金龟子绿僵菌侵染东亚飞蝗特异表达基因筛选与体内定殖阶段cDNA文库构建
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
金龟子绿僵菌(Metarhizium anisopliae)是一类重要的昆虫病原真菌,在害虫生物防治中起着重要作用。与化学农药相比,昆虫病原真菌开发的真菌杀虫剂作用时间持久、无环境污染、对非靶标生物安全,但存在致死时间长,杀虫效率低,防效不稳定等缺点,严重阻碍了真菌杀虫剂的广泛应用,为解决这一问题,在分子水平上揭示昆虫病原真菌致病机理尤为重要。金龟子绿僵菌侵染寄主昆虫时,分生孢子在体表萌发形成附着胞,并分泌多种蛋白酶类降解昆虫体壁,附着胞的形成与分化在侵染过程中发挥着重要作用。金龟子绿僵菌直接穿透寄主体壁进入体内,在血淋巴定殖,以掠夺寄主营养或分泌毒素使寄主死亡,能否在体内成功定殖决定着侵染的最终结果。筛选附着孢形成时期和血淋巴定殖阶段的特异表达基因和基因表达特征分析,对于研究昆虫病原真菌致病机理具有重要意义。EST序列分析和微阵列技术是研究昆虫病原真菌致病机理的成功策略,国内外许多研究者通过这种策略对绿僵菌侵染昆虫致病机理进行了深入研究,但采用的方法均是离体条件下,在各种液体培养基中加入诱导物培养,然后构建绿僵菌cDNA文库,大规模测序,进行EST序列分析。很明显,这些技术路线有一定的局限性,绿僵菌在离体液体培养环境下处于腐生生长阶段,而绿僵菌侵染昆虫过程属于寄生生活阶段,离体条件下诱导培养和事实的侵染过程差别明显,很难对绿僵菌穿透寄主体壁机制,定殖寄主血淋巴适应机制作出完整的诠释,从而阐明病原真菌和寄主的相互作用关系。
     本研究以金龟子绿僵菌(Metarhizium anisopliae)菌株CQMa102和东亚飞蝗(Locusta migratoria)为研究对象,从寄主血淋巴中分离出无寄主核酸污染的绿僵菌菌体,以已降解寄主核酸的东亚飞蝗翅膀诱导附着孢形成与分化,利用抑制消减杂交技术(SSH)筛选绿僵菌在附着胞形成时期和定殖血淋巴阶段的特异表达基因。DSN均一化和SMART技术相结合构建了金龟子绿僵菌CQMa102定殖东亚飞蝗血淋巴阶段的全长均一化cDNA文库,大规模测序,进行EST序列分析,分析绿僵菌定殖寄主血淋巴阶段的基因表达特征,以阐明寄主和病原物之间的相互作用关系。
     主要研究结果如下:
     1.观察了金龟子绿僵菌CQMa102在实验条件下侵染东亚飞蝗的致病过程:发现24 h左右分生孢子穿透寄主表皮进入血淋巴,接触血细胞,引起血细胞聚集;3天~6天大量的芽生孢子被血细胞吞噬、包囊;在寄主昆虫死亡前24 h左右,各种血细胞数量急剧减少,芽生孢子开始迅速繁殖,血淋巴内悬浮着大量酵母状虫菌体(hyphal body)。
     2.根据寄主血细胞和病原真菌细胞结构差别,建立和完善了利用蛋白酶K和SDS迅速裂解寄主血细胞的方法,整个流程时间约40 min,RT-PCR检测表明,利用寄主血细胞裂解释放的内源性RNases和后续PBS洗涤可高效去除血淋巴分离绿僵菌菌体中的寄主核酸污染,这一结论也被后续EST序列分析所证明。
     3.以寄主体内分离,去除寄主核酸污染的绿僵菌菌体提取mRNA为实验组(tester),用RNA fragmentation buffer处理东亚飞蝗翅膀,降解寄主核酸,并诱导附着孢形成与分化,以该时期的菌体提取mRNA为驱动组(driver),进行抑制消减杂交(suppression subtractive hybridization, SSH),筛选出350个阳性克隆,测序,获得的EST序列经聚类分析、共拼接成120 unique ESTs,其中100条singletons,20条contigs,经基因注释和功能分类,29条(24.17%) ESTs和NR数据库有同源性,其功能参与各种细胞代谢和应答过程,包括细胞代谢、蛋白代谢、细胞结构与功能以及参与胁迫和抵抗等生物学过程。
     4.为验证消减效率,随机选择5个预测基因,以半定量RT-PCR分析了在绿僵菌侵染东亚飞蝗不同阶段的表达水平,包括碗豆素脱甲基酶(pisatin demethylase)基因(Mpd1),α-烯醇化酶(α-enolase)基因(Me1),异戊烯基转移酶(prenyl transferase)基因(Mpt),α-1,2甘露糖基转移酶(α-1,2-mannosyltransferase)基因(Mmnt1),胆碱脱氢酶(cholin dehydrogenase)基因(Mcd)。结果表明5个基因均在定殖寄主血淋巴阶段有较高的表达量。
     5.为筛选附着孢形成阶段特异表达或上调表达基因,以无寄主核酸污染的蝗虫翅膀诱导附着孢形成,提取mRNA为实验组(tester),以去除寄主核酸污染的血淋巴分离绿僵菌菌体提取mRNA为驱动组(driver),消减杂交筛选出460个阳性克隆,测序,获得329条高质量ESTs,聚类分析、拼接成78 unique ESTs。其中46条ESTs与数据库中已知蛋白序列有明显的同源性,24条己知功能的同源ESTs涉及多种代谢和应答过程,包括细胞代谢、蛋白代谢、细胞结构与功能以及胁迫和抵抗等生物学过程。
     6.随机选择12条ESTs,分别提取绿僵菌在蝗虫翅膀生长8 h、15 h、24 h、30 h,以及体内定殖阶段(第2天、第3天、第4天、第5天、第6天、第7天)血淋巴的总RNA,DNaseⅠ处理后,以3-磷酸甘油醛脱氢酶基因(G3pdh)为参照基因,进行半定量分析,结果表明12条ESTs均在附着孢形成时期上调表达。
     7. DSN均一化和SMART技术相结合构建了金龟子绿僵菌CQMa102定殖东亚飞蝗血淋巴阶段的全长均一化cDNA文库,并对整个文库进行了EST序列测定,共挑取5222个克隆进行测序,获高质量ESTs 4606条,聚类、拼接成1863个unique ESTs,其中1237条singletons,626条contigs。经基因注释和功能分类,同源ESTs涉及基础代谢,能量产生,维持细胞功能与结构,调节细胞周期、分裂或生长,对抗胁迫及防御等各种生物学功能。
     8.利用SMART技术构建了金龟子绿僵菌CQMa102定殖东亚飞蝗血淋巴时期的全长cDNA文库,挑克隆,测序获得187条unigenes,这些ESTs均是绿僵菌定殖寄主血淋巴阶段的高丰度表达基因。
Metarhizium anisopliae is an economically important insect pathogenic fungus widely used as an insect biocontrol agent. Mycoinsecticides have many advantages compared with chemical insecticides, including low toxicity to non-targeted organisms, high insect specificity, and low environmental impact, but the slow killing speed has been considered a potential drawback which prevents the utilization of these fungi against insects. M. anisopliae adheres to insects cuticle and germinates to form short germ tubes, then elaborates a specialized infection cell called appressorium that forms a thin penetration peg to initiate penetration. M. anisopliae produces a mumber of cuticle-degrading proteases to facilitate host penetration. The formation of appressorium paly an important role in fungal pathogenesis. M. anisopliae traverses insect cuticle and enters host hemolymph, then colonizes the host hemolymph. It utilizes the nutrients available in hemolymph, and produces insecticidal secondary metabolites, which cause insect death. Identification genes differentilly expressed by M. anisopliae during appressorium formation and colonization of host hemolymph would reveal the mechanisms of fungal pathogenesis.
     EST analysis and microarray approaches are useful and successful for studying insect fungal pathogenesis. Many researchers adopted these strategies to study the developmental and transcriptional events during M. anisopliae infection. The methodologies of their studies are that M. anisopliae were cultured in liquid minimum medium supplemented with various inducer, followed by cDNA library construction and ESTs analysis. The life of the fungus cultured in liquid medium is saprophytic, while the life of the fungus infecting insect is parasitical. There are large difference between the life of the fungus cultured in vitro with the fact that M. anisopliae naturally infect insects. It is impossible to elucidate the mechanism underlying fungal pathogenesis and adaptation to host hemolymph, furthermore to understand the host-pathogen interactions.
     In this study, Metarhizium anisopliae var. acridum strain CQMa102 and Locusta migratoria were used, we prepared the hyphal bodies from infected insect hemolymph without host nucleic acid contamination, and employed a reagent called RNA fragmentation buffer to degrade the locust wing nucleic acid before inoculation with M. anisopliae conidia. This study was aimed at identifying genes were up regulated during colonization of hemolymph when hyphal bodies occur, and during appressorium formation on locust wings. A normalized cDNA library of M. anisopliae during colonization of host hemolymph was successfully constructed utilizing DSN (duplex-specific nuclease) normalization method combined with SMART (switching mechanism at 5′end of RNA transcript) library construction method, ESTs analysis of cDNA library revealed new insight on the host-pathogen interactions.
     The main results were as follows:
     1. The process of M. anisopliae strain CQMa102 infect locust L. migratoria was observed with a digital microscope at experimental conditions. M. anisopliae enters and colonizes the host hemolymph within 24 h post inoculation, hyphal bodies (short hyphal lengths and yeast-like blastospores) had attached to hemocytes and appeared to stimulate hemocytes aggregation. At the time point 3-6 days, hyphal bodies become phagocytosed and encapsulated by hemocytes. Before time 24-48 h of insect death, hyphal bodies have an increase of the concentration accompanied by reduction in hemocyte counts, and freely floating in the hemolymph.
     2. We perfectly establish a method to lyse host hemocytes for isolating hyphal body by utilization of proteinase K and SDS according to the different cell structure between fungus and host hemocyte. The procedure takes about 40 min, and RT-PCR analysis indicates that endogenous RNases that released from membrane-bound organelles upon disruption and sequent simple washing steps could rapidly remove locust nucleic acid before fungal mRNA extraction. This assertion was further confirmed by sequent EST analysis.
     3. Suppression subtractive hybridization was performed here using cDNA generated from purified hyphal bodies in hemolymph as tester, and cDNA generated during conidia germination and appressorium formation on locust wing as driver. 350 positive clones were obtained by cDNA array dot blotting, sequenced, resulted in 120 unique expressed sequence tags (ESTs) that were up-regulated during colonization of hemolymph, including 100 singletons and 20 contigs. Among these 120 ESTs, 29 (24.17% of total) were significantly similar to known proteins involved in various cell and molecular processes, such as general metabolism, energy production, maintenance of cell function and structure, cell cycle and control, stress response etc.
     4. To confirm the reliability of SSH and dot blotting, the expression levels of five randomly chosen genes in different stages of pathogenesis were analyzed using semi-quantitative RT-PCR analysis. These ESTs included those with homology to α-1,2-mannosyltransferase,α-enolase, pisatin demethylase, prenyl transferase and choline dehydrogenase. All the five genes confirmed by RT-PCR analysis were up regulated during colonization of host hemolymph.
     5. To identify the genes were up-regulated during appressorium formation, suppression subtractive hybridization was also performed here using cDNA generated during conidia germination and appressorium formation on locust wing as tester and cDNA generated from purified hyphal bodies in hemolymph as driver. 460 positive clones were obtained by cDNA array dot blotting, and sequenced, resulted in 329 high quality ESTs which represented 78 uniESTs. Among these 78 ESTs, 46 with significant similarity to NCBI hypothetical proteins or known proteins, 24 ESTs represented a broad spectrum of biological functions, including protein metabolism proteins, cell metabolism proteins, cell sturctrue and function proteins and stress response proteins, etc.
     6. A total of 12 ESTs predicted to be up regulated expressed by SSH were tested by semi-quantitative reverse transcription PCR. For time-course experiments, total RNA were extracted from the fungi collected after 8 h, 15 h, 24 h, 30 h from locust wings respectively and the mixture of host hemocytes and hyphal bodies ( 2 days, 3 days, 4 days, 5 days, 6 days, 7 days). Total RNA were treated by DNAseⅠbefore RT-PCR. The glyceraldehyde-3-phosphate dehydrogenase gene (gpd) was selected as the endogenous control. The results demonstrated that these genes all were up-regulated during appressorium formation on locust wing.
     7. A normalized cDNA library of M. anisopliae during colonization of host hemolymph was successfully constructed utilizing DSN (duplex-specific nuclease) normalization method combined with SMART (switching mechanism at 5′end of RNA transcript) library construction method. 5222 clones were sequenced, and a total of 4606 ESTs of high quality was obtained, resulted in 1863 unique ESTs, including 1237 singletons and 626 contigs. The ESTs had significant similarity to known proteins involved in various cell and molecular processes, such as general metabolism, energy production, maintenance of cell function and structure, cell cycle and control, stress response etc.
     8. A full length cDNA library of M. anisopliae during colonization of host hemolymph was successfully constructed utilizing SMART (switching mechanism at 5′end of RNA transcript) library construction method. Clones were sequenced, and a total of 187 unique ESTs was obtained, which represented the high abundant genes during the colonization of host hemolymph.
引文
陈华癸等. 1985.微生物学[M].北京:农业出版社, 275.
    樊美珍,黄勃,王建林等. 1999.几种虫生真菌附着胞的荧光电镜及扫描电镜观察[J].菌物系统, 18(3): 249-253
    樊美珍,李增智. 1994.营养物和培养条件对虫生真菌附着胞形成的影响[J].安徽农业大学学报, 21(2): 123-130.
    冯明光. 1998.生物杀虫剂与新的农业科技革命[J].植物保护21世纪展望暨第三届全国青年植物保护科技工作者学术研讨会论文集.北京:中国科学技术出版社.
    耿华,安春菊,郝友进等. 2004.昆虫抗菌肽的结构和功能研究现状[J].生物学通报, 39
    韩宝瑜. 1997.谈虫生真菌致病机制及昆虫活体防卫功能[J].华东昆虫学报, 6(1): 110-111.
    黄勃,樊美珍,李增智. 2002.绿僵菌属系统分类的研究进展[J].安徽农业大学学报, 29 (2): 169- 172.
    蒋琳,马承铸. 2000.生物农药研究进展[J].上海农业学报, 16: 73-77.
    李阜棣,胡正嘉. 2000.《微生物学》[M].北京:中国农业出版社, 283-284.
    李文华,王中康,殷幼平,夏玉先,彭国雄. 2004.理化因子对白僵菌附着孢形成的影响[J].重庆大学学报(自然科学版), 27(2): 102-106.
    林华峰,黄勃,李增智等. 1998.白僵菌在松毛虫体上宿存侵染的扫描电镜观察[J].菌物系统, 17(4): 344-334.
    蒲蛰龙. 1977.害虫生物防治[M].北京:科学出版社, 104-108.
    裘维藩. 1998.菌物学大全[M].北京:科学出版社, 837-939.
    时超美. 2000.昆虫酚氧化酶原活化及其在免疫中的作用[J].昆虫知识, 37(5): 310-314.
    王成树,黄勃. 1998.白僵菌对马尾松毛虫的毒力和孢子萌发行为的关系[J].森林病虫通讯, 3: 12-24.
    王中康,李文华,夏玉先,殷幼平. 2003.影响金龟子绿僵菌附着孢形成的理化因子研究[J].中国虫生真菌研究与应用,(5): 101-108.
    王海川,尤民生. 1999.绿僵菌对昆虫的入侵机理[J].微生物学通报, 26(1): 71-73.
    徐学清,赖仞. 2006.昆虫先天性免疫信号通路研究进展[J].生命科学研究, 10(1):7-11.
    徐进署,张双全. 2002.昆虫抗菌肽对病原微生物作用的研究进展[J].昆虫学报, 45(5): 673-678.
    许兵红,陈正耀. 1999.昆虫体液免疫中的抗菌物质[J].昆虫知识, 36 (5): 316-331.
    翟锦彬,黄秀梨,许萍. 1995.杀虫真菌-球孢白僵菌的昆虫致病机理研究近况[J].微生物学通报, 22(l):45- 48.
    翟锦彬,黄秀梨. 1997.球孢白僵菌在棉铃虫表皮上萌发的研究[J].微生物学报, 37(2): 154-158.
    Aldridge DC, Turner WB. 1969. The identity of zygosporin A and cytochalasin D [J]. Antibiot(Tokyo), 22(4):170.
    Altschul SF, Madden TL, Sch?ffer AA, Zhang JH, Zhang Z, Miller W, Lipman D J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs [J]. Nucleic Acids Res, 25 (17): 3389-3402.
    Altincicek B, Linder M, Linder D, Preissner KT, Vilcinskas. 2007. A Microbial metalloproteinases mediate sensing of invading pathogens and activate innate immune responses in the lepidopteran model host Galleria mellonella [J]. Infect Immun, 75(1): 175-183.
    Anderson, Brass, Anderson I, Brass A. 1998. Searching DNA databases for similarities to DNA sequences: when is a match significant Bioinformatics, 14: 349-356.
    Bai C, XL Xu, et al. 2006. MNN5 encodes an iron-regulated alpha-1,2-mannosyltransferase important for protein glycosylation, cell wall integrity, morphogenesis, and virulence in Candida albicans [J]. Eukaryot Cell, 5(2): 238-247.
    Bogus MI, KeRdra E, Bania J, Szczepanik M. 2007. Different defense strategies of Dendrolimus pini, Galleria mellonella, and Calliphora erythrocephala against fungal infection [J]. Journal of Insect Physiology. 2-16.
    Bonaldo MF, Lennon G, soares MB. 1996. Normalization and subtraction: Two approaches to facilitate gene discovery [J]. Genome Res, 6: 791-806.
    Britten RJ, Davidson EH. Hybridization strategy [M]. In: Harres BD, Higgins SJ. 1985. Nucleic Acid Hybridization - A Practical Approach. IRL Press, Oxford, 3-15.
    Boucias DG, Pendland JC, Latge JP. 1988. Nonspecific factors involved in the attachment of entomopathogenic deuteromycetes to host insect cuticle [J]. Applied and Environmental Microbiology, 54: 1795-1805.
    Brennan CA, Anderson KV. 2004. Drosophila: the genetics of innate immune recognition and response [J]. Annu. Rev. Immunol, 22: 457-83.
    Butt TM, Ibrahim L, Clark SJ, Beckett A. 1995. The germination behaviour of Metarhizium anisopliae on the surface of aphid and flea beetle cuticles [J]. Mycological Research, 99: 945-950.
    Borges Walmsley MI, D Chen, et al. 2002. The pathobiology of Paracoccidioides brasiliensis [J]. Trends Microbiol10, 2: 80-89.
    Bogo MR, Rota CA, Pinto H, et al. 1998. A chitinase encoding gene from the entomopathogen Metarhizium anisopliae: isolation and characterization of genomic and full-length cDNA [J].Curr Microbiol, 37(4): 221-225.
    Bowman SM, A Piwowar, et al. 2005. Mannosyltransferase is required for cell wall biosynthesis, morphology and control of asexual development in Neurospora crassa [J]. Mycologia, 97(4): 872-879.
    Bowden CG, Smalley E, Guries RP, et al. 1996. Lack of association between cerato-ulmin production and virulence in Ophiostoma novo-ulmi [J]. Mol Plant Microbe Interact, 9(7): 556-564.
    Chapman RF. 1998. The insects: structure and function [M]. Cambridge University Press, Cambridge United Kingdom.
    Charnley AK. 1984. Physiological aspects of destructive pathogenesis in insects by fungi: A speculative review [M]. In: Intervebrate-microbial interactions (Aderson JM, Walton DWA, eds). Cambridge University Press. London, 229-270.
    Charnley AK. 2003. Fungal pathogens of insects: cuticle degrading enzymes and toxins [J]. Adv. Bot. Res, 40: 241-321.
    Chen HC, Yeh SF, Ong GT, Wu SH, Sun CM, Chou CK. 1995. The novel desmethyldestruxin B2, from Metarhizium anisopliae, that suppresses hepatitis B virus surface antigen production in human hepatoma cells [J]. Nat. Prod, 58: 527-531.
    Cho EM, D Boucias, et al. 2006a. EST analysis of cDNA libraries from the entomopathogenic fungus Beauveria (Cordyceps) bassiana. II. Fungal cells sporulating on chitin and producing oosporein [J]. Microbiology, 152(Pt 9): 2855-2864.
    Clarkson JM, Charnley AK. 1996. New insights into them echanisms of fungal pathogenesis in insects [J]. Trends Microbiol, 4: 197-203.
    Davis MD, Cohen I, Nielsen E A, Steinmetz M, Paul WE, Hood L. 1984. Cell-type-specific cDNA probes and the marine I region: the localization andorientation of Ad [J]. Proc. Natl. Acad. Sci. USA, 81: 2194-2198.
    Dean RA. 1997. Signal pathway and appressoria morphogenesis [J]. Annu. Rev. Phytopathol, 35: 211-234.
    Diatchenko L, Lau YF C, Campbell A P, Chenchik A, Moqadam F, Huang B, Lukyanov S, Lukyanov K, Gurskaya N, Sverdlov ED, Siebert PD. 1996. Suppression subtractive hybridization: A method for generating differentially regulated or tissue-specific cDNA probes and libraries [J]. Proc. Natl. Acad. Sci. USA , 93: 6025-6230.
    Drauzio EN Rangel, Gilberto UL Braga, Stephan D Flint, Anne J Anderson, Donald W Roberts. 2004. Variations in UV-B tolerance and germination speed of Metarhizium anisopliae conidia produced on insects and artificial substrates [J]. Invertebr. Pathol, 87: 77-83.
    Dutra V, Nakazato L, Broetto L, Schrank I S, Vainstein M H, Schrank A. 2004. Application of representational difference analysis to identify sequence tags expressed by Metarhizium anisopliae during the infection process of the tick Boophilus microplus cuticle [J]. Res. Microbiol, 115: 245-251.
    Enenkel C, Wolf DH. 1993. BLH1 codes for a yeast thiol aminopeptidase, the equivalent of mammalian bleomycin hydrolase [J]. Biological Chemistry, 268: 7036-7043.
    Fang W, Bidochka MJ. 2006. Expression of genes involved in germination, conidiogenesis and pathogenesis in Metarhizium anisopliae using quantitative real-time RT-PCR [J]. Mycol Res, 110(10): 1165-1171.
    Fang WG, Leng B, Xiao YH, et al. 2005. Cloning of Beauveria bassiana chitinase gene Bbchit1 and its application to improve fungal strain virulence [J]. Appl. Envir. Microbiol, 71: 363-370.
    Freimoser F M, Screen S, Bagga S, Hu G, St Leger R J. 2003. Expressed sequence tag (EST) analysis of two subspecies of Metarhizium anisopliae reveals a plethora of secreted proteins with potential activity in insect hosts [J]. Microbiology, 149: 239-247.
    Freimoser FM, Hu G, St Leger RJ. 2005. Variation in gene expression patterns as the insect pathogen Metarhizium anisopliae adapts to different host cuticles or nutrient deprivation in vitro [J]. Microbiology, 151: 361-371.
    Gateff E, Brey PT, Hultmark D (Eds). Molecular Mechanisms of Immune Responses in Insects [M]. Chapman and Hall, New York, 1998 : 189-210.
    Gillespie JP, et al. 2000. Fungi as elicitors of insect immune responses [J]. Arch. Insect Biochem. Physiol, 44: 49-68.
    Gillespie JP, Burnett C,Charnley AK.2000. The immune response of the desert locust Schistocerca gregaria during mycosis of the entomopathogenic fungus, Metarhizium flavoviride [J]. Insect Physiol, 46: 429-437.
    Griesch J, Wedde M, Vilcinskas A. 2000. Recognition and regulation of metalloproteinase activity in the haemolymph of Galleria mellonella: a new pathway mediating induction of humoral immune responses [J]. Insect Biochem Mol Biol, 30(6): 461-472.
    Giles SS, Batinic-Haberle I, Perfect JR, Cox GM. 2005. Cryptococcus neoformans mitochondrial superoxide dismutase: an essential link between antioxidant function and high-temperature growth [J]. Eukaryotic Cell, 4: 46-54.
    Goetted MS, St Leger RJ, Rizzo NW, et al. 1989. Ultrastructural localiation of a cuticle-degrading protease produced by the entomopathogenic fungus Metarhizium ansopliae during penetration of host (Manduca sexta) cuticle [J]. Gen. Microbiol, 135: 2233-2239.
    Grant DF, DE Moody, J Beetham, D H Storms, M F Moghadam, B Bohran, F Pinot, B Winder, B DHammock. 1994. The response of soluble epoxide hydrolase and other hydrolytic enzymes to peroxisome proliferators, p. 97-112. In D. E. Moody (ed.), Peroxisome proliferators: unique inducers of drug-metabolizing enzymes. CRC Press, Inc, Boca Raton, Fla.
    Gupta SC, Leathers TD, EL Sayed GN. 1991. Production of degradation enzyme by Metarhizium anisopliae during growth on defined media and insect cuticle [J]. Experi Mycol, 15: 310-315.
    Gupta S, Roberts DW, Renwick JAA. 1989. Insecticidal cyclodepsipeptides from Metarhizium anisopliae [J]. Chem. Soc. Perkin. Trans 1, 12: 2347-2358.
    Gurskaya NG, Diatchenko L, Chenchik A, Siebert PD, Khaspekov GL, Lukyanov KA, Vagner LL, Ermolaeva OD, Lukyanov SA, Sverdlov ED. 1996. Equalizing cDNA subtraction based on selective suppression of polymerase chain reaction: cloning of Jurkat cell transcripts induced by phytohemaglutinin and phorbol 12-myristate 13-acetate [J]. Anal. Biochem, 240: 90-97.
    Hassan AEM, Charnley AK. 1983. Combined effects of diflubenzuron and the entomopathogenic fungus Metarhizium anisopliae on the tobacco hornworm Manduca sexta [J]. Proc 10th Int Congr Prot, 3: 790.
    Hara E, Kato T, Nakada S, Sekiya S, Oda K. 1991. Subtractive cDNA cloning using oligo (dT)30-latex and PCR: isolation of cDNAclones specific to undifferentiated humanembryonal carcinoma cells [J]. Nucl Acids Res, 19: 7097-7104.
    Harris MA, Clark J, Ireland A, et al. 2004. The Gene Ontology (GO) database and informatics resourceNucleic Acids Res. 1; 32 (Database issue): D258-D261.
    Harvey HC, Staples RC. 1984. Evidence that camp initiates nuclear division and infection structure formation in the bean rust fungus Uromyces phaseoli [J]. Exp. Mycol, 8: 37-46.
    He M, Xia YX. 2009. Construction and analysis of a normalized cDNA library from Metarhizium anisopliae var acridum germinating and differentiating on Locusta migratoria wings. Fems Microbiology Letters, 291(1): 127-135.
    Hirschi K, VanEtten H. 1996. Expression of the pisatin detoxifying genes (PDA) of Nectria haematococca in vitro and in planta [J]. Mol Plant-Microbe Interact, 9: 483-491.
    Hoffmann JA. 2003. The immune response of Drosophila[J]. Nature, 426: 33-38.
    Holder DJ, Keyhani NO. 2005. Adhesion of the entomopathogenic fungus Beauveria (Cordyceps) bassiana to substrata [J]. Appl Environ Microbiol, 71(9): 5260-5266.
    Howard DH Acquisition. 1999. Transport and Storage of iron by pathogenic fungi [J]. Microbiology Reviews, 12: 394-404.
    Hultmark D. 2003. Drosophila immunity: paths and patterns [J]. Curr. Opin. Immunol, 15: 12-19.
    Hunter DM, RJ Milner, et al. 2001. Aerial treatment of the Australian plague locust, Chortoicetes terminifera (Orthoptera: crididae) with Metarhizium anisopliae Deuteromycotina:Hyphomycetes [J]. Bull Entomol Res, 91(2): 93-99.
    Huxham IM, Lackie AM. 1986. A simple visual method for assessing the activation and inhibition of phenoloxidase production by insect haemocytes in vitro [J]. Immunol. Methods, 94: 271-277.
    Huxham IM, Samuels KDZ, Heale JB. 1989. In vivo and in vitro assays for pathogenicity of wildtype and mutant strains of Metarhizium anisopliae for three insect species [J]. Invertebr. Pathol, 53: 143-151.
    Hurion N, Fromeniin H, Keil B. 1977. Proteolytic enzymes of Entomophthora coronata: characterization of a collagenase [J]. Comp. Biochem. Physiol,56: 259-264.
    Hurion N,Fromentin H,Keil B. 1979. Specificity of the collagenolytic enzyme from the fungus Entomophthora coronata: comparison with the bacterial collagenase from Achromobactor iophagus [J]. Arch. Biochem. Biophys, 192: 438-445.
    Huxham IM, Matewele P, Trinci APJ, Gillespie AT. 1989. Effect of water activity on morphology, growth and blastospore production of metarhizium anisopliae, Beauveria bassiana and paecilomyces farinosus in batch and fed-batch culture [J]. Mycol. Res, 92: 257-264.
    Hyodo H, Takemura M, Yokota A, Ohyama K, Kohchi T. 2000. Systematic isolation of highly transcribed genes in inflorescence apices of Arabidopsis thaliana from an equalized cDNA library [J]. Biosci. Biotechnol. Biochem, 64: 1538-1541.
    James, P. J. 1995 Pathogenicity of Metarhizium spp. for the desert locust Schistocerca gregaria [D]. Ph.D. thesis, University of Bath.
    Jarrold, SL., Moore, D., Potter, U., Charnley, AK. 2007 The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle [J]. Mycol. Res., 3: 240-249.
    Kang SC, Park S, Lee DG. 1998. Isolation and characterization of a chitinase cDNA from the entomopathogenic fungus, Metarhizium anisopliae [J]. FEMS Microbiol Lett, 165(2): 267-271.
    Kershaw MJ, Moorhouse ER, Bateman R, Reynolds SE, Charnley AK. 1999. The role of destruxins in the pathogenicity of Metarhizium anisopliae for three species of insect [J]. Invertebr. Pathol, 74: 213-223.
    Kleinkauf H, von D?hren H. 1990. Nonribosomal biosynthesis of peptide antibiotics [J]. Eur J Biochem, 192(1): 1-15.
    Klis FM, P de Groot, et al. 2001. Molecular organization of the cell wall of Candida albicans [J]. Med Mycol 39 Suppl 1: 1-8.
    Kolattukudy PE, Brown L. 1975. Fate of naturally occurring epoxy acids: a soluble hydrase, which catalyses cis hydration, from Fusarium solanipisi [J]. Arch. Biochem. Biophys, 166: 599-607.
    Krogh, TN., Skou, L., Roepstorff, P., Andersen, SO., 1995 H?jrup, P. Primary Structure of Proteinsfrom the Wing Cuticle of the Migratory Locust, Locusta migratoria [J]. Insect Biochem. Molec. Biol. 25 (3): 319-329.
    Lamb C, RA Dixon. 1997. The oxidative burst in plant disease resistance [J]. Ann. Rev. Plant. Physiol. Plant. Mol. Biol, 48: 251-275.
    Lavine MD, Strand MR. 2002 Insect hemocytes and their role in immunity [J]. Insect Biochemistry and Molecular Biology, 32: 1295-1309.
    Lemaitre B, Hoffmann J. 2007. The host defense of Drosophila melanogaster [J]. Annu Rev Immunol, 25: 697-743.
    Lewis MJ, I M Prosser, et al. 2008. Cloning and characterisation of a prenyltransferase from the aphid Myzus persicae with potential involvement in alarm pheromone biosynthesis [J]. Insect Mol Biol, 17(4): 437-443.
    Magalhaes BP, Butt TM, Humber RA, et al. 1990. Formation of appressoria in vitro by the entomopathogenic fungus Zoophthora radicans (Zygomycetes entomophth orales) [J]. Invertebr. Pathol, 550: 284-194.
    Mehlmann, M., Townsend, M. B., Stears, R. L., Kuchta, R. D., Rowlen, K. L. 2005 Optimization of fragmentation conditions for microarray analysis of viral RNA [J]. Anal. Biochem, 347: 316-323.
    Mewes HW, Dietmann S, Frishman D, Gregory R, Mannhaupt G, Mayer KFX, Munsterkotter M, Ruepp A, Spannagl M, Stuempflen V, Rattei T. 2008. MIPS: analysis and annotation of genome information in 2007 [J]. Nucleic Acids Research, 36: D196-D201.
    Michael T. Siva-Jothya, Yannick Moretb and Jens Rolff. 2005 Insect Immunity: An Evolutionary Ecology Perspective perspective [J ] . Adv. Insect Physiol , 32 :1-48.
    Minoru S HK. 1990. An‘equalized cDNAs library’by the reassociation of short double-stranded cDNAs [J]. Nucleic Acids Res, 18: 5705-5711.
    Moon YS, Donzelli BG, Krasnoff SB, McLane H, Griggs MH, Cooke P, Vandenberg JD, Gibson DM, Churchill AC. 2008. Agrobacterium-mediated disruption of a nonribosomal peptide synthetase gene in the invertebrate pathogen Metarhizium anisopliae reveals a peptide spore factor[J]. Appl Environ Microbiol, 74(14): 4366-4380.
    Narasipura SD, JG Ault, MJ Behr, V Chaturvedi, S Chaturvedi. 2003. Characterization of Cu, Zn superoxide dismutase (SOD) gene knockout mutant of Cryptococcus neoformans var. gattii: Role in biology and virulence [J]. Mol. Microbiol, 47: 1681-1694.
    Nobuhiko Asada. 1998. Reversible activation of prophenoloxidase with 2-propanol in Drosophila melanogaster [J]. Exp. Zool, 282 (122): 28-31.
    Oh Y, N Donofrio, et al. 2008. Transcriptome analysis reveals new insight into appressoriumformation and function in the rice blast fungus Magnaporthe oryzae [J]. Genome Biol, 9(5): R85.
    Olson A, J Stenlid. 2001. Plant pathogens. Mitochondrial control of fungal hybrid virulence [J]. Nature, 411: 438.
    Pais M, Das BC, Ferron P. 1981. Depsipeptides from Metarhizium anisopliae [J]. Phytochem, 20: 715-723.
    Patanjali SR, Parimoo S, Weissman SM. 1991. Construction of a uniform abundance (normalized) cDNA library [J]. Proc Natl Acad Sci USA, 88: 1943-1947.
    Pal S, St Leger RJ, Wu LP. 2008. Fungal peptide destruxin A plays a specific role in suppressing the innate immune response in Drosophila melanogaster [J]. Biol Chem, 282 (12): 8969-8977.
    Phillipe Bulet, Charles Het ru, Jean Luc Dimarcq, et al. 1999. Anti-microbial peptides in insects: structure and function [J]. Developmental and Comparative Immunology, 23: 329-344.
    Roberts DW, St Leger RJ. 2004. Metarhizium spp cosmopolitan insect-pathogenic fungi: mycological aspects. Advanc. Appl. Microbiol, 54: 2-70.
    Roberts DW, Humber RA. 1981. Entomogenous fungi [M]. In: Biology of Conidial Fungi. Academic Press, New York, pp 201-236.
    Robert M Ouedraogo, Michel Cusson, Mark S Goettel, et al. 2003. Inhibition of fungal growth in thermoregulating locusts, Locusta migratoria, infected by the fungus Metarhizium anisopliae var acridum [J]. Journal of Invertebrate Pathology, 82: 103-109.
    Saito H, K Tatebayashi. 2004. Regulation of the osmoregulatory HOG MAPK cascade in yeast [J]. Biochem, (Tokyo), 136: 267-272.
    Sasaki YF, Ayusawa D, Oishi M. 1994. Construction of a normalized cDNA Library by introduction of a semi-solid mRNA-cDNA hybridization system Acad [J]. Nucleic Acids Res, 22: 987-992.
    Samantha L Jarrold, David Moore, Ursula Potter, A Keith Charnley. 2007. The contribution of surface waxes to pre-penetration growth of an entomopathogenic fungus on host cuticle [J]. Mycological research, 240-249.
    Samsinakova A,Misikova S, Leopold J. 1971. Action of enzymatic systems of B.bassiana on the greater wax moth larvae (Galleria mellonella) [J]. Invertebr. Pathol, 18: 322-330.
    Samuels R, Charnley AK,St Leger RJ. 1990. The Partial characterozation of endoproteases from three species of entomopathogenic entomophthorales and two speices of deueromycetes [J]. Mycopathologia, 110: 145-152.
    Samuels RI, Charnley AK, Reynolds SE. 1988. The role of destruxins in the pathogenicity of three strains of Metarhizium anisopliae for the tobacco hornworm Manduca Sexta [J]. Mycopathologia, 104: 51-58.
    Scholte E J, W Takken, et al. 2007. Infection of adult Aedes aegypti and Aealbopictus mosquitoes with the entomopathogenic fungus Metarhizium anisopliae [J]. Acta Trop, 102(3): 151-158.
    Schweizer E, J Hofmann. 2004. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems [J]. Microbiol. Mol. Biol. Rev, 68: 501-517.
    Screen SE, Hu G, St Leger RJ. 2001. Transformants of Metarhizium anisopliae sf. anisopliae overexpressing chitinase from Metarhizium anisopliae sf. acridium show early induction of native hitinase but are not altered in pathogenicity to Manduca sexta [J]. Invertebr. Pathol, 78: 260-266.
    Shagin DA, Rebrikov DV, Kozhemyako VB, Altshuler IM, Shcheglov AS, Zhulidov PA, Bogdanova EA, Staroverov DB, Rasskazov VA, Lukyanov S. 2002. A novel method for SNP detection using a new duplex-specific nuclease from crab hepatopancreas [J]. Genome Res, 12: 1935-1942.
    Smith RJ, Grula EA. 1983. Chitinase is an inducible enzyme in B.bassians [J]. Invertebr. Pathol, 42: 319-326.
    Staples RC, Macko V. 1980. Formation of infection structures as a recognition response in fungi [J]. Exp. Mycol, 4: 2-16.
    St Leger RJ, Charnley AK, Cooper RM. 1986. Characterization of cuticle-degrading proteases produced by the entomopathogen Metarihizium anisopliae [J]. Arch Biochem Biophy, 253: 221-232.
    St Leger RJ, Cooper RM, Charnley AK. 1986. Cuticle-degrading enzymes of entomopathogenic fungi: cuticle degradation in vitro by enzymes from entomopathogens [J]. Invertebr Pathol, 47: 167-177.
    St Leger RJ, Charnly AK, Cooper RM. 1986. Cuticle degrading enzymes of entomopathogenic fungi: synthesis in culture on cuticle [J]. Invertebr Pathol, 48: 85-95.
    St Leger RJ, Cooper RM,Charnley AK. 1987. Production of cuticle-degrading enzyme by the entomopathogen Metarhizium anisopliae during infection of cuticles from Calliphora vomitoria and Manduca Sexta [J]. Gen. Microbiol, 133: 1371-1382.
    St Leger RJ, Cooper RM, Charnley AK. 1987. Distribution of chymoelastase and trypsin-like enzymes in five species of entomopathogenic deuteromycetes [J]. Arch. Biochem. Biophy, 258: 123-131.
    St Leger RJ, Duxrands P.K, Chamley AK, CooPer RM. 1988. Role of extracellular chymoelastase in the virulence of Metarhizium anisopliae for Manduca sexta [J]. Invertebr. Pathol, 52: 285-293.
    St Leger, RJ., Durrands, PK., Charnley, AK., Cooper, RM. 1988 The role of extracellular chymoelastase in the virulence of Metarhizium anisopliae for Manduca sexta [J]. J. Invertebr.Pathol. 52: 285-294.
    St Leger RJ, Butt TM, Staples RC, Roberts DW. 1989. Synthesis of proteins including a cuticle-degrading ptotease during differentiation of the entomopathogenic fungus Materhizium anisopliae [J]. Experimental Mycology, 13: 253-262.
    St Leger RJ, Butt TM, Groettet MS, et al. 1989. Production in vitro of appressoria by the entomopathogenic fungus Metarhizium ansopliae [J]. Exp. Mycol, 13: 274-288.
    St Leger RJ, Roberts DW, Staples RC. 1989. Calium-and calmodulin- mediated protein synthesis and protein phosphorylation during germination growth and protease production by M. anisopliae [J]. Gen. Microbiol, 135: 2141-2154.
    St Leger RJ, Butt TM, Staples RC, et al. 1990. Second messenger involvement indifferentiation of the entomopathogenic fungus Metarhizium anisopliae [J]. Gen. Microbiol, 136: 1779-1789.
    St Leger RJ, Cooper RM, Charnley AK. 1991. Characterization of chitinase and chitobiase produced by the entomopathogenic fungi M.anisopliae [J]. Inver Pathol, 58: 425-426.
    St Leger RJ, Roberts DW, Steples RC. 1991. A model to explain differen-tiation of appressoria by germiling of Materhizium anisopliae [J]. Invertebr. Pathol , 57: 299-310.
    St Leger RJ, Staples RC, Roberts DW. 1992. Cloning and regulatory analysis of starvation-stress gene, ssgA, encoding a hydrophobin-like protein from the entomopathogenic fungus, Metarhizium anisopliae [J]. Gene, 120: 119-124.
    St Leger RJ, Cooper RM, Charnley AK. 1993. Analsis of aminopeptidase and dipeptidylpeptidase from the entomopathogenic fungus Metarhizium anisopliae [J]. Gen. Microbiol, 139: 237-243.
    St Leger RJ, Bidochka MJ, Roberts DW. 1994a. Isoforms of the cuticle-degrading proteinase and production of a metalloproteinase by Metarhizium anisopliae [J]. Arch Biochem Biophys, 313(1): 1-7.
    St Leger RJ, Bidochka MJ, Roberts DW. 1994b. Characterization of a novel carboxypeptidase produced by the entomopathogenic fungus, Metarhizium anisopliae [J]. Arch. Biochem. BioPhy, 314: 392-398.
    St Leger RJ, Joshi MJ, Bidoch KA, Roberts DW. 1996. Construction of an improved mycoinsecticide over expressing a toxic protease [J]. Proc. Natl. Acad. Sci. USA, 93: 6349-6354.
    St Leger RJ, Joshi MJ, Bidoch KA, Roberts DW. 1996. Biochemical characterization and ultrastructural localization of two extracellular trypsins produced by in infected cuticles [J]. Appl. Environ. Microbiol, 62: 1257-1264.
    St Leger RJ. 2007. Metarhizium anisopliae as a model for studying bioinsecticidal host pathogen internations [J]. In: Maurizio V, Jonathan G (eds) Novel Biotechnologies for Biocontrol AgentEnhancement and Management. Springer, Netherlands, pp 179-204.
    Soares MB, Bonaldo MF, Su L. 1994. Construction of a normalized cDNA Library [J]. Proc Natl Acad Sci USA, 91: 9228-9232.
    Sowjanya Sree K, Padmaja V. 2008. Oxidative stress induced by destruxin from Metarhizium anisopliae (Metch.) involves changes in glutathione and ascorbate metabolism and instigates ultrastructural changes in the salivary glands of Spodoptera litura (Fab.) larvae [J]. Toxicon, 51(7): 1140-1150.
    Suzuki A, Taguchi H, Tamura S. 1970. Isolation and structure elucidation of three new insecticidal cyclodepsipeptides, destruxin C, D and desmethyl-destruxin B, produced by Metarhizium anisopliae [J]. Agr. Biol. Chem, 34: 813-816.
    Sweet SP, Douglas LJ. 1991. Effect of iron deprivation on surface composition and virulence determinants of Candida albicans [J]. Gen Microbiol, 137: 859-865.
    Takano Y, W Choi, TK Mitchell, T Okuno and RA Dean, 2003. Large scale parallel analysis gene expression during infection-related morphogenesis of Magnaporthe grisea. [J] Mol Plant Pathol, 4:337-347.
    Tzou P, De Gregorio E, Lemaitre B. 2002. How Drosophila combats microbial infection: a model to study innate immunity and host-pathogen interactions [J]. Curr. Opin. Microbiol, 5: 102-108.
    Valadares-Inglis MC, Inglis PW, Peberdy JF. 1997. Sequence analysis of the catalytic domain of a Metarhizium anisopliae chitinase [J]. Rev Bras Genet, 20: 161-164.
    Vartivarian S E, Anaissie E J, Cowart R E, Sprigg H A, Tingler M J, Jacobson. 1993. ES Regulation of cryptococcoal capsular polysaccharide by iron [J]. Infect. Dis, 67: 186-190.
    Verde F, DJ Wiley, et al. 1998. Fission yeast orb6, a ser/thr protein kinase related to mammalian rho kinase and myotonic dystrophy kinase, is required for maintenance of cell polarity and coordinates cell morphogenesis with the cell cycle [J]. Proc Natl Acad Sci USA, 95(13): 7526-7531.
    Vilcinskas A, Matha V, Gotz P. 1997. Inhibition of phagocytic activity of plamatacytes isolated from Galleria mellona by entomopathogenous fungi and their secondary metabolites [J]. Insect Physiol, 43(5): 475-483.
    Von Stein OD, Thies W G, Hofmann M. 1997. A high throughput screening for rarely transcribed differentially expressed genes [J]. Nucleic Acids Res, 25(13): 2598-2602.
    Wahlman M, Davidson BS. 1993. New destruxins from the entomopathogenic fungus Metarhizium anisopliae [J]. Nat. Prod, 56: 643-647.
    Wang CH, Rhie SG, Kim ST, Kim YR, Huh WK, Baek YU, Kang SO. 2002. Copper- and zinc-containing superoxide dismutase and its gene from Candida albicans [J]. Biochim.Biophys. Acta, 1427: 245-255.
    Wang Chengshu, Milton A Typas, Tariq M Butt. 2002. Detection and characterisation of pr1 virulent gene deficiencies in the insect pathogenic fungus Metarhizium anisopliae [J]. Microbiology, 251-255.
    Wang CS, St Leger RJ. 2005. Developmental and Transcriptional Responses to Host and Nonhost Cuticles by the Specific Locust Pathogen Metarhizium anisopliae [J]. Eukaryot. Cell, 4 (5): 937-947.
    Wang CS, Hu G, St Leger RJ. 2005. Differential gene expression by Metarhizium anisopliae growing in root exudate and host (Manduca sexta) cuticle or hemolymph reveals mechanisms of physiological adaptation [J]. Fungal Genet Biol, 42: 704?718.
    Wang CS, St Leger RJ. 2006. A collagenous protective coat enables Metarhizium anisopliae to evade insect immune responses [J]. Proc Natl Acad Sci USA, 103(17): 6647-6652.
    Wang CS, St Leger RJ. 2007. The MAD1 adhesin of Metarhizium anisopliae links adhesion with blastospore production and virulence to insects, and the MAD2 adhesin enables attachment to plants [J]. Eukaryot Cell, 6(5): 808-816.
    Wang CS, St Leger RJ. 2007. The Metarhizium anisopliae perilipin homolog MPL1 regulates lipid metabolism, appressorial turgor pressure and virulence [J]. Biol. Chem, 282(29): 21110-21115.
    Wang CS, Duan ZB, St Leger RJ. 2008. MOS1 osmosensor of Metarhizium anisopliae is required for adaptation to insect host hemolymph [J]. Eukaryot Cell, 7(2): 302-309.
    Wang P, Van Etten HD. 1992. Cloning and properties of a cyanide hydratase gene from the phytopathogenicfu ngus Gloeocercosporu sorghi [J]. Biochem Biophys Res Commun, 187: 1048-1054.
    Weissman SM. 1987. Molecular genetic techniques foe mapping the human genome [J]. Mol Biol Med, 4: 133-143.
    Welcher AA, Torres AR, Ward DC. 1986. Selective enrichment of specific DNA, cDNA and RNA sequences using biotinylated probes, avidin and copper-chelate garose [J]. Nucl. Acids, 14: 10027-10044.
    Wiemann S, Mehrle A, Bechtel S, Wellenreuther R, Pepperkok R, Poustka A. 2003. cDNAs for functional genomics and proteomics: the German Consortium [J]. Comptes rendus biologies, 326: 1003-1009.
    Wright MS, Raina AK, et al. 2005. A strain of the fungus Metarhizium anisopliae for controlling subterranean termites [J]. Econ Entomol, 98(5): 1451-1458.
    Xia Y, Clarkson JM, Charnley AK. 2001. Acid phosphatases of Metarhizium anisopliae during infection of the tobacco hornworm Manduca Sexta [J]. Arch Microbiol, 176: 427-434.
    Xia Y, Dean P, Judge AJ, Charnley AK. 2000. Acid phosphatases in the haemolymph of the desert locust, Schistocerca gregaria, infected with the Entomopathogenic fungus Metarhizium anisopliae [J]. Journal of Insect Physiology, 46: 1249-1257.
    Yeh SF, Pan W, Ong GT, Chiou AJ, Chuang CC, Chiou SH, Wu SH. 1996. Study of structure-activity correlation in destruxins, a class of cyclodepsipeptides possessing suppressive effect on the generation of hepatitis B virus surface antigen in human hepatoma cells [J]. Biochem. Biophys. Res. Commun, 229: 65-72.
    Zhao H, Charnley AK, Wang ZK, Yin YP, Li ZL, Li YL, Cao YQ, Peng GX, Xia YX. 2006.
    Identification of an extracellular acid trehalase and its gene involved in fungal pathogenesis of Metarizium anisopliae [J]. J Biochem, 140(3): 319-327.
    Zhao H, Charnley AK, Wang ZK, Yin YP, Li ZL, Li YL, Cao YQ, Peng GX, Xia YX (2006) Identification of an extracellular acid trehalase and its gene involved in fungal pathogenesis of Metarizium anisopliae. J Biochem 140(3):319-327.
    Zhang CS, Cao YQ, Wang ZK, Yin YP, Peng GX, Xia YX. 2007. A method to construct cDNA library of the entomopathogenic fungus, Metarhizium anisopliae, in the hemolymph of the infected locust [J]. Mol Biotechnol, 36(1): 23-31.
    Zhou H, H Hu, et al. 2007. O-Mannosyltransferase 1 in Aspergillus fumigatus (AfPmt1p) is crucial for cell wall integrity and conidium morphology, especially at an elevated temperature [J]. Eukaryot Cell, 6(12): 2260-2268.
    Zhulidov PA, Bogdanova EA, Shcheglov AS, Vagner LL, Khaspekov GL, Kozhemyako VB, Matz MV, Meleshkevitch E, Moroz LL, Lukyanov SA. 2004. Simple cDNA normalization using kamchatka crab duplex-specific nuclease [J]. Nucleic Acids Res, 32-37.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700