多孔炭负载氢氧化镍复合电极研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锌镍单液流电池是一种适合规模储能的化学电源体系,该电池以氢氧化镍电极为正极,沉积/溶解型锌电极为负极,流动的碱性锌酸盐溶液为电解液。电池容量及寿命受制于镍正极,因此研究新型的高容量的镍电极具有重要的意义。本文提出了多孔炭负载氢氧化镍复合电极,通过对多孔炭制备、氢氧化镍与多孔炭的复合、氢氧化镍及多孔炭的改性等实验研究,得到创新性的结果。
     本文首先研究了多孔炭(MPC)的制备方法。以酚醛树脂作为碳源及粘结剂、聚乙烯醇缩丁醛等作为造孔剂、活性炭作为导电剂及支撑骨架,制备得到具有亚微米-微米结构的一体化多孔炭材料。通过单因素分析法及正交分析法,考察了活性炭及聚乙烯醇缩丁醛的添加量、树脂固化温度、碳化温度等因素对制备的多孔炭材料孔结构、机械强度及电导率的影响,探讨了多孔炭的成孔机理,优化了制备条件。以酚醛树脂、聚乙烯醇缩丁醛和活性炭的质量比为4:2:1,且固化温度为185℃,碳化温度为1000℃的条件下制备的多孔炭材料最适合作为电极的导电基体。该条件下制备的多孔炭材料不仅具有较高的机械强度,而且具有较高的孔容(0.766mL g~(-1))、合适的孔径分布(0.1-5μm)及高的电导率(11.24S cm~(-1))。
     通过电化学浸渍的方法在多孔炭孔内载入氢氧化镍制备得到多孔炭-氢氧化镍(MPC-Ni(OH)_2)复合电极,探索了氢氧化镍在多孔炭基内沉积机理,优化了浸渍反应条件。研究表明,在反应温度为80℃,硝酸镍溶液浓度为2mol L~(-1),溶液初始pH=3.5,以80mA cm~(-2)的电流密度,在搅拌条件下恒流沉积3h,制备的MPC-Ni(OH)_2复合电极具有最优的电化学性能。在该条件下制备的电极活性物质的比容量(SCAM)、电极质量比容量(SCEW)和面积比容量(SCEA)分别为259mAh g~(-1),136mAh g~(-1)和24mAh cm~(-2)。
     采用电化学浸渍的方法在多孔炭片中共沉积Ni、Co及Zn制备得到Ni_(1-x-y)Co_xZn_y(OH)_2固溶体用于Ni(OH)_2材料的改性,提高了沉积于炭孔中的Ni(OH)_2的利用率。共沉积Co/Zn的MPC-Ni(OH)_2电极的SCAM、 SCEW和SCEA分别为271mAh g~(-1),145mAh g~(-1)和26mAh cm~(-2)。
     探索了MPC-Ni(OH)_2复合电极放电过程中电位双平台现象产生的原因,研究了多孔炭片在碱性条件下的析氧特性,通过对Ni(OH)_2表层镀镍和对多孔炭片表层镀镍改性两种方法来抑制电极双平台现象的发生,提高电极的循环寿命。Ni(OH)_2表层镀镍提高了活性物质与多孔炭片的结合强度。多孔炭片表层镀镍提高了多孔炭片的析氧电位,抑制了在充电过程中的析氧反应。研究表明,两种方法均可在很大程度上提高电极的循环寿命,30次循环后电极活性物质比容量分别具有83%和90%的保持率。
Single flow zinc nickel battery is suitable for large scale energystorage applications. In this battery, nickel hydroxide electrode as positiveelectrode, conductive inert material as negative electrode and flowingzincates in alkali solutions as electrolyte were used, respectively. Owingto the capacity and cycle life of this battery is restricted by the nickelhydroxide electrode, it is important to study a new-type nickel oxideelectrode with high capacity. In the dissertation, monolithic porouscarbon (MPC) as substrates for nickel hydroxide electrodes is proposedby our team. A novel MPC-Ni(OH)_2electrode has been obtained throughthe experimental study of preparation of MPC, electrochemicalimpregnation of Ni(OH)_2, modification of nickel hydroxide and MPC.
     The preparation method and the principle of MPC were studied. In thepaper, adopting phenolic resin (PF) as carbon precursors and binders,polyvinyl butyral (PVB) as pore former, and active carbon (AC) asconducting additives and underprop for bating contractility to makepolymer blend, sub-micron/micron monolithic porous carbon (MPC)were prepared by blend carbonization. The single factor and orthogonal methods were used to study the effects of solidified temperature,carbonization temperature, and content of AC and PVB on the porestructure, mechanical strength and conductivity of MPC. When the ratioof PF, PVB and AC is4:2:1, stabilized temperature is185℃, andcarbonization temperature is1000℃, a optimized MPC is prepared. Theoptimized MPC has a good mechanical strength, a high pore volume(0.766mL g~(-1)), a suitable pore diameter distribution (0.1-5μm) and a goodconductivity (11.24S cm~(-1)).
     MPC-Ni(OH)_2electrode is fabricated by electrochemicalimpregnation Ni(OH)_2from metal nitrate solutions on to the monolithicporous carbon (MPC), which is used for the substrates of nickel electrode.The impregnation principle was studied and the impregnation reactionfactors were optimized. When the reaction temperature is80℃, theconcentration of nickel nitrate is2M, the initial pH of solution is3.5, thecurrent density is80mA cm~(-2), the impregnation time is3h and thesolution is string, the prepared MPC-Ni(OH)_2electrode has the bestelectrochemical performance. In this condition, the MPC-Ni(OH)_2electrode reach a specific capacity of active material (SCAM) of259mAh g~(-1), a specific capacity of electrode weight (SCEW) of136mAh g~(-1)and a specific capacity of electrode Area (SCEA) of24mAh cm~(-2).
     MPC-Ni(OH)_2electrode with Co and Zn additives is fabricated by electrodepositing from metal nitrate solutions on to MPC. It is found thatthe prepared Co and Zn additives are substituted for nickel in the solidstate of Ni_(1-x-y)Co_xZn_y(OH)_2. Compared to pure MPC-Ni(OH)_2electrodes,the electrochemical performance and cycle life of MPC-Ni(OH)_2electrodes with Co and Zn additives improve. SCAM, SCEW and SCEAof MPC-Ni(OH)_2electrode with Co and Zn additives is271mAh g~(-1),145mAh g~(-1)and26mAh cm~(-2), respectively.
     The appearance of two potential plateaus during the discharge ofMPC-Ni(OH)_2electrode and the oxygen evolution characteristic on MPCin alkali solutions was studied. To restrain the oxygen evolution reactionand improve the cycle life of MPC-Ni(OH)_2electrode, two ways wereused. One was plating nickel on the surface of the Ni(OH)_2, the other wasplating nickel on the surface of the MPC. The former improved thecontact intensity between Ni(OH)_2and MPC. The latter improved theoverpotential of the oxygen evolution reaction on MPC and restrained theoxygen evolution reaction during the charge process. It is evident that thetwo ways all could enhance the cycle life of MPC-Ni(OH)_2electrodes.After30cycles, the two modified electrodes still keep83%and90%ofthe highest discharge capacity, respectively.
引文
[1]赵平,张华民,周汉涛.我国液流储能电池研究概况[J].电池工业,2005,10(2):96-99
    [2]张华民,周汉涛,赵平.储能技术的研究开发现状及展望[J].能源工程,2005,3:6-10
    [3]杨裕生,张立,文越华,等.液流电池蓄电技术的进展与前景[J].电源技术,2007,31(3):175-178
    [4]杨裕生,蔡生民,林祖赓,等.简述发展大规模蓄电的液流蓄电池[J].科技导报,2006,24(8):63-66
    [5] Thaller L H. Electrically Rechargeable Redox Flow Cells[C]. San Francisco, USA: SAEPreprints,749142,1974.924
    [6] Thaller L H. Electrically rechargeable redox flow cells[P]. US: Patent, No.3996064.1974
    [7] Skyllas K M, Rychcik M, Robins R G, et al. New all vanadium redox flow cell [J]. Journalof the Electrochemical Society,1986,133(5):1057-1058
    [8] Rychcik M, Skyllas K M. Characteristics of a new all vanadium redox flow battery [J].Journal of Power Sources,1988,22(1):59-67
    [9] Zhang L, Cheng J, Yang Y S, et al. Study of zinc electrode for single flow zinc/nickelbattery application[J]. Journal of Power Sources,2008,179(1):381-387
    [10] Cheng J, Zhang L, Yang Y S, et al. Preliminary study of single flow zinc-nickel battery[J].Electrochemistry Communications,2007,9(11):2639-2642
    [11] Oliva P, Leonardi J, Laurent J F, et al. Review of the structure and the electrochemistry ofnickel hydroxides and oxy-hydroxides[J]. Journal of Power Sources,1982,8:229-255
    [12] Constantin D M, Rus E M, Oniciu L, et al. The influence of some additives on theelectrochemical behaviour of sintered nickel electrodes in alkaline electrolyte[J]. Journalof Power Sources,1998,74:188-197
    [13] Bode H, Dehmelt K, Witte J. Zur kenntnis der nickel hydroxidelktode(I) über dasnickel(II)-hydroxidhydrat[J]. Electrochim Acta,1966,11:1079-1087
    [14]吴梅银.改性氢氧化镍的制备、结构和电化学性能[D].杭州:浙江大学,2006
    [15] Ramesh T N, Jayashree R S, Vishnu K P. Journal of the Electrochemical Society,2003,150:520-524
    [16] Delahaye V A, Figlarz M. Textural and structural studies on nickel hydroxide electrodes.II.Turbostratic nickel(II)hydroxide submitted to electrochemical redox cycling[J]. Journalof Applied Electrochemistry,1987,17:589-599
    [17] Cornilsen B C, Shan X Y, Loyselle P L. Structural comparison of nickel electrodes andprecursor phases[J]. Journal of Power Sources,1990,29:453-466
    [18] Bernard M C, Bemard P, Keddam M, et.al. Characterisation of new nickel hydroxidesduring the transformation of α-Ni(OH)2to β-Ni(OH)2by ageing[J]. Electrochim Aeta,1996,41(1):91-93
    [19]刘寿长.氢氧化镍和粘接式氢氧化镍电极[J].电池,1995,25(1):14-17
    [20] Vishnu K P. Stabilized α-Ni(OH)2as electrode material for alkaline secondary cells[J].Journal of the Electrochemical Society,1994,141(11):2956-2959
    [21] Dixit M, Kamath P V. Zinc-Stabilized α-Ni(OH)2as an electrode material for alkalinesecondary cells[J]. Journal of the Electrochemical Society,1999,146(1):79-82
    [22]宗宏.高容量强氧化镍电极的制备与研究[D].上海:中科院上海冶金研究所,2000
    [23] Barnard R, Randell C F, Tye F L. Studies concerning charged nickel hydroxide electrodesmeasurement of reversible potentials[J]. Journal of Applied Electrochemistry,1980,10:109-125
    [24] Carbonio R E, Macagno V A, Giordano M C. A transition in the Ni(OH)2/NiOOHelectrode reaction[J]. Journal of the Electrochemical Society,1982,129:983-988
    [25] Singh D. Characteristics and effect of γ-NiOOH on cell performance and a method toquantify it in nickel electrodes[J]. Journal of the Electrochemical Society,1998,14(5):116-119
    [26] Lukovtsev P D, Slaidin G J. Proton deffusion through nickel oxide[J].Electrochim Aata,1962,6:17-21
    [27] Takehara Z, Kato M, Yoshizawa S. Electrode kinetics of nickel hydroxide in alkalinesolution[J]. Electrochim Acta,1971,16:833-843
    [28] Matupally S, Streinz C C, Weidner J W. Proton diffusion in nickel hydroxide[J]. Journalof the Electrochemical Society,1998,145:29-34
    [29]朱文化,张登君,柯家骏.氢氧化镍电极反应机理的研究[J].电源技术,1996,20:235-237
    [30] Motupally S, Streinz C C, Weidner J W. Proton diffusion in nickel hydroxide-predicitionof active material utilization. Journal of the Electrochemical Society,1995,142(5):1401-1407
    [31]吕鸣祥.化学电源[M].天津:天津大学出版社,1992,9
    [32]袁安保,张鉴清,曹楚南.镍电极的研究进展[J].电源技术,2001,25(1):53-57
    [33] Edison T A. Electrode-active material for electrochemical batteries and method ofpreparation[P]. US Patent No.1083356,1914,6
    [34] Oshitani M, Yufu H, Takashima K, et al. Development of a pasted nickel electrode withhigh active material utilization[J]. Journal of the Electrochemical Society,1989,136(6):1590-159
    [35]原鲜霞,王荫东,詹锋.钴的添加形式对氢氧化镍电极性能的影响[J].电化学,2000,6(1):65-71
    [36] Li X F, Dong H C, Zhang H L. An improvement on redox reversibility of cobaltoxyhydroxide in nickel hydroxide electrodes[J]. Materials Chemistry and Physics,2008,111:331–334
    [37] Zhu W H, Ke J J, Yu H M, et al. A study of the electrochemistry of nickel hydroxideelectrodes with various additives[J]. Journal of Power Sources,1995,56:75-78
    [38] Zimmerman A H, Effa P K. Discharge kinetics of the nickel electrode[J]. Journal of theElectrochemical Society,1984,131:709-713
    [39] Audemer A, Delahaye A, Farhir, et al. Electrochemical and Raman studies of Beta-typenickel hydroxides Ni1-xCox(OH)2electrode materials [J]. Journal of the ElectrochemicalSociety,1997,144(8):2614-2620
    [40] Lichtenberg F, Klnsorgen K. Stabilitiy enhancement of the CoOOH conductive network ofnickel hydroxide electrodes[J]. Journal of Power Sources,1996,62:207-211
    [41]李群杰. MH-Ni电池电位贮存容量下降的研究[J].电池工业,2006,11:303-306
    [42]李晓峰,马丽萍,娄豫皖,等. MH/Ni电池储存性能的改善及其机理研究[J].电化学,2004,10(4):425-428
    [43] Chang Z R, Li H J, Tang H W, et al. Synthesis of γ-CoOOH and its effects on the positiveelectrodes of nickel batteries[J]. International journal of hydrogen energy,2009,34:2435-2439
    [44] Provazi K, Giz M J, Dall’Antonia L H, et al. The effect of Cd, Co, and Zn as additives onnickel hydroxide opto-electrochemical behavior[J]. Journal of Power Sources,2001,102:224-232
    [45] Cecile T, Liliane G D, Christiane F, et al. Influence of Zinc on the stability of the β(Ⅱ)/β(Ⅲ) nickel hydroxide system during electrochemical cycling[J]. Journal of PowerSources,2001,102:105-111
    [46]原鲜霞,王荫东,詹锋. MH-Ni电池镍电极膨胀抑制剂的研究[J].电源技术,2000,4(24):192-196
    [47]余丹梅,陈昌国,文莉,等.锌的添加方式对氢氧化镍结构和性能的影响[J].化学通报,2004,7:532-535
    [48]常照荣,任行涛,赵玉娟,等. Zn添加剂的添加方式对镍电极性能的影响[J].应用化学,2002,19(4):369-372
    [49] Yuan A B, Cheng S A, Zhang J Q, et al. Effects of metallic cobalt addition on theperformance of pasted nickel electrodes[J]. Journal of Powder Sources,1999,77:178-182
    [50] Armstrong R D, Sood A K, Moore M. Studies on the lithium and potassium uptake ofnickel hydroxide electrodes[J]. Journal of Applied Electrochemistry,1985,15(4):603-607
    [51] Barnard R, Randel C F, Tye F L. Studies concerning charged nickel hydroxide electrode(Ⅳ) Reversible potentials in LiOH, NaOH, RbOH and CsOH[J]. Journal of AppliedElectrochemistry,1981,11:517-523
    [52]曹晓燕,魏进平,袁华堂,等.电解液对氢氧化镍电极的影响[J].电池,2000,30(6):241-243
    [53] Kamnev A A. The role of lithium in preventing the detrimental effect of iron on alkalinebattery nickel hydroxide electrode: a mecheanistic aspect[J]. Electrochimica Acta,1996,41(2),267-275
    [54] Armstrong R D, Briggs G W D, Moore M A. The effect of lithium in preventing ironpoisoning in the nickel hydroxide electrode[J]. Electrochimica Acta,1986,31(1):25-27
    [55] Palmqvist U, Sjoevall R. On the growth of Li2CO3dendrites in nickel-cadmium industrialbatteries[J]. Journal of Power Sources,1999,79:212-214
    [56]冷拥军,王凤军,刘兵,等.铝取代氢氧化镍制备、结构与电化学性能(Ⅰ)电化学性能[J].电源技术,2000,24(2):77-80
    [57] Kamath P V, Dixit M, Indira L. High-rate discharge properties of nickel hydroxide/carboncomposite as positive electrode for Ni/MH batteries[J]. Journal of the ElectrochemicalSociety,1994,141(3):2956-2959
    [58] Zhao Y L, Wang J M, Chen H, et al. Al-substituted α-nickel hydroxide prepared byhomogeneous precipitation method with urea[J]. International Journal of HydrogenEnergy,2004,29:889-896
    [59] BélékéA B, Mizuhata M. Electrochemical properties of nickel–aluminum layered doublehydroxide/carbon composite fabricated by liquid phase deposition[J]. Journal of PowerSources,2010,195:7669-7676
    [60] Hu W K, Nore′us D. Alpha nickel hydroxides as lightweight nickel electrode materials foralkaline rechargeable cells[J]. Chem. Mater,2003,15,974-978
    [61] Zhang X Z, Gong Z X, Zhao S M, et al, High-temperature characteristics of advancedNi-MH batteries using nickel electrodes containing CaF2[J]. Journal of Power Sources,2008,175:630-634
    [62] Chen J, Bradhurst D H, Dou S X, et al. Nickel hydroxide as an active material for thepositive electrode in rechargeable alkaline batteries[J]. Journal of the ElectrochemicalSociety,1999,146(10):3606-3612
    [63] Masahiko O, Masaharu W, Kaori S, et al. Effect of lanthanide oxide additives on thehigh-temperature charge acceptance characteristics of pasted nickel electrodes[J]. Journalof the Electrochemical Society,2001,148(1): A67-A73
    [64] Tanaka T, Kuzuhara M, Watada M, et al. Effect of rare earth oxide additives on theperformance of NiMH batteries[J]. J Alloys and Compounds,2006,408:323-326
    [65] Ren J X, Yan J, Zhou Z, et al. High-temperature electrochemical performance of sphericalNi(OH)2coated with Lu(OH)3[J]. International Journal of Hydrogen Energy,2006,31:71-76
    [66] Mi X, Gao X P, Jiang C Y, et al. High temperature performances of yttrium-dopedspherical nickel hydroxide[J]. Electrochimica Acta,2004,49:3361–3366
    [67]金成昌,蔡绍雄,常怀伟.不同碱锰电池钢壳的SEM研究[J].电池,2002,32(6):332-334
    [68]梁鹏翔.电池材料[M].北京:电子工业出版社,1995,3
    [69]朱松然.蓄电池手册[M].天津:天津大学出版社,1998,7
    [70] Dixit M, Kamath P V, Kumar V G, et.al. An electrochemically impregnated s interd-nickelelectrode[J]. Journal of Power Sources,1996,63:167-171
    [71]谢德明. MH/Ni电池用泡沫式镍正极前进展[J].电池,1998,28(3):135-138
    [72] Zhu W H, Zhang D J, Ke J J. Electrochemical impregnation and performance of nickelhydroxide electrodes with porous plaques of hollow nickel fibres[J]. Journal of PowerSources,1995,55(2):157-164
    [73]宋二虎,李福林.袋式阀控式密封镉镍蓄电池的开发和应用[J].电源技术,2003,27(5):462-465
    [74] Dwaine C, Gary P, Paul D. Advances in lightweight nickel electrode technology[J].Journal of Power Sources.1990,29:521-529
    [75]贺广胜,阳孟春,陈名才,等.降低烧结式镍电极成本[J].电池,2000,30(6):279-280
    [76]高德粹.提高刮浆法烧结镍基片孔率的研究[J].电源技术,1992,6:2-4
    [77]魏京奇,张士杰.烧结式电极孔率和强度与烧结工艺关系的研究[J].电源技术.1995,19(3):33-35
    [78]余国华,张士杰,王晓林,等.高容量烧结式氧化镍正极研制[J].电化学,1996,2(1):71-78
    [79]汤宏伟,陈宗璋,钟发平.泡沫镍的制备工艺及性能参数[J].电池工业,2002,7(6):315-318.
    [80]余根新.电池纤维基板的开发应用[J].电池,1996,26(2):86-90
    [81]朱文化,张登君,张冠东,等.高比容量中空纤维镍电极的研究[J].电源技术,1996,20(1):5-7
    [82]何怿庆.镉镍电池技术讲座[J].电池,1989,77:47-53
    [83]肖慧明.有机溶剂中α型氢氧化镍的合成、结构及电化学性能[D].杭州:浙江大学,2003
    [84] Ho K C, JornéJ. Electrochemical impregnation of nickel hydroxide—flow-through vs.stagnant electrodes[J]. Journal of the Electrochemical Society,1990,130(1):149-158
    [85] Mchenry E J. Electrochemical precipitation of Ni(OH)2into porous electrodes[J].Electrochem Technol,1967,5:275-279.
    [86] Portemer F, DeLahaye-Vidal A, Figlarz M. Characterization of active material depositedat the nickel hydroxide electrode by electrochemical impregnation[J]. Journal of theElectrochemical Society,1992,139(3):671-678
    [87]解强,张香兰,李兰廷,等.活性炭孔结构调节:理论、方法与实践[J].新型炭材料,2005,20(2):183-190
    [88] Lee J J. Recent progress in the synthesis of porous carbon materials[J]. AdvancedMaterials,2006,18(16):2073-2094
    [89] Rnald F S, John D B. Mierocellular carbon foam and method[P]. US Patent, No5300272.1993
    [90]戴嘉璐,郭兴忠,杨辉,等.竹炭微结构的研究[J].材料科学与工程学报,2007,25(5):743-745.
    [91]杨磊.竹炭复合材料及性能的研究[D].福州:福建师范大学,2005
    [92]文思维,卓钺,熊德赣,等.由沥青制备多孔炭的工艺研究[J].炭素技术,2003,4:11-14
    [93] Klett J W. Pitch-based carbon foam and composites[P]. US patent, No.6387343.2002-5-14
    [94] Kearns K W. Proeess for preparing piteh foams[P]. US Patent, No.5868974.1999-2-9
    [95] Tonanon N, SiyasukhA, Wareenin Y, et al.3D interconnected macroporous carbonmonoliths prepared by ultrasonic irradiation[J]. Carbon,2005,43:2808–281
    [96] Tonanon N, Maneeprom P, Larpkiattaworn S, et al. Preparation of a carbon monolith withhierarchical porous structure by ultrasonic irradiation followed by carbonization, physicaland chemical activation[J]. Carbon,2008,46:1309-1315
    [97] Feng P, Bu X, Stucky G D, et al. Monolithic mesoporous silica templated bymicroemulsion liquid crystals[J]. Journal of the American Chemical Society,2000,122(5):994-995.
    [98] Melosh N A, Davidson P, Chmelka B F. Monolithic mesophase silica with large orderingdomains[J]. Journal of the American Chemical Society,2000,122(5):823-829.
    [99] Gltner C G, Henke S, Weissenberger M C, et al. Mesoporous silica from lyotropic liquidcrystal polymer templates[J]. Angew. Chem. Int. Ed,1998,37(5):613-616
    [100] Yang H, Shi Q, Tian B, et al. A fast way for preparing crack-free mesostructured silicamonolith[J]. Chem. Mater,2003,15(2):536-541.
    [101] Ozaki J, Endo N, Ohizumi W, et al. Novel preparation method for the production ofmesoporous carbon fiber from a polymer blend[J]. Carbon,1997,35(7):1031-1133
    [102]杨骏兵,凌立,成明.利用聚合物共混法对活性炭材料的孔径分布进行控制的原理和方法[J].材料导报,2000,14(1):48-50
    [103]邢宝林,张传祥,段玉玲,等.聚合物共混炭化法制备多孔炭材料的研究进展[J].材料导报,2007,21(8):417-420
    [104]张琳,刘洪波,李步广,等. PF与PVB共混炭化制备双电层电容器用多孔炭材料的研究[J].炭素,2005,121:7-13
    [105] Xing W, Huang C C, Zhuo S P, et al. Hierarchical porous carbons with high performancefor supercapacitor electrodes[J]. Carbon,2009,47:1715-1722
    [106] Wang D W, Li F, Liu M et al.3D aperiodic hierarchical porous graphictic carbon materialfor high-rate electorchemical capacitive energy storage[J]. Angew. Chem. Int. Ed,2008,47:373-376
    [107] Ruiz V, Blanco C, Santamar′a R, et.al. An activated carbon monolith as an electrodematerial for supercapacitors[J]. Carbon,2009,47:195-200
    [108] Yu J S, Kang S, Yoon S B, et al. Fabrication of ordered uniform porous carbon networksand their application to a catalyst supporter[J]. Journal of the American Chemical Society,2002,124:9382-9383
    [109]陈金庆,汪钱,王保国.全钒液流电池关键材料研究进展[J].现代化工,2006,26(9):21-24
    [110]赵春荣.锂-硫二次电池循环性能的研究[D].北京:北京科技大学,2009,6
    [111] Song Q S, Aravindaraj G K, Sultana H,et.al.Performance improvement of pasted nickelelectrodes with multi-wall carbon nanotubes for rechargeable nickel batteries[J].Electrochimica Acta,2007,53:1890-1896
    [112]陈冬,程杰,潘军青,等.碳作为铅酸电池集流体的研究进展[J].现代化工,2011,31(11):25-28
    [113] Czerwiński A, Zelazowska M. Electrochemical behavior of lead dioxide deposited onreticulated vitreous carbon (RVC)[J]. Journal of Power Sources,1997,64(1-2):29-34
    [114] Czerwiński A, Zelazowska M. Electrochemical behavior of lead depos ited on reticulatedvitreous carbon [J]. Journal of Electroanalytical Chemistry,1996,410:55-60
    [115] Gyenge E, Jung J, Mahato B. Electroplated reticulated vitreous arbon current collectorsfor lead-cid batteries: opportunities and hallenges[J]. Journal of Power Sources,2003,113(2):388-395
    [116] Gyenge E, Jung J, Snaper A. Current collector structure and methods to improve theperformance of a lead-acid battery[P]. US patent, No.7060391.2006-6-13
    [117] Pavlov D. A theory of the grid positive active-mass(PAM) interface and possible methodsto improve PAM utilization and cycle life of lead-acid batteries[J]. Journal of PowerSources,1995,53(1):9-21
    [118] Jang Y I, Dudney N J, Tiegs T N, et al. Evaluation of the electrochemical stability ofgraphite foams as current collectors for lead acid batteries[J]. Journal of Power Sources,2006,161:1392-1399
    [119] Chen Y, Chen B Z, Shi X C, et al. Preparation and electrochemical properties ofpitch-based carbon foam as current collectors for lead acid batteries[J]. ElectrochimicaActa,2008,53:2245-2249
    [120] Chen Y, Chen B Z, Ma L W, et al. Effect of carbon foams as negative current collectorson partial-state-of-charge performance of lead acid batteries[J]. ElectrochemistryCommunications,2008,10:1064-1066
    [121] Czerwiński A, Dmochowska M, Grdeń M, et al. Electrochemical behavior of nickeldeposited on reticulated vitreous carbon[J]. Journal of Power Sources,1999,77:28–33
    [122] Jüntgen H. New applications for carbonaceous adsorbents[J]. Carbon,1977,15(5):273-283
    [123] Leboda R, Skubiszewska-zieba J, Grzegorczyk W. Effect of calcium catalyst loadingprocedure on the porous structure of active carbon from plum stones modified in the steamgasification process[J]. Carbon,1998,36(4):417-425
    [124] Barbieri O, Hahn M, Herzog A, et al. Capacitance limits of high surface area activatedcarbons for double layer capacitors[J]. Carbon,2005,43(6):1303-1310
    [125] Ryoo R, Joo S H, Kruk M, Jaroniec M. Ordered mesoporous carbons[J]. Adv. Mater,2001,13(9):677-681
    [126] Al-Muhtaseb S A, Ritter J A. Preparation and properties of resorcinol-formaldehydeorganic and carbon gels[J]. Adv. Mater,2003,15(2):101-114
    [127] Lee J, Kim J, Hyeon T. Recent progress in the synthesis of porous carbon materials[J].Adv. Mater,2006,18(16):2073-2094
    [128] Tanahashi I. Comparison of the characteristics of electric double layer capacitors with anactivated carbon powder and an activated carbon fiber[J]. Journal of AppliedElectrochemistry,2005,35(11):1067-1072
    [129] Xu B, Wu F, Chen S, et al. Activated carbon fiber cloths as electrodes for highperformance electric double layer capacitor[J]. Electrochem Acta,2007,52(13):4595-4598
    [130] Xu L Y, Shi Z G, Feng Y Q. Preparation of a carbon monolith with bimodal perfusionpores[J]. Microporous and Mesoporous Materials,2008,115(3):618-623
    [131] Shi Z G, Feng Y Q, Xu L, et al. Synthesis of a carbon monolith with trimodal pores[J].Carbon,2003(13),41:2653-2689
    [132] Joji H, Kazuyoshi K, Kazuki N, et al. Synthesis of macro/mesoporous silica and carbonmonoliths by using a commercial polyurethane foam as sacrificial template[J]. MaterialsLetters,2007,61(11-12):2378-2381
    [133] Wang L F, Lin S, Lin K F, et al. A facile synthesis of highly ordered mesoporous carbonmonolith with mechanically stable mesostructure and superior conductivity from SBA-15powder[J]. Microporous and Mesoporous Materials,2005,85(1-3):136-142
    [134] Shi Z G, Feng Y Q, Xu L, et al. A template method to control the shape and porosity ofcarbon materials[J]. Carbon,2004,42(8):1677-1682
    [135] http://baike.baidu.com/view/1591210.htm[DB/OL]
    [136]高栋,姚英学,袁哲俊.纳米级显微硬度试验研究[J].航空精密制造技术,2001,1:18-19
    [137]杨敏,孙晋良,任慕苏,等.热解碳的纳米硬度及弹性模量[J].上海大学学报(自然科学版),2008,14(5):541-545
    [138] Jenkins G M, Kawamura K. Polymer Carbon-carbon Fiber, Glass and Char [D].England:Cambridge University Press,1976
    [139] http://bbs.bbioo.com/thread-34469-1-1.html[DB/OL]
    [140]文越华,曹高萍,程杰,等.纳米孔玻态炭的成孔机理与―壳芯‖结构[J].无机材料学报,2006,21:441-447
    [141] Ng P K, Schneider E W. Distribution of nickel hydroxide in s intered nickel plaquesmeasured by radiotracer method during electroimpregnation[J]. Phosphoric Acid FuelCell,1986,133(1):17-21
    [142]唐致远,赵铭,宋改云.烧结式镍基板电化学浸渍的研究[J].电池,2000,30(2):49-52
    [143]刘浩杰,尹鸽平,胡树清等.乙醇对电化学浸渍的影响[J].电源技术,2004,28(12):740-742
    [144] Watanatbe K, Kikuoka T, Kumagai N. Physical and electrochemical characteristics ofnickel hydroxide as a positive material for rechargeable alkaline Batteries[J]. Journal ofApplied Electrochemistry1995,25:219-226
    [145] Oshitani M, Sasaki Y, Takashima K. Development of a nickel electrode having stableperformance at various charge and discharge rates over a wide temperature range[J].Journal of Power Sources,1984,12(324):219-231.
    [146]查全性.电极过程动力学导论[M].北京:科技出版社,2002,6
    [147]曹晓燕,周作祥,袁华堂,等. Co对Ni (OH)2电极中质子扩散行为的研究[J].电化学,1996,2(3):319-325
    [148] Lide D R. Handbook of Chemistry and Physics[M]. CRC Press, Boca Raton,1991.
    [149] Deabate S, Fourgeot F, Henn F. X-ray diffraction and micro-Raman spectroscopy analysisof new nickel hydroxide obtained by electrodialysis[J]. Journal of Power Sources,2000,87:125-136
    [150] http://srdata.nist.gov/xps/Spec_query.asp[DB/OL]
    [151] Koch V R, Dominey L A, Nanjundiah C.Predictions from the macrohomogeneous modelof an aerospace Ni-Cd battery[J]. Journal of the Electrochemical Society,1996,143:798-803
    [152] Ue M, Takeda M, Takehara M, et. al. Electrochemical properties of quaternary ammoniumsalts for electrochemical capacitors[J]. Journal of the Electrochemical Society,1997,144:2684-2688
    [153] Conway B E.Transition from―supercapacitor‖to―battery‖behavior in electrochemicalenergy storage[J]. Journal of the Electrochemical Society,1991,138:1539-1548
    [154] Xu K, Ding M S, Jow T R. A better quantification of electrochemical stability limits forelectrolytes in double layer capacitors[J]. Electrochimica Acta,2001,46:1823-1827
    [155]曹楚南.电化学阻抗谱导论[M].北京:北京科学出版社,2002,7
    [156]李景红.先进电池材料[M].北京:化工工业出版社,2004,6
    [157] Robert A. Huggins. Meehanism of the memory effee tin―Niekel‖electrodes[J]. SolidState Ionics,2006,177:2645-2646
    [158] Deabate S, Fourgeot F, Henn F. Electrochemical behavior of the β(Ⅱ)-Ni(OH)2/β(Ⅲ)-NiOOH redox couple upon potentiodynamic cycling conditions[J]. ElectrochimicaActa,2006,51:5436-5437
    [159] Earl M W, Noble T F. Electrochemical impregnation bath aging[J]. J Power Sources,1984,12:277-285
    [160] Carmier D, Vix-Guterl C, Lahaye J. Porosity of the cathode during the discharge ofSOCl2/Li batteries: I. Industrial cathodes[J]. Carbon,2001,39:2181-2186
    [161]程杰,张文峰,文越华,等.双电层电容电解液稳定电位极限的判断方法[A].第14届全国固态离子学学术会议暨国际能量储存与转换技术论坛,哈尔滨:2008, B87

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700