光电测量信息中大气折射误差的神经网络建模修正研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气折射误差的客观性影响了光电测量信息的真实性,大气折射误差的复杂性增加了其修正的难度。传统的修正方法,无论是理论上还是方法上,都没有跳出大气模型及其分层假设这一圈子,它们只适合于标准大气。对非标准大气,传统的非线性建模和数理统计方法往往无法实现高精度修正,而人类大量的光电测量活动都是在非标准大气中进行的。随着光电测量设备的测量精度与人们对光电测量信息要求的不断提高,光电测量信息中大气折射误差的高精度修正已成为高精度光电测量工程中亟待解决的关键问题。
     类似大气折射误差这样复杂的非线性对象,神经网络理论具有传统的非线性建模无法媲美的优势。所以,本研究尝试利用神经网络理论中的BPNN模型来研究光电测量信息中的大气折射误差修正。本研究首先对该领域国内外的研究状况进行了分析,对与本研究相关的基础理论与基本方法进行了阐述。在上述基本理论与基本方法的指导下,运用数学基础理论与计算机建模仿真,依托俄罗斯普尔科沃天文台的大气折射实测数据平台、2个变形光电测量工程等提供的相关信息及MATLAB7提供的神经网络工具箱,对光电测量信息中大气折射误差的神经网络建模修正开展了下述独创性的研究:
     (1)根据大气折射误差修正的映射函数理论,对10多种映射函数进行了数学理论上的一般化,提出了“高阶分式映射函数”这一新概念。研究完成了基本映射函数的神经网络变换。首次在普尔科沃天文大气折射实测值数据平台上,进行了映射函数、神经网络的计算机建模与拟合比较。结果表明:在拟合精度上,BPNN优于映射函数,是目前修正精度最好的4阶分式映射函数的2倍。证明了映射函数对天文大气折射的模拟精度的确已接近传统非线性建模修正的理论极限。
     (2)根据光电测距仪的全室内检测新方法,对光电测距系统的误差及控制进行了分析研究,为高精度空中基线的建立提供了方法指导。提出了“基线神经网络”的新概念。该方法能够实现基线光电测量信息中大气折射误差与其它误差的高精度分离。
     (3)根据矩阵的基本性质,巧妙地利用单位矩阵,从数学原理上证明:就神经网络建模效率的实时性而言,样本预处理与神经网络训练算法的优化是等价的。该证明简洁明了,不存在病态分式(分母为0的分式)的约束。提出了简单有效的样本预处理方法——均值比例法,实例建模结果表明:该方法与MATLAB中提供的预处理方法相比,能提高建模效率1~4倍;样本预处理可以减轻网络训练中的高阶逼近负荷,而算法优化可以弥补样本预处理高阶逼近能力的不足。
     (4)对反常大气折射的变化规律、光测信息的利用、基线神经网络的建模理论、建模方法及模型的推广应用进行了研究。提出了基于周日信息一致性检验条件下的基线神经网络模型推广应用新方法。实例建模结果表明:该方法修正后,基线日均变形几乎为0。
     (5)对某大型变形光电监测工程的应用研究表明:当周日信息一致性强时,基线神经网络模型对基线的日均修正精度可达到10~(-4)mm/km,基线邻边比例的日均修正精度可达到10~(-3)mm/km,周日均值差分的日均修正精度可达到10~(-2)mm/km,气象公式的日均修正精度可达到10~(-1)mm/km。当周日信息一致性不强时,基线神经网络的实时修正效果明显优于气象公式与基线邻边比例修正,略好于周日均值差分修正。提出了下述新观点:光电测量信息中大气折射误差的建模修正,不管采取什么的模型,周日信息一致性强基础上的应用,都有利于修正精度。此新观点将使大气折射误差修正模型在推广应用中出现的修正精度不确定性较大的问题有望得到更好解释。
     (6)数学证明和实例研究表明:BPNN神经网络模型对大气折射中高阶信息的挖掘是隐含层神经元完成的,而不是输入层神经元。类似映射函数的非线性高阶构造对BPNN神经网络建模挖掘高阶信息的贡献不显著。在大气折射高阶信息的挖掘能力上,神经网络优于映射函数,尽管二者的挖掘形式不同,但在数学原理上是一致的。较好地解释了学术交流中的一些颇具争议的问题。
     (7)本研究发展了光电测量信息中大气折射误差修正理论,丰富了神经网络理论的应用实践。
The atmospheric refraction errors (ARE) are objectivity in the photo-electricity survey information (PESI), the error accurate correction is very difficult for its complexity. Some conventional correction rules are only feasible in the standard atmosphere based on the atmosphere models theory and the foliaceous hypothesis method. The conventional nonlinear modeling and statistics technique can not achieve the high precision correction in the nonstandard atmosphere, but the large numbers of photo-electricity survey works have been achieved in the nonstandard atmosphere. Along with unceasing enhancement of the equipment measuring accuracy and people accuracy requirements, the atmospheric refraction errors correction (AREC) desiderate improving in some high precision photo-electricity survey projects.
     The neural network theory has many advantages than the conventional nonlinear modeling and statistics technique to resemble the intricate nonlinear object of AREC, therefore, this research is trying to improve the precision of the AREC by using the back propagation neural network (BPNN) model for the PESI. It firstly presents the inland and overseas actuality and introduces interrelated the basic theory and essential method for the AREC study on this research field. Some original researches were carried out for the AREC with the BPNN model in the PESI. These research based on following foundation: the aforementioned elementary theory and essential method, the list data in the Pulkovo refraction table (PRT) and the correlation information of two distortion photo-electricity survey projects, the mathematics basic theory and the computer modeling simulation by the help of Matlab7 BP toolbox.
     (1). It brings forward a new concept of the high degree fraction form mapping function based on the mapping function (MF) principle of the AREC and the generalization expressions of over ten sorts MF function in mathematics, and transforms the basic MF to the BPNN model. It achieves the modeling and fitting of the models on the PRT firstly. Simulation shows that the BPNN is double of the 4-degree fraction form MF in the accuracy of simulation, and proves that correction precision of the MF modeling indeed has approached theoretic precision which the traditional non-linear modeling revises.
     (2). It put forward second new concept of the baseline back propagation neural network model (BLBPNNM). It studies the entire laboratory performance test of the photoelectric distance meter and analyzes that the measure errors of radio meteorology parameters to influence precision of the AREC. The BLBPNNM can separate the atmospheric refraction errors from the information of baseline photoelectric distance meter by very high precision.
     (3). It gives a new compendious mathematics proof without the ill-conditioned fraction form constraint for that both the sample pretreatment and the optimization training algorithm of BPNN are equivalence in the modeling efficiency by using the identity matrix and the basic character of matrix operation. It provides an efficacious sample pretreatment arithmetic that the value of sample divided by their average. Example shows that the arithmetic is more efficacious than the pretreatment function of MATLAB and the modeling efficiency of BPNN can enhance 1~4 times.
     (4). It performs such researches as the abnormity change rules of atmospheric refraction, how use the PESI and modeling principle, steps and application way of the BLBPNNM. It offers a new application method based on the full-day information consistency check between the modeling baseline and the correction line for the BLBPNNM. Example shows that the method is feasible and daily distortion mean value of the baseline is nearly zero and has separated the atmospheric refraction errors from the information of baseline photoelectric distance meter with very high precision.
     (5). The application research shows that daily mean correction precision (DMCP) of the baseline can attain 10~(-4)mm/km by using the BLBPNNM, the neighboring baseline length ratio method is 10~(-3)mm/km, the full-day mean value difference expressions is 10~(-2)mm/km, the exact meteorology formula is 10~(-1)mm/km when their full-day information consistency check are better, and the real-time correction effect of BLBPNNM is the best in these methods when the consistency check are not nice. So it presents a new correction viewpoint which all the models can improve the AREC precision in the PESI when their consistency checks are fine. The problem which the correction precision is uncertain by the traditional AREC method will make progress in application, which is hopeful on the new viewpoint.
     (6). In the high order information mining effect of atmospheric refraction, the math proof and simulation show that the mining power of the BPNN model excelled the MF, but the mining power comes from the hidden lay nerve cell rather than the input lay as a result of the mining effect of BPNN model is not distinct in a similar way which the MF form add high order items. Although both the BPNN and the MF are different in the mining modality, their fundamental principles are consistent in mathematics.
     (7). This research has developed and enriched "the AREC and the BPNN" in both theory and practice, and has attained the anticipative objectives.
引文
[1].中国大气折射研究会.大气折射研究专辑[J].武汉:武汉科技大学出版社.1992.
    [2].刘志德,张书寿,郑汉球,张学廉等.EDM三角高程测量[M].测绘出版社.1996.
    [3]. Saastamoinen In J. Contributions to the theory of atmospheric refraction, introduction to practical computation of astronomical refraction[J], Bulletin Geodesique, 1972-1973, 105, 106, 107: 279, 383, 13-43.
    [4].张学庄,朱星火,林付等.自动周日观测与高精度测距实验[J].测绘科技通讯,1994,17(2):53-56.
    [5].张学庄,王爱公,张弛等.单波高精度测距系统的研究[J].测绘学报,1996,25(3):186-189,200.
    [6].张学庄,王爱公,张弛等.测量机器人系统在五强溪大坝的应用[J].大坝观测与土工测试,1996,23(3):24-27.
    [7]. Larocca Ana Paula C., Schaal Ricardo E. et al. Dynamic monitoring of structures at the millimeter level: GPS versus displacement transducers and accelerometers-A summary[J]. ION GNSS 2005, 1957-1960.
    [8]. Goad C. MILLIMETER GPS: Innovation in high precision positioning solutions[J]. IONNTM, 2006, 1: 29-52.
    [9].朱建军.污染误差模型下的测量数据处理理论[D].长沙:中南工业大学,1998.
    [10].王惠南编著.G P S导航原理与应用[M].北京:科学出版社,2003.
    [11].魏子卿,黄维彬,杨捷中,等,全国天文大地网与空间大地网联合平差[J].测绘学报,2000,29(4):283~288.
    [12].黄勇,胡小工,黄珹等.利用VLBI数据确定“探测一号”卫星的轨道[J].天文学报,2006,47(1):82-92.
    [13].沈云中,陈廷武.上海天文台并址站的空间归心测量[J].同济大学学报(自科版),2006,34(2):217-220.
    [14]. Wang Xiaoya, Chen Yong-Qi. et al. Construction of 4D water vapor field with ground-based GPS observations in Hong Kong region[J]. The 17th International Technical Meeting of the Satellite Division of the Institute of navigation, ION GNSS 2004, 2004, 2378-2385.
    [15]. Schuh Harald, Panafidina, N. et al. Climatic signals observed by VLBI[J]. Acta Geodaetica et Geophysica Hungarica, 2006, 41(2): 159-170.
    [16]. http://www.leica-geosystems.com.cn/brochure/GPS1200. pdf.
    [17].洪振杰,郭鹏,刘敏等.GPS掩星折射率剖面一维变分同化[J].天文学 报,2006,47(1):100-110.
    [18].陈俊勇,张燕平,岳建利,郭春喜,张鹏等.2005珠峰高程测定[J].测绘学报,2006,35(1):1-3.
    [19]. Nilsson Tobias, Gradinarsky Lubomir, Elgered Gunnar. Correlations between slant wet delays measured by microwave radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1028-1035.
    [20]. Jiang Haiyan, Black Peter G., Zipser Edward J. Validation of rain-rate estimation in hurricanes from the stepped frequency microwave radiometer: Algorithm correction and error analysis[J]. Journal of the Atmospheric Sciences, 2006, 63(1): 252-267.
    [21]. Bianco Laura, Cimini Oomenico, Marzano Frank S. Combining microwave radiometer and wind profiler radar measurements for high-resolution atmospheric humidity profiling[J]. Journal of Atmospheric and Oceanic Technology, 2005, 22(7): 949-965.
    [22]. C. Payne. Atmospheric refraction in a spherically stratified medium. Journal of Quantitative Spectroscopy and Radiative Transfer, 1989, 41(1): 79-84.
    [23].盛裴轩,毛节泰等.大气物理学[M].北京大学出版社.北京.2003年6月第1版:469-470.
    [24].黄捷.电磁波大气折射误差修正[M].国防工业出版社.北京.1999年6月第1版:73-80.
    [25].张捍卫,李彬华,杨磊等.关于大气分布模型[J].天文研究与技术,2005,2(4):278-284.
    [26]. Burrows, John P.; Eichmann, Kai-Uwe. et al. Atmospheric remote sensing: Earth's surface, troposphere, stratosphere and mesosphere[J]. Atmospheric Remote Sensing: Earth's Surface, Troposphere, Stratosphere and Mesosphere Ⅰ 2005, 36(5): 769-770.
    [27]. Rycroft, Michael J. Electrical processes coupling the atmosphere and ionosphere: An overview[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(3-5): 445-456.
    [28]. Ridley, A. J. Deng, Y. Toth, G. The global ionosphere-thermosphere model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(8): 839-864.
    [29]. Pietrella Marco, Perrone Loredana. Instantaneous space-weighted ionospheric regional model for instantaneous mapping of the critical frequency of the F2 layer in the European region[J]. Radio Science, 2005, 40(1RS1005): 1-11.
    [30]. Solomon Stanley C. Numerical models of the E-region ionosphere[J]. Advances in Space Research, 2006, 37(5): 1031-1037.
    [31].欧吉坤.GPS测量的中性大气折射改正的研究[J].测绘学报,1998,27(1):31-36.
    [32].陈俊勇.地基GPS遥感大气水汽含量的误差分析[J].测绘学报,1999,28(2):113-118.
    [33]. Bullrich K. Scattered Radiation in the Atmosphere[M]. Adv. In Geophysics, 10, Academic Publishing. 1964.
    [34].常治国,张军.近地层大气折射指数梯度分布模拟模型及其应用试验[J].解放军理工大学学报(自然科学版),2004,5(2):86-89.
    [35]. Rowlondson L G and Herlihy J R. Refraction Induced Tracking Errors and Correction Methods for the Air Force Western Test Range. Ad682998.
    [36]. Rycroft, Michael J. Electrical processes coupling the atmosphere and ionosphere: An overview[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(3-5): 445-456.
    [37]. Ridley, A. J. Deng, Y. Toth, G. The global ionosphere-thermosphere model[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(8): 839-864.
    [38]. Kutiev Ivan S., Marinov Pencho G., Watanabe Shigeto. Model of topside ionosphere scale height based on topside sounder data[J]. Advances in Space Research, 2006, 37(5): 943-950.
    [39]. Pietrella Marco, Perrone Loredana. Instantaneous space-weighted ionospheric regional model for instantaneous mapping of the critical frequency of the F2 layer in the European region[J]. Radio Science, 2005, 40(1RS1005): 1-11.
    [40]. Solomon Stanley C. Numerical models of the E-region ionosphere[J]. Advances in Space Research, 2006, 37(5): 1031-1037.
    [41]. Takahashi Hisao, Lima, L. M. Wrasse, C. M. Evidence on 2-4 day oscillations of the equatorial ionosphere h prime F and mesospheric airglow emissions[J]. Geophysical Research Letters, 2005, 32(12): 12102 L.
    [42]. Batista I. S., Abdu M. A., da Silva A. M. et al. Ionospheric F3 layer: Implications for the IRI model[J]. Advances in Space Research, 2003, 31(3): 607-611.
    [43]. Araujo-Pradere E. A., Fuller-Rowell T. J. Time Empirical Ionospheric Correction Model(STORM) response in IRI2000 and challenges for empirical modeling in the future[J]. Radio Science, 2004, 39(1): 419-426.
    [44]. Bilitza D. International Reference Ionosphere 1990. NSSDC/WDC-A-R&S 90-22.
    [45]. Bent B B, el at. Symposium on the Effect of the Ionosphere on Space System and Communication. 1978.
    [46]. Kleijer F. Mapping function induced bias in tropospheric delay estimation using GPS[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(6-8): 467-470.
    [47]. Haan S., Marel H. The influence on GPS estimates of NWP-derived mapping functions[J]. Physics and Chemistry of the Earth, 2004, 29(2-3): 159-166.
    [48].严豪健.大气折射的研究进展[J].世界科技研究与发展,2006.28(1):48-58.
    [49].严豪健.映射函数对天文大气折射的改进[J].天文学报,1998,39(2):113-121.
    [50].洪振杰,郭鹏.标准大气模型建立映射函数的可靠性讨论[J].天文学报,2004,45(1):68-78.
    [51]. Humphreys T. E., Kelley M. C. The semidiurnal variation in GPS-derived zenith neutral delay[J]. Geophysical Research Letters, 2005, 32(24): L24801.
    [52]. Moon Yongjin, Skone Susan. Evaluation of ionospheric interpolation algorithms for regional and national GPS networks in Canada[J]. NTM 2004, 761-770.
    [53].祝转民.电波折射误差修正的精确模型与在线算法[J].系统工程与电子技术.2003,25(3):287-325.
    [54]. Hajek, Diana L. Whiteley, Matthew R. Relating turbulence parameters to synoptic scale meteorological data for airborne laser performance modeling[J]. Proceedings of SPIE-The International Society for Optical Engineering, 1998, 3381: 273-283.
    [55]. Zhou S., Miller A. J., Wang J., Angell J. K.. Trends of NAO and AO and their associations with stratospheric processes[J]. Geophysical Research Letters, 2001, 28(21): 4107-4110.
    [56]. Weisbrod S and Anderson. Simple Mwthod for Computing Tropospheric and Ionospheric Refractive Effects on Radiowave. PIRE. 1959, 47(10): 1770-1777.
    [57]. Conil, Sebastien, Li, Laurent Z. -X. Linearity of the atmospheric response to North Atlantic SST and sea ice anomaliesr[J]. Journal of Climate, 2005, 18(12) 1986-2003.
    [58]. Montmerle, Thibaut, Lafore, Jean-Philippe, Berre, Loik, Fischer, Claude. Limited-area model error statistics over Western Africa: Comparisons with midlatitude results[J]. Quarterly Journal of the Royal Meteorological Society, 2006, 132(614): 213-230.
    [59]. Hopfield H S. A Two-quartic Refraction Profile of the Troposphere for Correcting Satellite data. 1986, AD 685217.
    [60].肖复何.霍普菲尔德对流层大气折射改正模式述评[J].测绘工程.1998,7(3):7-11.
    [61]. Altshuler E F. Correction for Tropospheric Range Error. 1996. AD731170.
    [62]. Rowlondson L G and Herlihy J R. Refraction Induced Tracking Errors and Correction Methods for the Air Force Western Test Range. Ad682998.
    [63]. Grabner, Martin, Kvicera, Vaclav. Refractive index measurements in the lowest troposphere in the Czech Republic l[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2006, 68(12): 1334-1339.
    [64].葛爱军,王东进,陈卫东.传输介质引起的多基地雷达的系统误差修正[J].火控雷达技术技术.2005,34(4):16-20.
    [65].江长荫,朱炬波.大气折射误差的残差模型[J].电子学报,1999,27(6):27-32.
    [66]. Nilsson Tobias, Gradinarsky Lubomir, Elgered Gunnar. Correlations between slant wet delays measured by microwave radiometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(5): 1028-1035.
    [67]. Sokolovskiy Sergey, Kuo Y. -H., Rocken C. et al. Monitoring the atmospheric boundary layer by GPS radio occultation signals recorded in the open-loop mode[J]. Geophysical Research Letters, 2006, 33(12): L12813.
    [68]. Kraut Shawn, Anderson Richard H., Krolik Jeffrey L. A Generalized Karhunen-Loeve Basis for Efficient Estimation of Tropospheric Refractivity Using Radar Clutter[J]. IEEE Transactions on Signal Processing, 2004, 52(1): 48-60.
    [69]. Cai Jian-wen, Cheng Ye-zeng, Shen Zhao-long. Influence of refractive index mismatch on the optical aberration in two-photon three-dimensional optical data storage[J]. Guangxue Xuebao/Acta Optica Sinica, 2006, 26(3): 443-446.
    [70].张瑜,高霞.大气水平不均匀性对电波折射误差修正精度的影响[J].飞行器测控 技术,1997,1:21-24.
    [71]. Uehara S., Sasabu H., Hashimoto T. Two-and three-dimensional refractive index lattices formed by laterally patterned porous silicon layers[J]. Materials Research Society Symposium, 2000, 597: 69-73.
    [72]. Thode A. M. A normal-mode expression for the sensitivity of acoustic fields to three-dimensional refractive index perturbations in a constant-depth waveguide, using an analytic adjoint approach[J]. Oceans Conference Record(IEEE), 2003, 1: 255-257.
    [73]. Chan Wai-Shan, Xu You-Lin, Ding Xiao-Li. Assessment of dynamic measurement accuracy of GPS in three directions[J]. Journal of Surveying Engineering, 2006, 132(3): 108-117.
    [74].蒋利龙,易又庆.近地层大气折光系数的新反演法[J].大地测量与地球动力学,2005,25(4):88-90.
    [75].李华.大气折射率误差对精密光电测距精度的影响研究[J].电光与控制,2000,78(2):59-62.
    [76].刘天海,王广余.论DI2002激光测距仪的气象改正[J].地壳形变与地震,1999,19(2):70-75.
    [77]. Ludi, Andreas, Magun, Andreas. Refractivity structure constant and length scales from mm-wave propagation in the stably stratified troposphere[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2005, 67(5): 435-447.
    [78]. Kral Lukas, Prochazka Ivan, Hamal Karel. Optical signal path delay fluctuations caused by atmospheric turbulence[J]. Optics Letters, 2005, 30(14): 1767-1769.
    [79]. Chao C C. The troposphere cablibration model for mariner Mars 1971[R]. Technical Report, 32-1587, J PL, Pasadena, California, 1974: 61-76.
    [80]. Marini J W. Correction of satellite tracking data for an arbitrary atmospheric profile[J]. Radio Science, 1972, 7(2): 223-231.
    [81].张捍卫,杨磊,冒蔚等.折射延迟改正模型[J].天文研究与技术,2002.31(4):285-292.
    [82]. Marini J W, Murray C W. NASA Tech. Rep. X-591-73-351. 1973.
    [83]. Niell A. Improved global atmospheric mapping function for VLBI and GPS[A]. In: VLBI Technology: Progress and Fature Observational Possibilities[C], eds. T. Sassao, et al, 1993.
    [84]. Mendes V. B., Prates G., Pavlis E. C. et al. Improved mapping functions for atmospheric refraction correction in SLR[J]. Geophysical Research Letters, 2002, 29(10). 531-34.
    [85]. Mantz Christopher P., Zhou Qihou, Morton Yu. T. Application of a neural network model to GPS ionosphere error correction[J]. IEEE PLANS, 2004, 538-542.
    [86]. Yasudevan Bintu G., Gohil Bhawani S., Agarwal Vijay K. Backpropagation neural-network-based retrieval of atmospheric water vapor and cloud liquid water from IRS-P4 MSMR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 985-990.
    [87].连岳泉,李孝兵,王小成等.基于人工神经网络大气折光系数实时改正方法[J].武汉理工大学学报,2005,27(4):62-65.
    [88].杨明清,靳蕃,朱达成等.用神经网络方法转换GPS高程[J].测绘学报,1999,28(4):301-307.
    [89]. Woolard E W, Clemence G M. Spherical Astronomy. 1966, New York, Academic Press.
    [90]. Allen C W. Astrophysical guantities[M], 3rd ed, Section55. The Athlone Press, 1973.
    [91].曹文俊,陆龙骅.中国大百科全书[M].北京:中国大百科全书出版社,1987.20.
    [92]. Hopfield H S. Applied Phys. Lab. Report CPO15[R]. Battimore, Marylong: Johns Hopkins University, 1972.
    [93]. Hopfield H S. Tropospheric effect on electro-magnetically measured range prediction from surface weather data[J]. Radio Science, 1971, 6(3): 357.
    [94]. Jurgen Stock. Atmospheric refraction models in terrestrial and satellite geodesy. Tectonophysics, 1986, 130(1-4): 179-193.
    [95]. Davis J L, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607.
    [96]. Herring T A. Modeling atmospheric delays in the analysis of space geodetic data[A]. In: Symposium on Refraction of Trans atmospheric Signals in Geodesy[C], J. C. DeMunk and T. A. Spoelstra, eds., Netherlands Geodetic Commission Series 1992, 36: 157-164.
    [97].严豪健,平劲松,陈义.中性大气折射的映射函数[J].测绘学报,1996,25(1):67.
    [98].平劲松,钱志瀚.太阳系人造天体VLBI观测[J].天文学进展,1997,15(1):3-12.
    [99]. 杨力, 隋立芬. 对流层传播延迟改正[J]. 测绘学院学报. 2001 ,18<3):182-185.
    [100].MacMillan D. S. Atmospheric gradients from very long baseline interferometry observations[J]. Geophysical Research Letters, 1995,22 (9): 1041.
    [101].MacMillan D.S. ,Ma C. Evaluation of very long baseline interferometry atmospheric modeling improvements[J]. Geophysical Research Letters, 1994,99(B1):637-651.
    [102].Emardson T Ragne, Elgered. G. Johnansson J M. External atmospheric corrections in geodetic very long baseline interferometry[J]. J. Geodesy,1999, 73:373-383.
    [103].CHEN G, Herring T A. Effects of atmospheric azimuthal asymmetry on the analysis of space geodetic data[J]. J. Geophys. Res., 1997,102(B9) (20):489-502.
    [104].Mendes V B. Modeling the neutral-atmosphere propagation delay in radiometric space techniques[D], Department of Geodesy and Geomatics Engineering Technical Report No. 199. University of New Brunswick, Fredericton, New Brunswick, Canada, 1999:353.
    [105].Niell A E. Global mapping function for the atmosphere delay at radio wavelengths[J]. J. Geodesy,1996,100:3227-3246.
    [106].Niell A E. Improved atmospheric mapping functions for VLBI and GPS[J]. Earth, Planets and Space, 2001.
    [107]. Alber Ware, RockenC, SolheimC. F. GPS surverying with 1mm precision using corrections for atmospheric slant path delay[J]. Geophysical Research Letters, 1997,24 (9): 1859-1862.
    [108]. Bar-Sever Y E., Kroger PM. Borjesson J A. Estimating Horizontal gradients of troposperic path delay, with a single GPS receiver[J]. Geophys. Res., 1998,103 (B3) (20): 5019 -5035.
    [109]. Press W H, Flannery E P, Teukolsky S A, Vetterling W T. Numerical recipes: The art of scientific computing[M].Cambridge University Press, 1990.
    [110]. Davis J L, et al. Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of Baseline Length[J]. Radio Science, 1985, 20(6): 1593-1607.
    [111].Gardner C S ,Rowlett J R. RRL Pub. No. 477 ,1976 .Urbana : Uni2.versity Illinois ,Urbana , Illinois; Marini J W, Murray C W. NASA Tech. Rep. X25912732351.1973.
    [112]. Marini J W, Murray C W. NASA Tech. Rep. X-591-73-351. 1973.
    [113]. Yan H J, Zhang G X, Guo P, Hong Z J. Terrestrial, Atmospheric and Oceanic Sciences(TAO), 2002, 13(4): 563~575.
    [114]. Widrow, Bernard. ORIGINAL ADAPTIVE NEURAL NET BROOM-BALANCER[J]. IEEE International Symposium on Circuits and Systems, 1987, 351-357.
    [115]. Minsky, Naftaly. REPRESENTATION OF BINARY TREES ON ASSOCIATIVE MEMORIES[J]. Information Processing Letters, 1973, 2(1): 1-5.
    [116]. Grossberg, Stephen, Mingolla, Ennio; Williamson, James. Multiple scale neural system for boundary and surface representation of SAR data[J]. Neural Networks for Signal Processing-Proceedings of the IEEE Workshop, 1995, 313-322.
    [117]. Kohonen, Teuvo. SELF-ORGANIZING REPRESENTATIONS[J]. Acta Polytech-nica Scandinavica, Applied Physics Series, 1983, (138): 80-85.
    [118]. Werbos, Paul J., Titus, Jim. EMPIRICAL TEST OF NEW FORECASTING METHODS DERIVED FROM A THEORY OF INTELLIGENCE: THE PREDICTION OF CONFLICT IN LATIN AMERICA[J]. IEEE Transactions on Systems, Man and Cybernetics, 1978, SMC-8(9): 657-666.
    [119]. Werbos, Paul J. Neural networks for control and system identification[J]. Proceedings of the IEEE Conference on Decision and Control Including The Symposium on Adaptive Processes, 1989, 1, 260-265.
    [120]. Hopfield, John J. Artificial neural networks[J]. IEEE Circuits and Devices Magazine, 1988, 4(5): 3-10.
    [121]. Hopfield, J. J. COLLECTIVE PROPERTIES OF NEURAL NETWORKS[J]. Proceedings of the Annual Conference on Engineering in Medicine and Biology, 1982, 189.
    [122]. Parker, David B. OPTIMAL ALGORITHMS FOR ADAPTIVE NETWORKS: SECOND ORDER BACK PROPAGATION, SECOND ORDER DIRECT PROPAGATION, AND SECOND ORDER HEBBIAN LEARNING[J]. Proceedings of the Annual Conference on Engineering in Medicine and Biology, 1987, 593-600.
    [123]. Rumelhart, David E., Weigend, Andreas S. The effective dimension of the space of hidden units[J]. Conference Neural Networks IJCNN 91, 1991, 2069-2074.
    [124].王耀南,余群明,袁小芳.混沌神经网络模型及其应用研究综述[J].控制与决策,2006,21(2):121-128.
    [125].高领花,苏炳凯,汤剑平.RBF神经网络集成多个气象数值产品的方法研究[J].浙江大学学报(理学版),2006,33(2):223-230+239.
    [126]. Eickhoff, Ralf. Pareto-optimal noise and approximation properties of RBF networks[J]. Artificial Neural Networks, ICANN 2006-16th International Conference, 2006, 4131(I): 993-1002.
    [127]. Krabbes, Markus, Doschner, Christian. Modelling of complete robot dynamics based on a multi-dimensional, RBF-like neural architecture[J]. Applied Intelligence, 2002, 17(1): 61-73.
    [128]. Murphy, Ethan K., Yakovlev, Vadim V. RBF network optimization of complex microwave systems represented by small FDTD modeling data sets[J]. IEEE Transactions on Microwave Theory and Techniques, 2006, 54(7): 3069-3083.
    [129]. Yen, Li-Kang, Principe, Jose C. Weak transient signal detection in Non-Gaussian noise using RBF and recurrent networks[J]. The International Society for Optical Engineering, 1998, 3395: 69-75.
    [130].朱培勇,孙世新.Hopfield网络的全局指数稳定性[J].控制理论与应用,2006,23(2):302-305.
    [131].张军华,章多荣,王永刚等.混沌退火Hopfield网络及其在储层聚类分析中的应用[J].物探化探计算技术,2006,28(2):89-92.
    [132]. He Zheng, Harada, Koichi. Solving point-feature labeling placement problem by parallel hopfield neural network on GPU graphics card[J]. Machine Graphics and Vision, 2006, 15(1): 99-120.
    [133]. Wang Shouhong. Classification with incomplete survey data: A Hopfield neural network approach[J]. Application of Neural Networks, 2005, 32(10): 2583-2594.
    [134].钱吉裕,李强,宣益民.hattice-Boltzmann方法计算多孔介质内固液相变问题[J].自然科学进展,2006,16(4):504-507.
    [135].于建均,阮晓钢.应用Boltzmann机实现离散线性二次型动态优化[J].北京工业大学学报,2005,31(5):456-460.
    [136].闫友彪,陈元琰.机器学习的主要策略综述[J].计算机应用研究,2004,7:4-10+13.
    [137].贲可荣,张彦铎.人工智能[M].北京:清华大学出版社,2006年.
    [138]. Vasudevan, Bintu G., Gohil Bhawani S., Agarwal Vijay K. Backpropagation neural network based retrieval of atmospheric water vapor and cloud liquid water from IRS-P4 MSMR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(5): 983-990.
    [139]. Neaupane K. M., Achet S. H. Use of back-propagation neural network for landslide monitoring: A case study in the higher Himalaya[J]. Engineering Geology, 2004, 74(3-4): 213-226.
    [140]. Li Hong-Nan, Yang Hao, Li Dong-Sheng. Structural system identi-fication based on multi-branch BPNN[J]. The International Society for Optical Engineering, 2004, 1-8.
    [141].王耀南,王辉,邱四海,黄守道.基于递归模糊神经网络的感应电机无速度传感器矢量控制[J].中国电机工程学报,2004,24(5):84-89.
    [142].朱陶业,李应求,张颖等.提高时间序列(ARIMA)气象适应性的短期电力负荷预测算法[J].中国电机工程学报,2006,26(23):14-20.
    [143]. Maruyama Takashi, Tsuji Yosuke, Kuwahara Yoshihiko. Direction of arrival estimation by means of genetic algorithm[J]. Electronics and Communications in Japan, Part Ⅲ: Fundamental Electronic Science, 2005, 88(1): 58-67.
    [144]. Karayiannis Nicolaos B., Nagabhushan Kaliyur, S. M. An entropy-constrained algorithm for routing of communication networks[J]. Computer Communications, 2006, 29(16): 3182-3196.
    [145]. Kim Byung-Tak, Kim Young-Su. Lateral load-Deflection modeling of group pile using artificial neural networks[J]. Geotechnical Special Publication, 2002, I(116): 303-319.
    [146]. Sastry Rambhatla G., Tesfakiros Haile G. Neural network based automated interpretation algorithm for combined geophysical soundings in coastal zones[J]. Environmental Monitoring and Assessment, 2006, 115(1-3): 173-204.
    [147].李茂军,朱陶业,童调生.单亲遗传算法与传统遗传算法的比较研究[J].系统工程,2001,19(1):61-65.
    [148].朱建军,欧阳文森,文小岳.基于遗传算法解决附有不等式约束的最小二乘平差问题的研究[J].工程勘察,2006,3:61-64.
    [149].毛建旭,王耀南,孙炜.基于模糊小脑模型神经网络的遥感图像分类算法[J].测绘学报,2002.31(4):327-332.
    [150].黄全义,张正禄.基于人工神经网络的大坝变形分析与预报研究[J].大坝与安全,2002.5:36-46.
    [151].杜年春.张家界观光电梯监测系统的设计与运行效果[J].徐州建筑职业技术学院学报,2004,4(2):14-18.
    [152].韩硕.神经网络在GPS高程拟合中的应用[J].测绘通报,2006,(4):48-50.
    [153]. Kim Dongwon, Park Gwi-Tae. GMDH-type neural network modeling in evolutionary optimization[J]. 18th International Conference on Industrial and Engineering Applications of Artificial Intelligence and Expert Systems, IEA/AIE 2005. 2005, 3533: 563-570.
    [154]. Witczak Marcin, Korbicz Jozef, Mrugalski Marcin, Patton Ron J. A GMDH neural network-based approach to robust fault diagnosis: Application to the DAMADICS benchmark problem[J]. Control Engineering Practice, 2006, 14(6): 671-683.
    [155].陈天平.神经网络的非线性映照理论、信号盲分离和主成份(微小成份)分析[G]复旦大学2002年国家自然科学二等奖.
    [156]. Lopes Mara Lucia M. Minussi Carlos R. Electric load forecasting using a fuzzy ART and ARTMAP neural network[J]. Applied Soft Computing Journal, 2005, 5(2): 235-244.
    [157]. Zhang Lei, Wang Guoyou, Wang Wentao. A new fuzzy ART neural network based on dual competition and resonance technique[J]. Third Intern-ational Symposium on Neural Networks, 2006, 3971: 792-797.
    [158].黄文雄,谭利英,邓丽娟.基于混合GANN的大气折光实时改正方法研究[J].长江大学学报,2005,2(10):382-384.
    [159].杜华英,赵跃龙.人工神经网络典型模型的比较研究[J].计算机技术与发展,2006,16(5):97-99.
    [160]. Yan Jun, Wang Dian-Hong. Sequential face recognition based on LVQ networks[J]. Proceedings of the 2005 IEEE International Workshop on VLSI Design and Video Technology, IWVDVT 2005, 261-264.
    [161]. Yang, B. S. Han, T. An, J. L. ART-KOHONEN neural network for fault diagnosis of rotating machinery[J]. Mechanical Systems and Signal Processing, 2004, 18(3): 645-657.
    [162]. Nguyen Minh Q., Atkinson Peter M. Superresolution mapping using a hopfield neural network with LIDAR data[J]. IEEE Geoscience and Remote Sensing Letters, 2005, 2(3): 366-370.
    [163]. Akbari A. A., Rahbar, Z. et al. Induction motor identification using Elman neural network[J]. WSEAS Transactions on Systems, 2006, 5(4): 766-770.
    [164].王耀南,谭文.混沌系统的遗传神经网络控制[J].物理学报,2003,52(11):2724-2728.
    [165].张栾英,李瑞欣,秦志明,谷俊杰.采用模拟退火算法的Elman网络及在热工过 程建模中的应用[J].中国电机工程学报,2005,25(11):90-94.
    [166]. Pham D. T., Karaboga D. Training Elman and Jordan networks for system identification using genetic algorithms[J]. Artificial Intelligence in Engineering, 1999, 13(2): 107-117.
    [167].钟孝顺,聂让.测量学[M].北京:人民交通出版社,1998,136~138.
    [168].梁晋文等.误差理论与数据处理[M],北京:中国计量出版社,2000,69-70.
    [169].张学庄.光电测距仪的乘常数问题[J].测绘学院学报,2002,27(6):611-615.
    [170].张学庄,李炼恒.光电测距仪野外检定的计算机模拟[J].测绘译丛,1991(1):26-31.
    [171].张学庄.光电测距仪全室内检定技术已经成熟[J].冶金测绘,1994,3(1):38-44.
    [172].张学庄等.光电测距仪精测尺频率校准方法与仪器的研究[J].四川测绘,1994,(2):6-10.
    [173].吴原华:张学庄.空中基线标定与量测[J].测绘学报,2002,31(s1):123-127.
    [174].李朝奎,朱建军,张学庄.野外高精度测距中气象元素的现场改正[J].地矿测绘,1999,3:7-9+43.
    [175].宋正方,杨高潮,刘晓春.云南天文台大气视宁度测量[J].量子电子学报,1997,14(1):68-74.
    [176].宋正方,李玉杰.光束抖动频谱遥感大气湍流外尺度的理论与实验[J].光学学报,1997,17(10):1416-1422.
    [177].罗少聪,孙和平.大气压力变化对武汉台站重力场观测的影响[J].测绘学报,2000,29(s1):75-79.
    [178]. OWENS J C. Optical Refractive Index of Air: Dependenceon Pressure, Temperature and Composition[J]. Applied Optics, 1967, 6(1): 51-59.
    [179]. CIDDOR P E. Refractive Index of Air: New Equations for the Visible and Near Infrared[J]. Applied Optics, 1996, 35(9): 1566-1573.
    [180].杨德麟,等.红外测距仪原理及检测[M].第二版.北京:测绘出版社,1995.
    [181].方佩竹译,程元赓校.改进和具体化的Kere-Mekometer测量方法[J].测绘译丛,1985,(2):41~46.
    [182]. Weisbrod S and Anderson. Simple Method for Computing Tropospheric and Ionospheric Refractive Effects on Radiowave. PIRE. 1959, 47(10): 1770-1777.
    [183]. Rowlandson L G and Herlihy J R. Refraction-Induced Tracning Errors and Correction Methods for the Air Force Western Test Range. 1986, AD682998.
    [184].飞思科技产品研发中心.神经网络理论与MATLAB7实现[M].北京:电子工业出版社.2005.
    [185]. Funahashi K. I. On the Approximate Realization of Continuous Mappings by Neural Networks[J]. Neural Networks, 1989, (2): 183-192.
    [186]. Hornik K. Approximation Capability of Multilayer Feed forward Networks[J]. Neural Networks, 1991, (4): 251-257.
    [187].陈东敬,张新兵.带模拟退火的拟BP神经网络在伊朗某地区重力资料反演中的应用[J].勘探地球物理进展,2005,28(3):215-218.
    [188].张发明,郭丙跃,庞正江等.基于模拟退火算法的边坡稳定分析方法[J].岩土力学,2006,27(4):514-518.
    [189]. Hu Yun-An, Zuo Bin, Li Jing. A novel chaotic annealing recurrent neural network for multi-parameters extremum seeking algorithm[J]. ICONIP 2006, LNCS-Ⅱ, 4233: 1022-1031.
    [190].李仪,陈云浩,李京.基于微种群遗传算法和自适应BP算法的遥感图像分类[J].光学技术,2005,31(1):17-20+23.
    [191].张新兵,王家林,陈冰.混合最优化方法在潮汕坳陷重力资料反演中的应用[J].热带海洋学报,2005,24(2):86-93.
    [192]. Carlos C M, Mrinal K S, Paul L S. Artificial neural networks for parameter estimation in geophysics[J]. Geophysical Prospecting, 2000, 48: 21-47.
    [193].李朝峰,邹海,夏德深等.神经网络和知识推理结合的卫星影像分层提取方法研究[J].测绘学报,2003,32(2):148-152.
    [194]. ATKINSON P M, TATNALL A R L. Neural Networks in Remote Sensing[J]. International Journal of Remote Sensing, 1997, 18(4): 699-709.
    [195]. http://www.leica-geosystems.com.cn/solution720.asp?11=7&12=2&13=0.
    [196]. http://www.leica-geosystems.co..cn/product111.asp?11=l&12=1&13=1.
    [197]. Pao Y H. Adaptive pattern recognition and neural networks. New York: Addison-Wesley Publishing Company Inc, 1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700