彩色长绒棉的杂种优势及其生理生化基础
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
天然彩色棉是纤维本身带有颜色的棉花的总称。彩色棉由于在纤维发育过程中经历色素的积累和显色,可省去纤维化学染色的工艺程序,不但可以节约生产成本,而且可以减少染色过程中某些有毒化学物质的应用,降低环境污染的风险。因此,彩色棉在纺织业中具有良好的应用前景。然而,彩色棉在农业生产中并不十分受欢迎:一方面,天然彩色棉的产量偏低和品质偏差;另一方面,天然彩色棉的色彩单一;这些问题极大地限制了彩色棉的发展。杂种优势利用一直被认为是提高作物产量和品质的有效方法之一。陆地棉与海岛棉的种间杂种F1,可综合双亲的优良性状,在保持高产的同时,还可显著提高纤维品质,是改良棉花纤维品质的一条可行途径。然而,目前有关彩色长绒棉(彩色棉与海岛棉的种间杂种)的研究报道很少。因此,本论文主要以彩色长绒棉为研究对象,通过对其杂种优势、植株叶片和纤维的生理生化基础进行分析,以揭示彩色长绒棉产量、品质与生理生化相关指标的内在联系,从而为彩色长绒棉的育种提供理论基础,以期为解决彩色棉的缺陷,尤其是其品质性状缺陷,提供理论依据。主要研究结果如下:
     1彩色长绒棉杂种优势的表现
     以彩色陆地棉与白色海岛棉、白色陆地棉为材料,通过配置彩色长绒棉(海陆种间杂种)和常规彩色棉杂种(陆陆种内杂种),并以常规杂交棉品种(湘杂棉2号)作为对照,研究了两种类型彩色棉杂交组合的杂种优势。结果表明,通过种间杂交得到的彩色长绒棉在单株铃数、果枝数、果节数、不孕籽率、株高和茎叶干重方面均显著高于陆陆种内杂交组合,而在单铃重、衣分方面则不同程度的低于陆陆种内杂交组合。单株铃数种间杂种最高的有27.58个,而种内杂种只有19.13个。产量方面,由于铃数的显著提高,试验中多个彩色长绒棉组合皮棉产量超过了陆陆种内杂交组合。如2个棕色长绒棉的产量要显著高于对应的陆陆杂种,亦显著高于对照。在纤维品质性状方面,除了马克隆值与陆陆杂种没显著差异外,彩色长绒棉在纤维长度、比强度、整齐度和伸长率方面都要极显著的优于陆陆种内杂种和对照,尤其是在纤维长度方面,绿色长绒棉最长的达到35.00m,甚至超过了海岛棉亲本,表现出极强的超亲优势。
     2彩色长绒棉高产优质的光合生理特性
     光合作用是棉花各器官包括纤维在内的生长、发育的基础,但有关彩色长绒棉光合生理特性的研究报道不多。为此,本研究在比较彩色长绒棉及其亲本在产量和品质差异的基础上,对不同生育期植株叶片叶绿素含量、净光合速率等光合生理指标以及碳水化合物含量和花粉育性进行研究。试验结果表明,与彩色棉亲本相比,虽然彩色长绒棉植株叶片果糖含量偏低,花粉育性也偏弱;然而由于彩色长绒棉叶片的叶绿素含量较高,使得其具有较高的净光合速率等光合指标,营养物质供应充足,葡萄糖含量和淀粉含量较大。这或许是彩色长绒棉高产和优质的重要光合生理特性。
     3彩色长绒棉纤维生理与纤维品质的关系
     棉花是以收获纤维为主要目的的经济作物。棉株产量的高低以及品质的优劣不仅与叶片的光合生理特性相关,而且与纤维的发育也密切相关。与白色棉不同的是,彩色棉在纤维素形成和沉积的同时,还伴随着色素的形成和沉积,因此彩色棉的纤维发育过程比白色棉更加复杂。本试验主要从纤维发育角度来研究彩色长绒棉品质改良的生理生化基础,通过对纤维发育不同时期的碳水化合物含量、纤维素含量、总黄酮含量(色素物质)以及纤维的pH值进行分析,试验结果表明,从各个时期的平均值来看,杂种的碳水化合物含量比其彩色棉亲本的含量要高,且海陆杂种的含量要高于陆陆杂种。比较两种颜色的彩色棉,绿色棉纤维的蔗糖含量高于棕色棉纤维蔗糖含量,棕色棉杂种的葡萄糖含量比绿色棉杂种的含量要高。此外,棕色棉杂种的葡萄糖含量要比其棕色棉亲本高,而绿色棉杂种的葡萄糖含量却稍低于其绿色棉亲本。成熟纤维中,彩色长绒棉的纤维素含量明显比其彩色棉亲本高,然而彩色棉亲本的总黄酮含量与pH值却比4个杂种都高。相关分析表明,碳水化合物含量与纤维各指标(马克隆值除外)呈显著或极显著正相关,表明充足的碳水化合物能促进纤维细胞的快速伸长;总黄酮含量、纤维细胞研磨液的pH值与纤维各指标(马克隆值除外)呈显著或极显著的负相关,表明色素的沉积对纤维发育有负面影响,过高的pH值亦不利于纤维细胞的快速伸长。
Natural colored cotton is a textile crop with naturally pigmented fiber. It becomes more and more attractive to textile industry because of its unique non-fading and environmentally friendly properties. But colored cotton is still not very popular in farming because of its lower lint yield and inferior fiber quality compared with white cotton, also its singleness color. These problems limit the development of colored cotton production. Heterosis utilization is still a useful way in improving crop yield and quality. Because Sea Island cotton (G barbadense L.) has better fiber quality and Upland cotton (G hiesutum L.) has higher yield, their interspecific hybrid can combinate the advantages of the parents in productivity and quality properties and reach the aim of improvement of cotton yield and fiber quality simultaneously, which is a good way to improve colored cotton. However, there are few reports about colored interspecific hybrid. In this experiment, colored interspecific hybrids between Upland cotton and Sea Island cotton were used as materials to study (1) their heterosis of yield and quality, (2) their photosynthetic physiological characteristics of plant leaf and fiber, and (3) the relationship among yield, quality and photosynthetic physiological characteristics, in order to get a breeding theory for solving the problems related with low yield and inferior quality of colored cotton. The main results can be showed as below:
     1 Heterosis of colored interspecific hybrid cotton
     Using colored Upland cotton and withe Sea Island cotton as parents, we got two kinds of colored hybrids, interspecific and intraspecific hybrid. Compared with the white commercial hybrid cotton (CK), the heterosis of these two kinds of hybrids was studied. As a result, interspecific hybrids had more bolls, fruit branches, fruit nodes, higher dry plant weight and higher plant height than intraspecific hybrids, but lower boll weight and lint percentage than intraspecific hybrids. Interspecific hybrids had the most bolls (27.58 n/plant), while intraspecific hybrids only 19.13 n/plant. For the yield, because of more bolls, a few of interspecific hybrids also presented higher lint yield than intraspecific hybrids. For example, there were 2 blown interspecific hybrids which had higher yield than intraspecific hybrids, even than CK. For the fiber quality trails, except for Micronaire value, interspecific hybrids were better in fiber length, fiber strength, fiber uniformity and elongtion rate than intraspecific hybrids and CK. Especially, the green interspecific hybrids had the longest fiber length (35.00mm), which were even superiorer to the Sea Island cotton, and showed an extremely high heterosis.
     2 Photosynthetic physiological characteristics of colored interspecific hybrid cotton with high yield and good quality
     Photosythesis is associated with lint yield and fiber quality at different development stages of cotton plant. The outcome of photosythesis is the base of growth and development not only for each plant organs but also for cotton fiber cell, because it provides carbohydrate for all the metabolize activity. At present, there was little research about photosynthetic physiological characteristics of colored interspecific hybrid cotton. Therefore, on the base of analysing yield and quality of colored interspecific hybrids and their parents, we measured several photosynthetic indexes, such as leaf chlorophyll a and b content, net photosynthesis rate and carbohydrate content at different development stages, and pollen fertility. The results showed that the colored interspecific hybrid cotton had a lower plant fructose content, weaker pollen fertility, but they had a higher chlorophyll content when compared with their colored cotton parents and the intraspecific hybrid cotton. We also found that interspecific hybrids had a higher net photosynthesis rate than their colored parents and CK. It was suggested that more sufficient metabolism substrate from photosythesis and more glucose content and starch in cotton might be a possible physiological reason for the higher yield and better fiber quality of interspecific hybrid cotton.
     3 The relationship between fiber physiologic characteristics and fiber quality traits in colored interspecific hybrid cotton
     Cotton is an economic crop whose main outcome is fiber. Colored fiber growth and development is not only associated with leaf photosynthetic physiological characteristics but also with fiber pigment synthesis. Because fiber pigment synthesis is an additional pathway for colored cotton and needs more energy and matter than white cotton, the formation of fiber yield and quality of colored cotton is more complicated than that of white cotton. Therefore, this experiment studied the physiologic characteristics during colored fiber development at different stages through testing of carbohydrate content, cellulose content, flavonoids (pigments) and pH in fiber cell. The results showed that Sucrose content and fructose content in colored fiber of hybrids were higher than that of their parents on the average of different stages, but was lower in fiber of interspecific hybrid than that of intraspecific hybrid. Comparing the two kinds of colored cotton, green cotton had more sucrose than brown cotton, but brown hybrids had more glucose content than green hybrids. In the mature fiber, the cellulose content of colored intersecific hybrids cotton were significantly higher than therir colored parents, but their colored parents had higher flavonoids and pH. Again, the relationship analysis indicated that colored fiber quality was significantly associated with fiber carbohydrate content, flavonoid content and fiber pH value. Abundant carbohydrate content could accelerate fiber enlogation, while high flavonoid content and pH value were not benefit for fiber elongation and quality formation.
引文
1.曹新川,何良荣,蔡臻伟,等.2003.彩色棉与海岛棉种间F1杂种优势分析.棉花学报,15,191-192
    2.陈大军,简桂良,李仁敬,等.2003.转天麻抗真菌蛋白基因彩色棉新品系抗枯黄萎病研究.分子植物育种,1,673-676
    3.陈旭升,刘剑光,狄佳睿,等.2001.棕色棉纤维色度与产量性状相关分析.中国棉花,28,12-13
    4.陈志玲,刘丽娜,刘磊,等.2007.微管骨架在棉纤维细胞伸长中的作用.首都师范大学学报(自然科学版),28,50-54
    5. 刁光中,黄滋康.1961.陆地棉与海岛棉杂种优势的利用.中国农业科学,7,49-50
    6.董合忠,郭庆正,王志芬.1996.棉花纤维的发育及其与纤维品质的关系.莱阳农学院学报,13,197-201
    7.董合忠,李维江,唐薇,等.2002.2个彩色棉材料的农艺性状和纤维发育特点.山东农业科学,4,6-9
    8.郭宝德,杨芬,牛永章,等.2005.远缘杂交与半配合育种相结合培育彩色棉.棉花学报,17,99-102
    9.郭旺珍,孙敬,张天真.2003.棉花纤维品质基因的克隆与分子育种.科学通报,48,410-417
    10.高俊凤.2006.植物生理学实验指导.北京,高等教育出版社,144-148
    11.侯必新,张美桃,李子辉,等.2006.棕色彩棉叶光合特性与氮肥调节效应.棉花学报,18,184-185
    12.华水金,袁淑娜,赵向前,等.2009.棕色、绿色和白色棉品系光合特性的比较.棉花学报,21,121-126
    13.华兴鼐,周行,黄骏麒,等.1963.海岛棉与陆地棉杂种一代优势利用的研究.作物学报,2,1-24
    14.李维江,张冬梅,唐薇,等.2001.转Bt基因抗虫棉和有色棉苗期耐盐性差异研究.棉花学报,13,234-237
    15.李悦有,王学德.2002.彩色棉纤维的超微结构观察.浙江大学学报,农业
    与生命科学版,28,379-382
    16.刘丰疆,刘海峰,黄芳,等.2006.GAFP基因导入对彩色棉抗病性和农艺及经济性状的影响.中国农学通报,22,57-59
    17.鲁忠于,张亚良,姚云芳.2000.彩色棉试种初报.安徽农学通报,6,31-32
    18.潘兆娥,杜雄明,孙君灵,等.2006.遮光对彩色棉的色泽和纤维品质的影响.棉花学报,18,264-268
    19.钱思颖,黄骏麒.1992.棉花高纤维品质新种质系培育研究初报.江苏农业科学,3,19-20
    20.邱新棉,周文龙,李茂松,等.2002.天然彩色棉纤维色素的遗传基础形成及湿处理色素变化规律的研究.中国农业科学,35,610-615
    21.石玉真,刘爱英,李俊文,等.2008.陆海种间杂交纤维品质性状的遗传及其F1群体优势分析.棉花学报,20,56-61
    22.宋宪亮,刘继华,刘英欣,等.2000.陆地棉隐性核不育系与海岛棉种间杂种优势研究.中国棉花,27,13-15
    23.孙东磊,孙君灵,杜雄明,等.2008.彩色棉种质资源农艺性状和纤维品质鉴定与分析.植物遗传资源学报,9,469-474
    24.孙济中,刘金兰,张金发.1994.棉花杂种优势的研究和利用.棉花学报,6,135-139
    25.王国祥.2004.彩色棉与海岛棉远缘杂交后代表现.中国棉花,31,10-11
    26.王冬梅,李建平,黄乐平,等.2003.转抗虫基因彩色棉的获得.农业生物技术学报,11,101-102
    27.王荣,李冠,李燕.2005.诱抗剂对彩色棉花一些抗病相关生化物质的影响.棉花学报,17,107-111
    28.王义琴,陈大军,危晓薇,等.2003.天麻抗真菌蛋白基因(gafp)转化彩色棉的研究.植物学通报,20,703-712
    29.吴永成,丁海萍,李首成.2002.天然彩色棉叶片光合色素测定分析.四川农业大学学报,20,182-184
    30.吴永成,李守成.2006.天然有色棉纤维早期分化发育的细胞形态观察.四川农业大学学报,24,40-43
    31.项时康,余楠,胡育昌,等.1999.论我国棉花质量现状.棉花学报,11,
    1-10
    32.邢朝柱,喻树迅,郭立平,等.2007.不同环境下抗虫陆地棉杂交种优势表现及经济性状分析.棉花学报,19,3-7
    33.肖文俊.2001.以空间诱变为主体的棉花综合改良育种方法.专利号,01130102.3
    34.徐崇志,李青,曹新川.2003.彩色棉与海岛棉种间杂种优势及其主要性状的遗传分析.中国棉花,30,17-19
    35.徐文修,牛新湘,边秀举.2007.新疆棉花光温生产潜力估算与分析.棉花学报,19,455-460
    36.薛应龙.1985.植物生理学实验手册.上海,上海科学技术出版社,87-125
    37.杨伯祥,周宜军,王治斌.1999.彩色棉主要经济性状研究.中国棉花,26,9-10
    38.杨国正,展茗,骆炳山.2004.抗虫棉、彩色棉光合特性及其与生态生理因子相关性研究.华中农业大学学报,23,197-202
    39.袁淑娜.2009.彩色棉纤维发育特性以及基于细胞质雄性不育的彩色长绒棉育种研究.浙江大学博士论文,57-58
    40.杨兴洪,邹琦,赵世杰.2005.遮阴和全光下生长的棉花光合作用和叶绿素荧光特征.植物生态学报,29,8-15
    41.翟学军,王国印,李俊兰,等.1994.棉花辐射效应研究Ⅰ,M2代主要农艺和经济性状的变异.核农学报,15,12-15
    42.翟学军,王国印,李俊兰,等.1995.棉花辐射效应研究Ⅱ,M2代主要经济性状的变异.棉花学报,7,82-85
    43.詹少华,林毅,蔡永萍.2005.彩色棉棉铃生长发育动态研究简报.棉花学报,17,127-128
    44.詹少华,林毅,吕凯.2005.天然彩色棉过氧化物酶·丙二醛及硝酸还原酶的测定.安徽农业科学,33,17-18.
    45.詹少华,林毅,张倩.2005.天然棕、绿彩色棉叶片光合色素分析.安徽农业大学学报,32,174-177
    46.詹少华,林毅,蔡永萍,等.2006.棕色棉纤维中酚类物质动态变化与色素合成的关系.作物学报,32,1684-1688
    47.詹少华,林毅,蔡永萍,等.2006.天然彩棉棕色素稳定性及其机理研究.激光生物学报,15,354-358
    48.张金发,邓忠,孙济中,等.1994a.陆地棉与海岛棉种间杂种优势和配合力分析.华中农业大学学报,13,9-14
    49.张金发,冯纯大.1994b.陆地棉与海岛棉种间杂种产量品质优势的研究.棉花学报,6,140-145
    50.张林水,朱祯,吴霞,等.2005.转三价抗虫基因彩色棉的获得.西北植物学报,25,1126-1131
    51.张天真.2000.棉花纤维品质分子育种的现状及展望.棉花学报.12,321-326
    52.张小全,王学德.2005.细胞质雄性不育陆地棉与海岛棉间杂种优势初步研究.棉花学报,17,79-83
    53.张雪林.1996.彩色棉引种试验小结.中国棉花,23,23
    54.张运生,邢振东.1992.新疆长绒棉育种进展.新疆农业科学,2,49-51
    55.张正圣,李先碧,刘大军,等.2002.陆地棉高强纤维品系和Bt基因抗虫棉的配合力与杂种优势研究.中国农业科学,35,1450-1455
    56.赵向前,王学德.2002.纤维颜色作为指示性状的三系杂交棉制种技术.浙江大学学报,农业与生命科学版,28,123-126
    57.赵向前,王学德.2005.细胞质雄性不育彩色棉的杂种优势利用和制种研究.棉花学报,17,8-11
    58.郑顺林,李首成.2007.彩色棉干物质积累和养分吸收的模拟分析.西北农业学报,16,100-104
    59.中华人民其和国农业部公告.2005年棉花主栽品种纤维品后测试结果.www.cricaas.com.cn.
    60.朱青竹,赵国忠,苏丽君,等.2007.棉花杂种优势与亲本表现的关系研究.棉花学报,19,312-314
    61.朱伟,王学德,华水金,等.2005.鸡脚叶标记的三系杂交棉光合特性的研究.中国农业科学,38,2211-2218
    62.《2010-2015年中国彩棉产业投资分析及前景预测报告》.2009棉花国际会议.
    63. Basra A, Malik C P.1984. Development of the cotton fiber. International review of cytology-a survey of cell biology,89:65-113
    64. Basra A S, Malik C P.1983. Dark metabolism of CO2 during fiber elongation of two cottons differing in fiber lengths. Journal of Experimental Botany,24:1-9
    65. Bauer P J, Frederic J R, Bradow J M, et al.2000. Canopy photosynthesis and fiber properties of normal-and late-planted cotton. Agronomy Journal,92: 518-523
    66. Benedict C R, Mccree K J, Kohel R J.1972. High photosynthetic rate of a chlorophyll mutant of cotton. Plant Physiol,49:968-971
    67. Biolley J P, Jay M.1993. Anthocyanins in modern roses:chemical and colorimetric fertures in relation to the colour range. Journal of Experimental Botany,11:1725-1734
    68. Bouma T J, Visser R De, Van Leeuwen P H, et al.1995. The respiratory energy requirements involved in nocturnal carbohydrate export from starch-storing mature leaves and their contribution to leaf dark respiaration. Journal of Experimental Botany,46:1185-1194
    69. Brummell D A.1986. Cell wall acidification and its role in auxin-stimulated growth. Jounal of Experimental Botany,37:270-276
    70. Campanero-Rhodes M A, Childs R A, Kiso M, et al.2006. Carbohydrate microarrays reveal sulphation as a modulator of seglec binding. Biochemcial and Biophysical Research Communications,344:1141-1146
    71. Culp T W, Harrell D C, Kerr T.1979. Some genetic implications in the transfer of high fiber strength genes to upland cotton. Crop Science,19:481-484
    72. Davis D D.1978. Hybrid cotton:specific problem and potentials. Advances in Agronomy,30:129-157
    73. Dickerson D K, Lane E F, Rodriguez D F.1999. Naturally colored cotton: resistance to changes in color and durability when refurbished with selected laundry aids. California Agricultural Technology Institute, California State University, Fresno,1-42
    74. Dong H Z, Li W J, Tang W, et al.2006. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China. Field Crops Research,98:106-115
    75. Dutt Y, Wang X D, Zhu Y G, et al.2004. Breeding for high yield and fibre quality in coloured cotton. Plant Breeding,123:145-151
    76. Galal H E, Miller P A, Lee J A.1966. Heterosis in relation to development in upland cotton, Gossypium hirsutum. L. Crop Science,6:555-559
    77. Galanopoulou-Sendouca S, Roupakias D.1999. Performance of cotton F1 hybrids and its relation to the mean yield of advanced bulk generations. European Journal of Agronomy,11:53-62
    78. Gou J Y, Wang L J, Chen S P, et al.2007. Gene expression and metabolite profiles of cotton fiber during cell elongation and secondary cell wall synthesis. Cell Res.17:422-434
    79. Griesbach R J.1998. The effect of the ph 6 gene to the color of Petunia hybrida Vilm flower. Journal of American Society for Horticulture Science,123:486-737
    80. He C X, Yan J H, Shen G X, et al.2005. Expression of an arabidopsis vacuolar sodium/proton antiporter gene in cotton improves photosynthetic performance under salt conditions and increases fiber Yield in the field. Plant and Cell Physiology,46:1848-1854
    81. Hua S J, Wang X D, Yuan S N, et al.2007. Characterization of pigmentation and cellulose synthesis in colored cotton fiber. Crop Science,47:1540-1546
    82. Hua S J, Yusn S N, Shamsi I H, et al.2009. A comparison of three isolines of cotton differing in fiber color for yield, quality, and photosynthesis. Crop Science, 49:983-989
    83. Ji S J, Lu YC, Feng J X, et al.2003. Isolation and analysis of genes preferentially expressed during early cotton fiber development by substractive PCR and cDNA array. Nucleic Acids Research,31:2534-2543
    84. Ji S G, Lu Y C, Li J, et al.2002. A β-tubulin-like cDNA expressed specifically in elongating cotton fibers induces longitudinal growth of fission yeast. Biochemical and Biophys,296:1245-1250
    85. Jones D F.1945. Heterosis resulting from degenerative changes. Genetics,30: 527-542
    86. Kohel R J.1985. Genetic analysis of fiber color variants in cotton. Crop Science, 25:793-797
    87. Lichtenthaler H K.1987. Chlorophylls and carotenoids:Pigments of photosynthetic biomembranes. Methods in Enzymology,148:350-382
    88. Lippman Z B, Zamir D.2006. Heterosis:revisiting the magic. Trends in Genetics, 23:60-66
    89. Li X B, Fan X P,Wang X L, et al.2005. The cotton ACTINl gene is functionally expressed in fibers and participates in fiber elongation. Plant Cell.17:859-875
    90. Loden H D, Richmond T R.1915. Hybrid vigor in cotton-cytogenetic aspects and practical applications. Economic Botany,5:387-408
    91. Luo L J, Li Z K, Mei H W.2001. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice II. Grain yield components. Genetics,158:1755-1771
    92. Marani A.1968a. Inheritance of lint quality characteristics in intraspecific crosses among varieties of G hirsutum L. and of G.barbadense L. Crop Science,8:36-38
    93. Marani A.1968b. Heterosis and inheritance of quantitative characters in interspecific crosses of cotton. Crop Science,8:299-303
    94. Marani A.1968c. Heterosis of lint quality characteristics in interspecific crosses of cotton. Crop Science,8:653-657
    95. Mathur N, Bhatnagar P, Nagar P, et al.2005. Mutagenicity assessment of effluents from textile/dye industries of Sanganer,Jaipru(India):a case study. Ecotoxicology and Environmental Safety,61:105-113
    96. Maureen C M, Deborah P D.1977. Changes in Biochemical Composition of the Cell Wall of the Cotton Fiber during Development. Plant Physiology.59: 1088-1097
    97. Muramoto H.1973. Hexaploid cotton:Some fiber and spinning properties. Crop Science,13:396-397
    98. Meredith W R.1992. Cotton breeding for fiber strength in Proceedings from cotton fiber cellulose:function, and utilization conference. National Cotton Council of American,88:289-302
    99. Meredith W R, Brown J S.1998. Heterosis and combining ability of cotton originating from different regions of the United States. Journal of Cotton Science, 2:77-84
    100. Miller P A, Lee J A.1964. Heterosis and combining ability in varietal top crosses of upland cotton, Gossypium hirsutum L. Crop Science,4:646-649
    101. Murthy MSS.2001. Never say dye:the story of coloured cotton. Resonance,12: 29-35
    102. Neves-Piestun B G, Bernstein N.2001. Salinity-induced inhibition of leaf elongation in maize is not mediated by changes in cell wall acidification capacity. Plant Physiology,125:1419-1428
    103.Percy R G.1991. Turcotte E L. Early-maturing, short-statured American Pima cotton parents improve agronomic traits of interspecific hybrids. Crop Science,31: 709-712
    104.Peng S B, Khush G S, Virk P, et al.2008. Progress in ideotype breeding to increase rice yield potential. Field Crops Research,108:32-38
    105.Pettigrew W T.1994. Sucrose-to-sink manipulations on cotton lint yield and yield compoents. Agronomy Journal,86:731-735
    106.Pettigrew W T.2001. Environmental effects on cotton fiber hydrate concentration and quality. Crop Science,41:1108-1113
    107.Pettigrew W T.2004. Cotton genotypic variation in the photosynthetic response to irradiance. Photosynthetica,42:567-571
    108.Quattrocchil F, Verweij W, Kroof A, et al.2006. pH4 of petunia is an R2R3 MYB protein that activates vacuolar adidification through interactions with basic-helix-looo-helix transcription factors of the anthocyanin pathway. Plant Cell, 18:1274-1291
    109.Rayle D L, Cleland R.1972. The in vitro acid-growth response:relation to in vivo growth response and auxi action. Planta,104:282-296
    110.Ruan Y L, Llewellyn D J, Furbank R T.2001. The control of single-celled cotton fiber elongation by developmentally reversible gating of plasmodesmata and coordinated expression of sucrose and K+ transporters and expansin. Plant Cell, 13:47-60
    111.Ruan Y L, Xu S M, White R, et al.2004. Genotypic and developmental evidence for the role of plasmodesmatal regulation in cotton fiber elongation mediated by callose turnover. Plant Physiology,136:4104-4113
    112.Saleem M B, Buxton D R.1976. Carbohydrate status of narrow row cotton as related to vegetative and fruit development. Crop Science,16:523-526
    113.Saxena I M, Brown R M.2005. Cellulose biosynthesis:current views and evolving concepts. Annals of Botany,96:9-21
    114.Schmutz A, Buchala A J, Ryser U.1996. Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases. Plant Physiology,110:403-411
    115.Schwendiman J.1975. Hybrid lines from the cross between G.hirsutum and G.barbadense:Separation and relative importance of the genetic effects for fiber yield and length. Cotton Fiber Tropic,30:185-194
    116.Shimizu Y, Aotsuka S, Hasegawa O, et al.1997. Changes in levels of mRNAs for cell wall-related enzymes in growing cotton fiber cell. Plant Cell Physiology,38: 375-378
    117.Shi Y H, Zhu S W, Mao X Z, et al.2006. Transcriptome profiling, molecular biological, and physiological studies reveal a major role for ethylene in cotton fiber cell elongation. Plant cell,18:651-664
    118.Smart L B, Fakrieh V, Masayoshi M, et al.1998. Genes involved in osmoregulation during turgor-drien cell expansion of developing cotton fibers are differentially regulated. Plant Physiolgy,116:1539-1549
    119.Smith M W, Rohla C T, Maness N O.2007. Correlation of crop load and return bloom with root and shoot concentrations of potassium, nitrogen, and nonstructural carbohydrates in pecan. Journal of the American Society for Horticultural Science,132:44-51
    120.Smith O S, Smith J S C, Bowen S L.1990. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, heterosis, and RFLPs. Theoretical and Applied Genetics,80:833-840
    121.Solfanelli C, Poggi A, Loreti E, et al.2006. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology,140:637-646
    122.Sun Y, Allen R D.2005. Functional analysis of the BIN2 genes of cotton. Molecular Genet Genomics,274:51-59
    123.Sun Y,Fokar M, Asami T, et al.2004. Characterization of the brassinosteroid insensitive 1 genes of cotton. Plant Molecular Biology,54:221-232
    124.Sun Y, Veerabomma S, Abdel-Mageed H A, et al.2005. Brassinosteroid regulates fiber development on cultured cotton ovules. Plant cell physiology,46: 1384-1391
    125.Tang B, Jenkins J N, Mccarty J C, et al.1993. F2 hybrids of host plant germplasm and cotton cultivars:I. Heterosis and combining ability for lint yield and yield components. Crop Science,33:700-705
    126.Tauber M M, Guebitz G M, Rehorek A.2005. Degradation of azo dyes by laccase and ultrasound treatment. Applied and Environmental and Microbiology,71: 2600-2607
    127.Teng S, Keurentjes J, Bentsink L, et al.2005. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology,139:1840-1852
    128.Tiwari S C, Wilkins T A.1995. Cotton(Gossypium hirsutum) seed trichomes expand via diffuse growing mechanism. Canadian Journai of Botany,73:746-757
    129.Tsaftaris A S.1995. Molecular aspects of heterosis in plants. Physiologia Plantarum,94:362-370
    130.Tsaftaris A S, Kafka M.1998. Mechanisms of heterosis in crop plants. Journal of Crop Production,1:95-111
    131.Turner J H.1953. A study of heterosis in upland cotton. Ⅱ. Combining ability and inbreeding effects. Agronomy Journal,45:487-490
    132.Vertapetian B B, Andreeva I N, Generozova I P, et al.2003. Functional electron microscopy in studies of plant response and adaption to anaerobic stress. Annals of Botany,91:155-172
    133.Vreeland J M J.1993. Naturally colored and organically grown cotton: anthropological and historical perspectives. Beltwide Cotton Conferences, National Cotton Council, Memphis,1533-1535
    134.Vreeland J M J.1999. The revival of colored cotton. Scientific America,280: 112-119
    135.Wade H K, Sohal A K, Jenkins G I.2003. Arabidopsis ICX1 is a negative regulator of several pathways regulating flavnoid biosynthesis genes. Plant Physiology,131:707-715
    136.Weaver J B, Marakby E, Esmail A M.1984. Yield, fiber and spinning performance of interspecific cotton hybrids having a common parent. Crop Science,24:637-640
    137.Wells R M, Meredith W R.1986. Heterosis in upland cotton Ⅰ. Growth and leaf area partitioning. Crop Science 6:253-255
    138.White T G, Richmond T R.1963. Heterisos and combining ability in top and diallel crosses among prinitive, foreign and cultivated American upland cottons. Crop Science,3:58-63
    139.Xie D Y, Sharma S B, Paiva N L, et al.2003. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science,299:396-399
    140.Winkel-Shirley B.2001. Flavonoid biosynthesis:a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology,126:485-493
    141.Yatsu L Y, Mod R R, Kolattukudy P E.1983. Cytochemical studies of green-colored cotton fibers. Plant Physioal,72-73
    142.Zhang X Q, Wang X D.2005. Preliminary study on heterosis of interspecific hybrid cotton (Gossypium hirsutum·G. barbadense) based on cytoplasmic male sterility system. Acta Gossypii Sin,17:79-83
    143.Zhang X Q, Wang X D, Jiang P D, et al.2007. Relationship between molecular marker heterozygosity and hybrid performance in intra-and interspecific hybrids of cotton. Plant Breed,126:385-391

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700