略及行驶模式切换协调控制是提高混合动力客车能量转换效率及车辆驾驶性能的关键。因此,针对混合动力客车在实际循环工况中多个动力源的能量分配和效率优化及行驶模式切换动态过程中多个动力源的协调控制的研究对于实现混合动力客车的高效、平稳运行具有重要意义。
     本文针对一种动力系统结构和零部件参数确定的混联式混合动力客车,在整车能量管理策略及动力系统模式切换协调控制方面,以提高混合动力客车的燃油经济性和保证车辆的驾驶性能为目标,进行了整车动力学建模、纯电动至并联驱动模式切换过程中的驾驶性能分析、整车控制系统设计、硬件在环仿真试验及实车道路试验等方面的研究。
     根据混合动力客车整车能量管理策略有效性验证及模式切换动态过程中驾驶性能分析的需求,针对混合动力客车的动力系统结构和能量流动方向,以Matlab/Simulink为平台,建立了适用于混合动力客车整车能量管理策略及模式切换协调控制研究的混合动力客车整车动力学模型。模型基于理论建模和试验建模相结合的方法,充分反映了柴油发动机和电控自动离合器的动态性能,能较好地描述混合动力系统对整车控制器设定值的动态响应特性。
     对于混合动力客车多个动力源的能量分配和效率优化问题,基于迭代动态规划方法和Elman动态神经网络,设计了混合动力客车的实时次优能量管理策略。由于城市公交客车通常在固定的线路上运行,其道路循环工况相对确定。本文首先以最小燃油消耗为目标,采用迭代动态规划方法求解了混合动力客车在给定循环工况下的最优控制律;然后通过构建Elman动态神经网络,将采用迭代动态规划方法计算出的最优控制律从一组随时间变化的序列转化为一组随状态变化的序列,从而将迭代动态规划方法的优化结果应用于混合动力客车的实时控制;最后基于ETAS PT-LABCAR硬件在环仿真系统,建立了混合动力客车整车控制器硬件在环仿真试验台,对设计的实时次优能量管理策略进行了硬件在环仿真试验研究,验证了控制策略具有实时控制功能且能显著提高混合动力客车的燃油经济性。设计方法不仅极大地提高了混合动力客车能量管理策略优化的计算效率,也为混合动力客车能量管理策略的优化提供了新的途径。
     对于混合动力客车的动力系统在行驶模式切换过程中的协调控制问题,提出了基于自适应模糊滑模方法的混合动力客车模式切换协调控制方法,在满足驾驶员动力需求的前提下,以减小模式切换过程中的动力系统输出转矩波动和车辆纵向冲击为目标,设计了混合动力客车纯电动至并联驱动模式切换协调控制策略。本文首先分析了混合动力客车在纯电动模式切换至并联驱动模式过程中的驾驶性能,并在此基础上提出了混合动力客车从纯电动模式切换至并联驱动模式过程的协调控制原理及控制系统方案。然后采用自适应模糊滑模方法,针对离合器在结合过程中的不同运行状态,且在限制发动机油门变化率的基础上分段设计了混合动力客车纯电动至并联驱动模式切换协调控制策略,并通过Lyapunov直接方法设计了自适应律并分析了控制系统的稳定性。设计方法将发动机实际输出转矩与其目标转矩的偏差和系统参数不确定性引起的偏差归入统一的干扰项,因此设计的模式切换协调控制系统在保证控制精度的同时避免了系统参数的在线辨识;同时干扰项采用自适应模糊系统进行估计用于修正固定边界层滑模控制器的控制参数,因此设计的模式切换协调控制系统在消除控制量颤振的同时减少了系统的控制误差。相关仿真结果表明,设计的模式切换协调控制策略实现了混合动力客车纯电动模式至并联驱动模式的平稳切换且显著改善了离合器的工作状况。
     针对混合动力客车实车道路试验,设计了基于CAN总线的车载道路试验测试系统,并进行了典型工况下的混合动力客车纯电动至并联驱动模式切换实车道路试验,对设计的协调控制策略的有效性进行了验证。试验结果表明,设计的模式切换协调控制策略显著降低了混合动力客车从纯电动模式切换至并联驱动模式过程中的动力系统输出转矩波动和车辆的纵向冲击度,在满足驾驶员动力需求的前提下实现了混合动力客车从纯电动模式至并联驱动模式的平稳切换,有效提高了车辆的驾驶性能。
Energy management strategy and coordinated control during drive mode transition fora series-parallel hybrid electric bus are key technologies to improve energy conversionefficiency and drivability of the hybrid bus. Therefore, research on energy distributionbetween multiple power sources and efficiency optimization under a given drive cycle, aswell as coordinated control of the hybrid powertrain during the dynamic process of modetransition for the series-parallel hybrid electric bus are of important significance inachieving efficient and smooth operation of the hybrid bus.
     For the series-parallel hybrid electric bus with predetermined powertrainconfiguration and components, research including vehicle dynamic modeling, drivabilityanalysis during the transition from pure electric mode to parallel mode, vehicle controlsystem design, hardware-in-the-loop (HIL) simulation experiment, and road test in thefield of energy management strategy and coordinated control for powertrain areaccomplished in this dissertation, for the purpose of improving the fuel economy anddrivability for the hybrid bus.
     Considering the requirements on the validation of the effectiveness for the proposedcontrol strategy and the analysis of drivability during mode transition, a dynamic model ofthe hybrid bus is built in Matlab/Simulink based on the powertrain configuration andenergy flow direction of the hybrid bus. The vehicle dynamic model is built usingtheoretical modeling approach combined with empirical modeling approach, and canadequately reflect the dynamic performance of the diesel engine and the electronicallycontrolled clutch. Thus, the dynamic response characteristics of the hybrid powertrain forthe set-points by the hybrid control unit (HCU) can be accurately described.
     For the energy distribution between multiple power sources and efficiencyoptimization of the hybrid bus, a real-time suboptimal energy management strategy isdeveloped based on iterative dynamic programming (IDP) approach and Elman neuralnetwork (NN). Public transportation systems always follow fixed and well-known routes,thus the drive conditions of the hybrid bus can be assumed to be known a prior. In the energy management strategy, the optimal control law is obtained via the IDP approach bydefining a cost function over a given drive cycle to minimize fuel consumption. Then, theoptimal control law by the IDP approach is converted from a time-varying sequence to astate-varying sequence by constructing an Elman NN. Thus, the optimal control law by theIDP approach can be used for real-time control of the hybrid bus. Finally, a HIL simulationtest bench for the HCU of the hybrid bus is constructed based on ETAS PT-LABCAR, andthe proposed real-time suboptimal energy management strategy is investigated using theHIL simulation test bench. The HIL simulation results validate the implementation of thereal-time control and demonstrate significant improvements in fuel economy with theproposed energy management strategy for the hybrid bus. The proposed control algorithmcan not only improve calculation efficiency for energy management strategy optimization,but also offer a new method to optimize energy management strategy.
     For the coordinated control of the hybrid powertrain during the dynamic process ofmode transition for the hybrid bus, the coordinated control algorithm using adaptive fuzzysliding mode approach is proposed, and a coordinated control strategy for the transitionfrom pure electric mode to parallel mode is developed with the aim of reducing the torquefluctuations in the powertrain and the longitudinal jerks of the vehicle, while satisfying thedriver’s torque request during the mode transition. First, the drivability of the hybrid busduring the transition from pure electric mode to parallel mode is analyzed. On this basis,the coordinated control principle and coordinated control system for the mode transition ofthe hybrid bus are proposed. Then, the coordinated control strategy is developed usingadaptive fuzzy sliding mode approach according to the operating status of the clutch, andthe engine throttle is restricted during the transition process. In the control strategy, theLyapunov’s direct method is utilized to obtain the adaptive law and to prove the stability ofthe designed control system. For the proposed coordinated control algorithm, theuncertainties by varying parameters and the deviation between the actual and target enginetorques are included in a unified interference item, thus the proposed coordinated controlsystem can avoid system parameter onboard identification while ensuring control accuracy.Furthermore, the interference is estimated by the adaptive fuzzy system to regulate thecontrol variables of the fixed-boundary-layer sliding mode controller, thus the proposedcoordinated control system can reduce tracking error while eliminating chatting effect.Simulation results show that the proposed coordinated control strategy for the hybrid buscan achieve a smooth transition from pure electric mode to parallel mode, and the operating conditions of the clutch can also be significantly improved.
     For the road test of the hybrid bus, a CAN bus-based onboard test system is developed.Pure electric mode to parallel mode transition experiment of the hybrid bus under a givendrive cycle is implemented by road test to validate the effectiveness of the proposedcoordinated control strategy. The results show that the torque fluctuations in the powertrainand the longitudinal jerks of the vehicle during the mode transition can be significantlyreduced, and a smooth transition can be achieved. Thus, the drivability of the hybrid buscan be improved.
引文
[1] GUZZELLA L, SCIARRETTA A. Vehicle propulsion system[M]. Berlin Heidelberg: Springer,2007.
    [2] GRANOVSKII M, DINCER I, ROSEN M A. Economic and environmental comparison ofconventional, hybrid, electric and hydrogen fuel cell vehicles[J]. Journal of Power Source,2006,159(2):1186-1193.
    [3] OCKWELL D G, WATSON J, YAMIN F. Key policy considerations for facilitating low carbontechnology transfer to developing countries[J], Energy Policy,2008,36:4104-4115.
    [4] EHSANI M, GAO Yimin, GAY S E, et al. Modern electric, hybrid electric, and fuel cellvehicles[M]. Boca Raton: CRC press,2004.
    [5]张勇.混合动力大客车产业化关键技术研究[D].上海交通大学,2009.
    [6] HODKINSON R, FENTON J. Lightweight electric/hybrid vehicle design[M]. Oxford: ReedEducational and Professional Publishing Ltd.,2001.
    [7] JEFFERSON C M, BARNARD R H. Hybrid vehicle propulsion[M]. Billerica: ComputationalMechanics, Inc.,2002.
    [8] KATRASNIK T. Hybridization of powertrain and downsizing of IC engine-a way to reduce fuelconsumption and pollutant emissions-Part1[J]. Energy Conversion and Management,2007,48(5):1411-1423.
    [9]熊伟威.混联式混合动力客车能量优化管理研究[D].上海交通大学,2009.
    [10] HERMANCE D, ABE S. Hybrid vehicles lessons learned and future prospects[C]. SAE Paper2006-21-0027.
    [11] WAYNE W S, CLARK N N, NINE R D, et al. A comparison of emissions and fuel economyfrom hybrid-electric and conventional-drive transit buses[J]. Energy&Fuels,2004,18:257-270.
    [12] BARNITT R, CHANDLER K. New York city transit (NYCT) hybrid (125Order) and CNGtransit buses-final evaluation results[EB/OL]. Golden, USA,2006[2006-11-15]. http:www.osti.gov/bri dge/.
    [13] BARNITT R A. In-use performance comparison of hybrid electric, CNG, and diesel buses atNew York city transit[C]//in:2008SAE International Powertrains, Fuels&LubricantsConference, Shanghai, China,2008,2008-01-1556.
    [14] U. S. Department of Transportation. New developments in green vehicle technology in theU.S.[EB/OL]. Washington D.C., USA,2011[2011-01-28]. http://www.fta.dot.gov/printer_friendly/research_12433.html.
    [15] U. S. Department of Energy. Fuel economy of some HEVs[EB/OL]. Southwest Washington D.C.,2009[2009-08-20]. http://www. fueleconomy.gov/feg/findacar.htm.
    [16] National Renewable Energy Laboratory. Hybrid electric drive systems publications[EB/OL].Washington D. C., USA,2011. http://www.nrel.gov/vehiclesandfuels/fletest/publications_hybrid.html.
    [17] MILLER J M. Hybrid electric vehicle propulsion system architectures of the e-CVT type[J].IEEE Transactions on Power Electronics,2006,3(21):756-767.
    [18]骆元.国内外混合动力客车动力总成方案比较研究[J].客车技术与研究,2010,1:13-16.
    [19]中国科技成果. EQ6110HEV混合动力城市公交车[EB/OL].北京,2006. http://d.g.wanfangdata.com.cn/Periodical_zgkjcg200622025.aspx.
    [20]中国科技成果.一汽混合动力客车[EB/OL].北京,2007. http://dbpub.cnki.net/Grid2008/Dbpub/detail.aspx.
    [21]邓先泉.深圳五洲龙混合动力客车及运营介绍[J].城市车辆,2007,4:19-22.
    [22] LIN Chanchiao, PENG Huei, GRIZZLE J W. Power management strategy for a parallel hybridelectric truck[J]. IEEE Transctions on Control Systems Technology,2003,6(11):839-849.
    [23] LIN Chanchiao. Modeling and control strategy development for hybrid vehicles[D]. TheUniversity of Michigan,2004.
    [24] CHAU K T, WONG Y S. Overview of power management in hybrid electric vehicles[J]. EnergyConversion and Management,2002,43:1953-1968.
    [25]童毅.并联式混合动力系统动态协调控制问题的研究[D].清华大学,2004.
    [26]罗禹贡,杨殿阁,金达锋.轻度混合动力电动汽车多能源动力总成控制器开发[J].机械工程学报,2006,42(7):98-102.
    [27] NIASAR A H, MOGHBELLI H, VAHEDI A. Design methodology of drive train for aseries-parallel hybrid electric vehicle and its power flow control strategy[C]//in:2005IEEEInternational Conference on Electric Machines and Drives, Chicago, USA,2005,1549-1554.
    [28] PISU P, KOPRUBASI K, RIZZONI G. Energy management and drivability control problems forhybrid electric vehicles[C]//in:2005European Control Conference, Seville, Spain,2005,1824-1830.
    [29] ZHANG Junzhi, LU Xin, WANG Lifang, et al. A study on the drivability of hybrid electricvehicle[C]. SAE paper,2008-01-1572.
    [30] KIM H S, HIM J H, LEE H C. Mode transition control using disturbance compensation for aparallel hybrid electric vehicle[J]. Proceedings of the Institution of Mechanical Engineers PartD-Journal of Automotive engineering,2009,2(225):150-166.
    [31] SALMASI F R. Control strategies for hybrid electric vehicles: evolution, classification,comparison, and future trends[J]. IEEE Transactions on Vehicular Technology,2007,5(56):2393-2404.
    [32]余志生.汽车理论(第4版)[M].北京:机械工业出版社,2006.
    [33] PISU P, RIZZONI G. A comparative study of supervisory control strategies for hybrid electricvehicles[J]. IEEE Transaction on Control Systems Technology,2007,15(3):506-518.
    [34] SCIARRETT A, GUZZELLA L. Control of Hybrid electric vehicles[J]. IEEE Transactions onControl Systems Technology,2004,3(12):352-362.
    [35] MCGEE R A. Model based control system design and verification for a hybrid electric vehicle[C].SAE paper,2003-01-2308.
    [36] KAORU A, KURODA S, KAJIWARA S. Development of integrated motor assist hybrid system:development of the ‘Insight’, a personal coupe[C]. SAE paper,2000-01-2216.
    [37] XIONG Weiwei, ZHANG Yong, YIN Chengliang. Optimal energy management for aseries-parallel hybrid electric bus[J]. Energy Conversion and Management,2009,50:1730-1738.
    [38] NIELS J V, SALMAN M A, KHEIR N A. Fuzzy logic control for parallel hybrid vehicles[J].IEEE Transaction on Control Systems Technology,2002,3(10):460-467.
    [39] HANNOUN H, MARCHAND D. Energy management strategy for a parallel hybrid electricvehicle using fuzzy logic[C]//in: International symposium on power electronics, electrical drives,automation and motion, Taormina, Italy,2006,229-234.
    [40] RAJAGOPALAN A, WASHINGTON G, RIZZONI G, et al. Development of fuzzy logic controland neural network control and advanced emissions modeling for parallel hybridvehicles[EB/OL]. Golden, USA,2003. http://www.osti.gov/bridge.
    [41] ICHIKAWA S, YOKOI Y, DOKI S, et al. Novel energy management system for hybrid electricvehicles utilizing car navigation over a commuting route[C]//in: Proceedings of IEEE IntelligentVehicle Symposium, Parma, Italy,2004,161–166.
    [42] DELPRAT S, GUERRA T M, RIMAUX J. Optimal control of a parallel powertrain: from globaloptimization to real time control strategy[C]//in: IEEE55th Vehicular Technology Conference,Birmingham, USA,2002,2082-2088.
    [43] DELPRAT S, LAUBER J, GUERRA T M, et al. Control of a parallel hybrid powertrain: optimalcontrol[J]. IEEE Transaction on Vehicular Technology,2004,53(3):872-881.
    [44] MUSARDO C, RIZZONI G, STACCIA B. A-ECMS: An adaptive algorithm for hybrid electricvehicle energy management[C]//in: Proceedings of the44th IEEE Conference on Decision andControl, and the European Control Conference, Seville, Spain,2005,1816-1823.
    [45] ZHAO Kegang, LUO Yutao. Real-time optimization supervisory control of HEV powertrain[C]//in:2007International Conference on Transportation Engineering, Chengdu, China,2852-2857.
    [46] BARSALI S, MIULLI C, POSSENTI A. A control strategy to minimize fuel consumption ofseries hybrid electric vehicles[J]. IEEE Transactions on Energy Conversion,2004,1(19):187-195.
    [47] JOHNSON V H, WIPKE K B, RAUSEN D J. HEV control strategy for real time optimization offuel economy and emissions[C]. SAE Paper2000-01-1543.
    [48]白凤良,杨建国.混合动力电动汽车实时控制策略[J].现代车用动力,2003,3(111):7-10.
    [49] SCIARRETTA A, BACK M, GUZZELLA L. Optimal control of parallel hybrid electricvehicles[J]. IEEE Transactions on Control System Technology,2004,3(12):352-363.
    [50] SALMAN M, CHANG Manfeng, CHEN Jyhshin. Predictive energy management strategies forhybrid vehicles[C]//in: Proceedings of the44th IEEE Conference on Decision and Control, andthe European Control Conference, Seville, Spain,2005,21-25.
    [51] YOON H J, LEE S J. An optimized control strategy for parallel hybrid electric vehicle[C]. SAEpaper,2003-01-1329.
    [52] SCIARRETTA A, BACK M, GUZZELLA L. Optimal control of parallel hybrid electricvehicles[J]. IEEE Transactions on Control System Technology,2004,3(12):352-362.
    [53] PARK J Y, Park Y K, Park J H. Optimal power distribution strategy for series-parallel hybridelectric vehicles[J]. Proceedings of the Institution of Mechanical Engineers Part D-Journal ofAutomotive engineering,2008,222:989-1000.
    [54] RIZOULIS D, BURL J, BEARD J. Control strategies for a series-parallel hybrid electricvehicle[C]. SAE paper,2001-01-1354.
    [55] GONDER J, MARKEL T. Energy management strategies for plug-in hybrid electric vehicles[C].SAE paper,2007-01-0290.
    [56] NEUMAN M, SANDBERG H, WAHLBERG B. Rule-based control of series HEV derived fromdeterministic dynamic programming[C]//in: American Control Conference, St. Louis, USA,2009,1-6.
    [57] KUM D S. Modeling and optimal control of parallel HEVs and plug-in HEVs for multipleobjectives[D]. The University of Michigan,2010.
    [58] KEEFE M P, MARKEL T. Dynamic programming applied to investigate energy managementstrategies for a plug-in HEV[C]//in: EVS-22, Yokohama, Japan,2006,1035-1046.
    [59] LUUS R, LAPIDUS L. Optimal control of engineering processes[M]. Waltham, Mass: Blaisdell,1967.
    [60] LIN Chanchiao, PENG Huei, GRIZZLE J W. A stochastic control strategy for hybrid electricvehicles[C]//in: American Control Conference, Boston, USA,2004,4710-4715.
    [61] JOHANNESSON L, ASBOGARD M, EGARDT B. Assessing the potential of predictive controlfor hybrid vehicle powertrains using stochastic dynamic programming[J]. IEEE Transaction onIntelligent Transportation Systems,2007,8(1):71-83.
    [62] LIU Jinming, PENG Huei. Modeling and control of a power-split hybrid vehicle[J]. IEEETransctions on Control Systems Technology,2008,6(16):1242-1251.
    [63]欧阳明高,李建秋,杨福源,等.汽车新型动力系统:构型、建模与控制[M].北京:清华大学出版社,2008.
    [64] KOPRUBASI K, WESTERVELT E R, RIZZONI G. Toward the systematic design of controllersfor smooth hybrid electric vehicle mode changes[C]//in: Proceedings of the2007AmericanControl Conference, New York, USA,2007,2985-2990.
    [65] KOPRUBASI K, ARNETT M, RIZZONI G. Experimental validation of a model for control ofdrivability in a hybrid-electric vehicle[C]//in: ASME2007International Mechanical EngineeringCongress and Exposition, Washington, USA,2007,105-114.
    [66] KOPRUBASI K. Modeling and control of a hybrid electric vehicle for drivability and fueleconomy improvements[D]. The Ohio State University,2008.
    [67]赵治国,何宁,朱阳,等.四轮驱动混合动力轿车驱动模式切换控制[J].机械工程学报,2011,47(4):100-109.
    [68] TONG Yi, LI Jianqiu, ZHANG Junzhi, et al. Coordinating control oriented research on algorithmof engine torque estimation for parallel hybrid electric powertrain system[C]. SAE paper,2004-01-0424
    [69] HONG J H, KIM S J, MIN B S. Drivability development based on cosimulation of AMESimvehicle model and Simulink HCU models for parallel hybrid electric vehicle[C]. SAE paper,2009-01-0725.
    [70] YANG Fang, ZHENG Kai, SHEN Tielong. Coordinated nonlinear speed control approach for SIengine with alternator[J]. Proceedings of the IEEE,2007,4(95):796-805.
    [71] HENEIN N A, TARAZA D, CHALHOUB N. Exploration of the contribution of the start/stoptransients in HEV operation and emissions[C]. SAE paper,2000-01-3086.
    [72] ASHOK N, WALLS M. A parallel hybrid powertrain-design, analysis, and control[C]. SAEpaper,1999-01-2928.
    [73] SCHUPPEN J H. Coordination control of parallel operations in a hybrid control system[C]//in:Proceedings of the37th IEEE Conference on Decision&Control, Tampa, USA,1998.
    [74] WANG Feng, ZHONG Hu, MA Zilin. Power distribution and coordinated control for a powersplit hybrid electric bus[J]. Journal of Electric Engineering&Technology,2008,3(4):593-598.
    [75] MARK W T, KNOTT D, WALTER J. Transitioning automotive testing from the road to thelab[C]. SAE paper,2004-01-1770.
    [76] ROY I D, ROBERT D L. Engine torque ripple cancellation with an integrated starter alternator ina hybrid electric vehicle: implementation and control[J]. IEEE Transaction on IndustryApplication,2003,6(39):2016-2018.
    [77] LEE H D, SUL S K. Diesel engine ripple torque minimization for parallel type hybrid electricvehicle[C]//Thirty-Second IAS Annual Meeting, New Orleans, USA,1997,942-946.
    [78] MORIYA K, ITO Y, INAGUMA Y. Design of the surge control method for the electric vehiclepowertrain[C]. SAE paper,2002-01-1935.
    [79] RAHMAN Z, BUTLER K L, EHSANI M. A comparison study between two parallel hybridcontrol concepts[C]. SAE paper,2000-01-0994.
    [80] HUBBARD G A, TOUMI Y. System level control of a hybrid-electric vehicle drivetrain[C]//in:American Control Conference1997, New Mexico, USA,1997,461-467.
    [81] CHEN Keyu, TRIGUI R, BOUSCAYROL A, et al. A common model validation in the case ofthe Toyota Prius II[C]//in: IEEE Vehicle Power and Propulsion Conference, Lille, France,1-5.
    [82]杜常清,颜伏伍,严运兵,等.用于控制的发动机转矩估计方法研究[J].内燃机学报,2008,5(26):446-451.
    [83]杜常清.车用并联混合动力系统瞬态过程控制技术研究[D].武汉理工大学,2009.
    [84]严运兵.并联混合动力电动汽车的动态控制研究[D].武汉理工大学,2008.
    [85] LU Yusheng, LIN Shuanmin. Disturbance-observer-based adaptive feedforward cancellation oftorque ripples in harmonic drive systems[J]. Electric Engineering,2007,90(2):95-106.
    [86] EHSANI M, GAO Yimin, BUTLE K. Application of electrically peaking hybrid propulsionsystem to a full-size passenger car with simulated design verification[J]. IEEE Transactions onVehicular Technology,1999,48(12):4-12.
    [87] Argonne National Laboratory. PSAT documentation[DA],2008.
    [88] AVL Gmbh. Cruise Theory[DA].2009.
    [89] LIN Chanchiao, FILIPI Z, WANG Yongsheng, et al. Integrated, feed-forward hybrid electricvehicle simulation in Simulink and its use for power management studies[C]. SAE paper2001-01-1334.
    [90] CHAN C C, BOUSCAYROL A, CHEN Keyu. Electric, hybrid, and fuel-cell vehicles:architectures and modeling[J]. IEEE Transactions on Vehicular Technology,2010,2(59):589-598.
    [91] JAZAR R N. Vehicle dynamics: theory and application[M]. New York: Springer,2009.
    [92] GRONDIN O, STOBART R, CHAFOUK H. Modelling the compression ignition engine forcontrol: review and future trends[C]. SAE paper,2004-01-0423.
    [93]朱辉,王丽清,程昌圻.用于控制分析的柴油机动态模型[J].内燃机学报,1999,3(17):211-218.
    [94] HENDRICKS E. Mean value modelling of large turbocharged two-stroke diesel engines[C]. SAEpaper,890564.
    [95] HENDRICKS E. The analysis of mean value models[C]. SAE paper,890563.
    [96] MALKHEDE D N, DHARIWAL H C. Mean value model and control of a marine turbochargeddiesel engine[C]. SAE paper,2005-01-3889.
    [97] BITEUS J. Mean value engine model of a heavy duty diesel engine[EB/OL]. Linkopings, Sweden,2002[2002-05-29]. http://www.vehicular.isy.liu.se/Publications/Reports/04_R_2666_JB.pdf.
    [98] FLARDH O. Mean value modeling of a diesel engine with turbo compound[D]. LinkopingsUniversity,2003.
    [99] JENSEN J P, KRISTENSEN A F, SORENSON S C, et al. Mean value modeling of a smallturbocharged diesel engine[C]. SAE paper,910070.
    [100] HENDRICKS E, JENSEN M, MICHAEL J. Modeling of the intake mainfold filling dynamics[C].SAE paper,960037.
    [101] FLARDH O, MARTENSSON J. Analysis of a quasi-steady extension to the turbine model inmean value models[C]. SAE paper,2010-01-1191.
    [102] WATSON N. Dynamic turbocharged diesel engine simulator for electronic control systemdevelopment[J]. Journal of Dynamic System, Measurement and Control,1984,1(106):27-45.
    [103] BENAJES J, LUJAN J M, SERRANO J R. Predictive modelling study of the transient loadresponse in a heavy-duty turbocharged diesel engine[C]. SAE paper,2000-01-0583.
    [104]王泓亮,邓康耀,朱义伦,等.文曲利管排气再循环系统在涡轮增压柴油机上的应用[J].内燃机学报,2002,2(20):129-132.
    [105] BEJAN A. Advanced engineering thermodynamics[M]. New York: Wiley Interscience,1997.
    [106]冯青,李世武,张丽.工程热力学[M].西安:西北工业大学出版社,2006.
    [107] ALEXANDER M J. Management of functional data variables in decomposition-based designoptimization[D]. The University of Michigan,2011.
    [108] BAILEY K E, POWELL B K. A hybrid electric vehicle powertrain dynamic model[C]//in:Proceedings of the American Control Conference, Seattle, USA,1995,1677-1682.
    [109]陈家瑞.汽车构造[M].北京:机械工业出版社,2000.
    [110]林世裕.膜片弹簧与碟形弹簧离合器的设计与制造[M].南京:东南大学出版社,1995.
    [111]夏长高,朱茂桃,高翔.膜片弹簧大端载荷-变形特性的研究[J].机械设计与应用,1996,4:6-9.
    [112] ZHAO Lijun, LIU Tao, SONG Baoyu. Optimum design of automobile diaphragm[C]//in:Proceedings of IEEE Vehicle Power and Propulsion Conference, Harbin, China,2008,1-4.
    [113] Oviatt M D, MILLER R K. Industrial pneumatic systems control and energy conservation: noisecontrol and energy conservation[M]. Lilburn: The Fairmont Press Inc.,1981.
    [114]李前兴.工业过程迭代动态规划算法研究[D].浙江大学,2011.
    [115] LUUS R. Optimal control by dynamic programming using systematic reduction in grid size[J].International Journal of Control,1990,51(5):995-1013.
    [116]周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005.
    [117] LUKIC S M, WIRASINGHA S G, RODRIGUEZ F, et al. Power management of anultracapacitor/battery hybrid energy storage system in an HEV[C]//in:2006Vehicle Power andPropulsion Conference, Chicago, USA,2006,1-6.
    [118]奚海蛟,张晓林.基于Elman网络的共轴式直升机动力学系统辨识[J].北京航空航天大学学报,2008,7(34):861-864.
    [119] MICHAEL A, ANTSAKLIS P J. A simple method to derive bounds on the size and to trainmultilayer neural networks[J]. IEEE Transaction on Neural Network Industrial Electronics,1991,2(4):467-471.
    [120] POPPI R J, MASSART D L. The optimal brain surgeon for pruning neural network architectureapplied to multivariate calibration[J]. Analytica Chimica Acta,1998,375:187-195.
    [121] SAIKALIS G, OHO S, WABNITZ A. Hardware-in-the-loop real-time optimization of electroniccontrollers[C]. SAE paper2005-01-1317.
    [122] BABU G. Hardware-in-the-loop (HIL) simulation for vehicle electronics system testing andvalidation[C]. SAE paper2005-26-304.
    [123] RAMASWAMY D, MCGEE R. A case study in hardware-in-the-loop testing: development of anECU for a hybrid electric vehicle[C]. SAE paper2004-01-0303.
    [124] SUN Yebao. Hardware-in-the-loop simulation investigation on vehicle powertrain ECU[D].Beijing University of Technology,2004.
    [125] CIKANEK S R. Control system and dynamic model validation for a parallel hybrid electricvehicle[C]//in: Proceedings of the1999American Control Conference, San Diego, USA,1999,1222-1227.
    [126] WOLFGANG S, EBINGER B, SPORL T. A hardware-in-the-loop test environment forinterconnected ECUs for passenger cars and commercial vehicles[C]//in: Proceedings of the25thFISITA, World Automotive Congress, Seoul, Korea,2000, F2000A113.
    [127]舒杰.混联式混合动力客车能量回馈制动系统的控制研究[D].上海交通大学,2010.
    [128] ETAS Gmbh. PT-LABCAR launch and configuration[DA].2009.
    [129] HEDRICK J K, MCMAHON D H, SWAROOP D. Longitudinal vehicle control design for IVHSsystems[C]//in: Proceedings of the1991American Control Conference, Boston, USA,1991,3107-3112.
    [130] MCMAHON D H, HEDRICK J K, SHLADOVER S E. Vehicle modelling and control forautomated highway systems[C]//in: Proceedings of the1990American Control Conference, SanDiego, USA,1990,297-303.
    [131] SLOTINE J E, LI W P. Applied nonlinear control[M]. Englewood Cliffs: Prentice-Hall,1991.
    [132]田宏奇.滑模控制理论及其应用[M].武汉:武汉出版社,1995.
    [133] WEI X, GUZZELLA L, UTKIN V I. Model-based fuel optimal control of hybrid electric vehicleusing variable structure control systems[J]. Journal of Dynamic Systems, Measurement, andControl,2007,129:13-19.
    [134] KACHROO P, TOMIZUKA M. Chattering reduction and error convergence in the sliding-modecontrol of a class of nonlinear system[J]. IEEE Transactions on Automatic Control,1996,41(7):1063-1068.
    [135] SHU Jie, ZHANG Yong, YIN Chengliang. Regenerative brake control using adaptive parameterestimation for a series-parallel hybrid electric bus[J]. International Journal of Vehicle Design,2010,1(54):35-46.
    [136] HO H F, WONG Y K, RAD A B. Adaptive fuzzy sliding mode control with chatteringelimination for nonlinear SISO systems[J]. Simulation Modelling Practice and Theory,2009,17:1199-1210.
    [137] NOROOZI N, ROOPAEI M, JAHROMI M. Adaptive fuzzy sliding mode control scheme foruncertain systems[J]. Commum Nonlinear Sci Numer Simulat,2009,14:3978-3992.
    [138] ROOPAEI M, ZOLGHADRI M, MESHKSAR S. Enhanced adaptive sliding mode control foruncertain nonlinear systems[J]. Commun Nonlinear Sci Numer Simulat,2009,14:3670-3681.
    [139] LIN T C, LEE T Y, BALAS V E. Adaptive fuzzy sliding mode control synchronization ofuncertain fractional order chaotic systems[J]. Chaos, Solitons&Fractals,2011,44:791-801.
    [140] SUGEON M, KANG G T. Structure identification of fuzzy model[J]. Fuzzy Sets and Systems,1988,28(1):15-33.
    [141] VERBRUGGEN H B, BABUSKA R. Fuzzy logic control advances in applications[M].Singapore: World Scientific Publishing Co. Pte. Ltd.,1999.
    [142]徐湘元.自适应控制理论与应用[M].北京:电子工业出版社,2007.
    [143] HAGENA J R, FILIPI Z S,ASSANIS D N. Transient diesel emissions: analysis of engineoperation during a tip-in[C]. SAE paper,2006-01-1151.
    [144] OWENS D H. Feedback and multivariable system[M]. Stevenage: Peter Peregrinus,1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700