低渗透油层孔隙结构特征及剩余油分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了研究低渗透油层与高渗透油层孔隙结构的差异,从微观上找出低渗透油层驱油效率低的原因,本文以天然岩心压汞实验、扫描电镜实验、润湿性实验、驱油实验和岩心微观解剖实验为基础,结合统计分析和数值计算,研究了不同渗透率和润湿性的天然岩心中孔隙结构的分布规律、微观剩余油分布规律及剩余油饱和度与孔隙结构微观参数之间的关系;建立了适合水湿低渗透岩心的孔隙网络模型,研究了相渗曲线和剩余油饱和度与孔隙结构微观参数之间的关系,取得结果如下:
     统计分析了大庆油田外围低渗透油层的取芯井压汞资料,得出了渗透率和孔隙度的关系。通过作图可以看出,随着渗透率的增加,储层平均半径、中值半径和半径均值增大,且规律性较强;随着分选系数的增大,最大汞饱和度逐渐增大;随着渗透率的增加,孔隙结构特征参数、储渗参数逐步增加,在低渗透范围内( 0.01×10~(-3)μm~2 ~ 50×10~(-3)μm~2),储渗参数增加较快。
     取大庆油田不同渗透率级别天然岩心,首先进行室内实验,确定岩心的孔隙度、渗透率、原始含油饱和度、水驱采收率等参数,而后对进行了驱油实验的岩心进行处理,进行电镜扫描,得到不同放大倍数下能够清楚观察孔喉特征的图片,通过统计分析颗粒、孔隙、喉道等参数,分析其分布特点。
     实验结果表明:平均岩石颗粒半径随着渗透率增加较快,平均颗粒面积与周长比随着渗透率的增加而增大;孔隙面积、孔隙周长和两者之间的比值随着渗透率增加呈现不规则变化,但孔隙半径随着渗透率的增加而缓慢增大;喉道面积、喉道周长和二者之间的比值与渗透率无直接关系,喉道半径随着渗透率的增加而增大;低渗透岩心的平均配位数较小,随着渗透率的增加,平均配位数逐渐增大;随着渗透率的降低,平均孔喉比迅速增大,平均形状因子变小;随着孔隙半径、颗粒半径、喉道半径的增大,水驱采收率都有增大的趋势,喉道半径的增加对水驱采收率影响比较明显;水驱采收率随着平均配位数、平均形状因子、平均颗粒和平均孔隙面积周长比的增大而增加,而与平均喉道面积周长比无明显关系。通过回归分析可以看出,孔喉比形状因子对采收率的影响最大,是低渗透油田水驱采收率低的主要原因。
     利用景深扩展软件、测量软件,结合荧光分析技术,可实现对低渗透天然岩心自然断面上的孔隙半径、孔喉比、配位数、迂曲度、形状因子等微观参数和剩余油饱和度的测量。
     选取4块大庆外围和两块长庆油田低渗透岩心依次进行了润湿性实验、驱油实验和岩心微观解剖实验。结果表明:低渗透岩心以亲水为主;低渗透岩心的喉道半径分布范围比较集中,峰值高,喉道半径较小,是大庆油田低渗透油层区别于高渗透油层的显著特征,不同渗透率岩心的孔隙半径差别不大,而喉道半径相差较大,因此随着渗透率的降低,孔喉比急剧增加;随着渗透率的降低,各岩心配位数越小的分布频率越大、形状因子越小的分布频率越大、迂曲度越大的分布频率越大;大庆油田的不同渗透率岩心的配位数在2~3之间较集中,且曲线形态比较接近,而长庆油田的两块岩心配位数较大,孔隙连通好;大庆油田与长庆油田的相同渗透率级别岩心比较,迂曲度较大,形状因子较小,孔隙形状复杂。
     通过金相模式和荧光模式两种照片的对比,研究了岩心中微观剩余油分布规律。结果表明:水湿岩心中含剩余油的孔隙比例随孔隙半径减小而减小,而中性润湿岩心中含剩余油孔隙比例随孔隙半径的增加而减小;随着孔喉比的增大,含剩余油孔隙比例增加;随着配位数的减小,含剩余油孔隙比例增加;随着迂曲度的增大,含剩余油孔隙比例均增大;随着形状因子的减小,含剩余油孔隙比例增加。长庆油田的两块岩心与同等渗透率的大庆油田的岩心相比较,相同孔喉比、迂曲度或形状因子条件下,含剩余油孔隙比例较小,说明驱替效果较好。
     为了研究相渗曲线和剩余油饱和度与孔隙结构微观参数之间的关系,建立了适合水湿低渗透岩心的孔隙网络模型,并进行了模拟计算,结果表明:在水湿条件下,毛管力作用在驱油过程中是一种水驱油的动力,随着半径的减小,残余油饱和度减小,两相区变大,水驱采收率增加;随着孔喉比增大,残余油饱和度增大,两相共渗区变小,水驱采收率变小;随着配位数的增大,两相共流区变大,残余油饱和度减小,端点处饱和度下的相对渗透率增大,相对来说,对非润湿相油的相对渗透率影响更大,油滴流动通道增加,提高了油相渗透率,流体被捕集的机会减少,使形成剩余油的概率下降,水驱采收率提高;随着形状因子的减小,残余油饱和度增加,两相共流区变小,水驱采收率变小。
For researching the differences of pore configuration between low permeability reservoir and high permeability reservoir, we found out the reasons of low permeability reservoir with low flooding efficiency from the microscope, the paper was on the base of five experiments(the pressing mercury experiment of the natural core, the scanning electron microscope experiment, the wetting experiment, the driving oil experiment and the micro-dissection experiments of the core ) and combined with statistical analysis and number value analysis, the distribution law of the pore structure in the natural cores with different permeability and wettability, the law of the micro surplus oil distribution, and the relationship between the saturation of remaining oil and micro parameters of the pore structure was studied; The pore-scale modelling which is suitable of the deluge low permeability cores has been set up and the relationship between the relative permeability curves, the saturation of remaining oil and micro parameter of the pore structure was also studied. The results showed as follow:
     According to the statistical analysis of the mercury penetration data of coring well from Daqing outside oil fields with low permeability, we obtained the relationship between permeability and porosity. As can be seen through the mapping, the average radius of reservoir, the median radius and the mean radius increased with the permeability increasing, and it presented apparent regularity; The maximum mercury saturation increased gradually with grading factor increasing; At the same time,pore configuration characteristic parameters and reservoir permeable parameters also increased gradually with permeability increasing, within low permeability reservoir( 0.01×10 ~(-3)μm 2 ~ 50×10 ~(-3)μm~2), reservoir permeable parameters had a relatively rapid growth .
     Taking of natural cores with different permeability levels from Daqing Oilfield, first of all, we carried out indoor experiments to confirm some parameters such as porosity, permeability, initial oil saturation, water flooding recovery and so on, then we coped with the cores using flooding experiments and processed them with scanning electron microscope, at last we obtained the characteristics of pore throat pictures which can be observed clearly under different magnifications. Through statistical analysis of particles, pores, throat and other parameters, we can analyze their distribution.
     The experiment results showed that the average rock particle radius increased rapidly with permeability increasing, and the ratio between the average particle area and perimeter increases when the permeability increased; The pore area, the pore perimeter and the ratio between them presented irregular changes but the pore radius increased slowly with permeability increasing; The throat area, the throat perimeter and the ratio between them had no direct relationship with permeability, and throat radius increased with permeability increasing; The average coordination number of low permeability core was less, and the average coordination number increased with permeability increasing; The average pore throat ratio increased rapidly and the average shape-dependent constant became small when the permeability reduced; As the pore radius, the particle radius and the throat radius increased, the water flooding recovery has increased trend, then increasing throat radius had an obvious effect on water flooding recovery; The water flooding recovery increased with the average coordination number, the average shape-dependent constant and the ratio between the average pore area and perimeter increasing, but it had no obvious relationship with the ratio between the average throat area and perimeter.
     By the combination of depth of field expansion software and measurement software with the fluorometric analysis technique, the measurement on microscopic parameter such as pore radius, the pore throat ratio, the coordination number, the tortuosity, the shape-dependent constant and the measurement on remaining oil saturation of natural cross section in low permeability cores can be realized.
     The wettability experiment was carried on 4 pieces of low permeability cores in Daqing peripheral oilfield and 2 pieces of low permeability cores in Changqing oilfield, and the flooding experiment, the core micro-anatomy experiment was carried in turn. The result indicated that the low permeability cores were more water wetting, and that the throat radius distribution of low permeability cores were relatively concentrated with high peak and smaller throat radius, which were the significant features of the low-permeability reservoirs different from the high-permeability reservoirs in Daqing oilfield. In the cores of different permeability pore radius were not very different, while the throat radius had big differences, so with the decrease of permeability, the pore throat ratio increased sharply; And with the decrease of permeability, the distribution frequency of the cores with smaller coordination number or with smaller shape-dependent constant or with bigger tortuosity were larger. The coordination number of different permeability cores was concentrated between 2~3 and whose curve shape was closer in Daqing oilfield, while the coordination number of the two cores in Changqing oilfield was relatively bigger with good pore connectivity. Comparing the cores of the same permeability level in Daqing oilfield with that in Changqing oilfield, the tortuosity was lager and the shape-dependent constant was smaller and the pore shape was more complex.
     According to the comparison between two kinds of photographs of the metallographic type and the fluorescent type, the distribution law of the microcosmic remaining oil in cores was studied. The result indicated that: In the water wetting cores the pores containing remaining oil proportion decreased with the decrease of the pore radius, while in the intermediate wetting cores the pores containing remaining oil proportion decreased with the increase of the pore radius; With the increase of the pore throat ratio, the pores containing remaining oil proportion increased; With the decrease of the coordination number, the pores containing remaining oil proportion increased; With the increase of the tortuosity, the pores containing remaining oil proportion all increased; With the decrease of the shape-dependent constant, the pores containing remaining oil proportion increased. Comparing the two cores of Changqing oilfield with the same level permeability cores of Daqing oilfield, under the situation of the same pore throat ratio, plane tortuosity or shape-dependent constant, the proportion of the pores containing remaining oil were smaller, which showed the displacement effect was better.
     In order to study the relationship between permeability ratio curve and remaining oil saturation and pore structure microcosmic parameters, the pore-scale modelling fitting for the water wetting low permeability cores was established , and the simulation calculation was carried out. The results showed that: under the water wetting condition, capillary force was a kind of driving force for water-flooding in oil displacement process; With the decrease of the radius, the residual oil saturation decreased, and the two-phase region become larger, and the water-flooding recovery efficiency increased; With the increase of the pore-throat ratio, the residual oil saturation increased, and the two-phase flow region become smaller, and the water- flooding recovery efficiency decreased; With the increase of the plane coordination number, and the two-phase flow region become larger, and residual oil saturation decreased, and the relative permeability along the saturation of end point increased. Relatively speaking, the influences on the non-wetting oil phase were larger, and oil-dripping flow channel increased, which improved the oil permeability, and the opportunity of fluid being captained decreased, so the forming probability of remaining oil decreased, and water-flooding recovery efficiency increased; With the decrease of the shape factor, the residual oil saturation increased, and the two-phase flow region decreased, and water-flooding recovery efficiency increased.
引文
[1]黄延章等.低渗透油层渗流机理[M].北京:石油工业出版社,1998:58
    [2]李道品等.低渗透砂岩油田开发[M].北京:石油工业出版社,1997:1-153
    [3]李道品.低渗透油田高效开发决策论[M].北京:石油工业出版社,2003:4-7.
    [4]耿龙祥,曹玉珊,易志伟,等.濮城油田砂岩储集层物性下限标准研究[J].石油勘探与开发,1999,26(1):81-83.
    [5] MORROW W N R.Physics and thermodynamics of capillary action in porous media[J].Industrial and Engineering Chemistry Research, 1970,63:32-56.
    [6]黄述旺,蔡毅,魏萍,等.储层微观孔隙结构特征空间展布研究方法[J].石油学报,1994(增刊):76-80.
    [7]周宏伟,谢和平.孔隙介质细观渗流DLA效应的实验研究[J].石油学报,2001,22(3):52-57.
    [8]于俊波,郭殿军,王新强.基于恒速压泵技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
    [9]胡志明,把智波,熊伟,等.低渗透油藏微观孔隙结构分析[J].大庆石油学院学报,2006,30(3):51-55.
    [10]沈平平.油水在多孔介质中的运动理论与实践[M].北京:石油工业出版社,2003:1-30
    [11]罗蛰潭,王允成.油气储集层的孔隙结构[M].北京:科学出版社,1986:226-251.
    [12]宋付权,刘慈群.低渗透油藏水驱采收率影响因素分析[J].大庆石油地质与开发,2000, 19(1):30-32
    [13]韩德金,张凤莲,周锡生.大庆外围低渗透油藏注水开发调整技术研究[J].石油学报,2007,28(1):83-86.
    [14]王玉普,计秉玉,郭万奎.大庆外围特低渗透特低丰度油田开发技术研究[J].石油学报,2006,27(6):70-74.
    [15]王玉英,王江.低渗透储层形变对原油采出程度的影响[J].油气田地面工程,2007,26(12):10-12.
    [16]姚约东,葛家理,李相方.低渗透油藏油水两相渗流研究[J].石油大学学报(自然科学版),2005,29(2):52-56.
    [17]刘爱武,李学文.低渗油藏的两相渗流特征及其影响因素[J].石油天然气学报,2006,28(3):325-327.
    [18]李劲峰,曲志浩,孔令荣.贾敏效应对低渗透油层有不可忽视的影响[J].石油勘探与开发,1999,26(2):93-96.
    [19]孙卫,史成恩,赵惊蛰等.X-CT扫描成像技术在特低渗透储层微观孔隙结构及渗流机理研究中的应用[J].地质学报,2006,80(5):775-780.
    [20]高旺来.安塞低渗油田孔隙结构对渗流特征曲线的影响[J].石油勘探与开发,2003,30(1):79-80.
    [21]李存贵,徐守余.长期注水开发油藏的孔隙结构变化规律[J].石油勘探与开发,2003,30(2):94-96.
    [22]傅强,邓礼正.辽河盆地荣37块气田下第三系储层孔隙结构及非均质性研究[J].成都理工学院学报,1997,24 (4):43-48.
    [23]钟大康.辽河油田新开地区油气储集层孔隙结构特征[J].新疆石油地质,1998,19(4):284-286.
    [24]孔令荣,曲志浩,万发宝,等.砂岩微观孔隙模型两相驱替实验[J].石油勘探与开发,1991,17(4):79-85.
    [25]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-46.
    [26]刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000,27(6):47-49.
    [27]姜汉桥,刘奋,洪光明,等.用概率模型方法确定卞东油田高渗通道地质参数的研究[J].石油勘探与开发,1997,24(1):55-58.
    [28]张家良,黄在友,王贺林,等.枣南孔一段油藏强水淹层孔喉半径变化半定量分析和治理对策[J].石油勘探与开发,1999,26(2):56-57.
    [29]赵跃华,赵新军,翁大丽,等.利用动态测试资料研究砂砾岩油层物性变化特征[J].石油勘探与开发,1999,26(2):60-63.
    [30]杨家福.胜坨油田砂体沉积类型与储层特征[J] .石油学报,1988,9 (2):43-56.
    [31]尚根华.低渗透非线性渗流规律研究[D].中国科学院渗流流体力学研究所博士论文
    [32]谭雷军等.低速非达西流启动压力梯度的确定[J].油气井测试,2000,9(4):5-7
    [33]吕成远,王建,孙志刚.低渗透砂岩油藏渗流启动压力梯度实验研究[J].石油勘探与开发,2002,29(1):25-28
    [34]阮敏,何秋轩.低渗透非达西渗流临界点及临界参数判别法[J].西安石油学院学报,1999,14(3):36-40
    [35]宋付权,刘慈群.含启动压力梯度油藏的两相渗流分析[J].石油大学学报(自然科学版),23(3),1999,47-50
    [36]胡志明.低渗透储层微观孔隙结构特征研究及其应用[D].大庆石油学院硕士论文
    [37]王尤富,凌建军.低渗透砂岩储层岩石孔隙结构特征参数研究[J].特种油气藏,1999,6(4):26-28
    [38]王瑞飞,陈明强,孙卫等.特低渗透砂岩储层微观孔隙结构分类评价[J].地球学报,2008,29(2):213-220
    [39]杨二龙.孔隙尺度下聚合物驱油渗流规律研究[D].大庆石油学院博士论文
    [40]曾联波,张建英.大民屯凹陷静北潜山油藏裂缝及其渗流特征[J].石油大学学报(自然科学版),2001,25(1):34-37
    [41]文慧俭,闫林,姜福聪,等.低孔低渗储层孔隙结构分形特征[J]大庆石油学院学报,2007,31(1):15-18
    [42]任晓娟.低渗砂岩储层孔隙结构与流体微观渗流特征研究[D].西北大学博士学位论文
    [43]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J].新疆石油地质,2005,26(3):280-284
    [44]徐霜,张兴焰,闫志军,等.低渗透储层微观孔隙结构及其微观剩余油分布模式[J].西部探矿工程,2005,113(9):57-59
    [45]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44
    [46]张君龙,柳成志,赵雪梅,等.沈84_安12块微观孔隙结构特征研究[J].内蒙古石油化工,2008,5:130-133
    [47]胡霞,黄得利,李照勇.松辽盆地宋芳屯油田扶杨油层孔隙结构及其影响因素[J].上海地质,2008,105(1):60-62
    [48]姜洪福,陈发景.松辽盆地三肇地区扶杨油层储集层孔隙结构及评价[J].现代地质,2006,20 (3):465-472
    [49]解伟.西峰庆阳区长8储层微观孔隙结构及渗流特征研究[D].西北大学博士学位论文
    [50]宋广寿,高辉,高静乐,等.西峰油田长8储层微观孔隙结构非均质性与渗流机理实验[J].吉林大学学报(地球科学版),2009,39 (1):53-59
    [51]王学武,杨正明,刘霞霞,等.榆树林油田特低渗透储层微观孔隙结构特征[J].石油天然气学报,2008,30 (2):508-510
    [52]鄢捷年.油藏岩石湿润性对注水过程中驱油效率的影响[J].石油大学学报(自然科学版),1998,22(3):43-46
    [53]朱玉双,曲志浩,孔令荣,等.靖安油田长6、长2油层驱油效率影响因素[J].石油与天然气地质,1999,20(4):333-335
    [54]王尤富,鲍颖.油层岩石的孔隙结构与驱油效率的关系[J].河南石油,1999,13(1):23-25
    [55]蔡忠.储集层孔隙结构与驱油效率关系研究[J].石油勘探与开发,2000,27(6):45-49
    [56]张绍东,王绍兰,李琴等.孤岛油田储层微观结构特征及其对驱油效率的影响[J].石油大学学报(自然科学版),2002,26(3):47-53
    [57]熊敏,王勤田.盘河断块区孔隙结构与驱油效率[J].石油与天然气地质,2003,24(1):42-44
    [58]俞启泰.俞启泰油田开发论文集[M].北京:石油工业出版社,1999:503-509.
    [59]李向良,李奎祥.利用计算机层析(CT)确定岩心的基本物理参数[J].石油勘探与开李玉彬发,1999,26(6):86-91.
    [60] Wang S Y, et al. Reconstruction of oil saturation distribution histories during immiscible liquid-liquid displacement by computer-assisted tomography. AIChE Jour. 1984,30(4):642-646.
    [61] Wellington S L, Vinegar H J. X-ray computerized to mography. JPT, Aug.1987,885-898.
    [62] Sedgwick G E, Miles-dixon E. Application of X-ray imaging techniques to oil sands experiments. JCPT, 1988,27(2):104-110.
    [63] Withjack E M. Computed tomography for rock-property determination and fluid-flow visualization. SPE Formation Evaluation. Dec 1988, 696-704.
    [64] Petrovic A M, Siebert J E and Rieke P E. Soil bulk density analysis in three dimensions by computed tomographic scanning. Soil Sci. Soc. Am. Jour., 1982, 46(3):445-450.
    [65] Ander S H, Gantzer C J, Boone J M, etal. Rapid nondestructive bulk density and soil water content determination by compute dtomography. Soil Sci. Soc. Am.Jour., 1988, Vol.52, 35-40.
    [66]戴贤忠,李小孟,王家新,等. CT在油气藏储量计算参数测定中的应用[J].石油学报,1993,14(4):60-68.
    [67]许险峰,徐锡金,霍霞.共聚焦激光扫描显微镜技术[J].激光生物光报,2003,12(2):156-159.
    [68] WHITE JG, AMOS WB. Confocal microscopy comes of age[J] . Nature,1987,328(6126):183-184.
    [69] MINSKY M. Memoir on inventing me confocal scanning microscope[J]. Scanning,1988,128-138
    [70] EGGER MD. The development of confocal microscopy[J]. TINS,1989,l2:11.
    [71] WILSON T. Three-dimensional imaging in confocal systems[J] . J Microsc, l989,153(pt2):161-169
    [72] PADDOCK S W. Confocal laser scanning microscopy[J]. Biotechniques,1999,27(5):992-1004.
    [73]扫描电镜/能谱分析在油气勘探开发中的应用[J].石油实验地质,2001,23(3):341-343
    [74]于丽芳,杨志军,周永章,等.扫描电镜和环境扫描电镜在地学领域的应用综述[J].中山大学研究生学刊(自然科学、医学版),2008,29(1):54-58.
    [75]徐霜,张兴焰,闫志军,等.低渗透储层微观孔隙结构及其微观剩余油分布模式[J].西部探矿工程,2005,113 (9):57-58
    [76]王宝锋,赵忠扬.环境扫描电镜及其在石油技术中的应用[J].油田化学,1999,16 (3):278-281
    [77]胡书毅,尤少燕.济阳坳陷下第三系冲积扇储层的扫描电镜研究[J].电子显微学报,2004,13 (4):471
    [78]文玲.靖安油田延长组低孔低渗储层的扫描电镜研究[J].电子显微学报,2003,22 (4):352-357
    [79]李剑齐,李维峰.靖边气田上古生界储集层孔隙结构研究[J].石油天然气学报,2005,27 (3):442-444
    [80]蒲秀刚,黄志龙,周建生,等.孔隙结构对碎屑储集岩物性控制作用的定量描述[J].西安石油大学学报,2006,21(2):15-17
    [81]林玉保,张江,王新江.喇嘛甸油田砂岩孔隙结构特征研究[J].大庆石油地质与开发,2006,25(6):39-42
    [82]刘中云.临南油田储集层孔隙结构模型与剩余油分布研究[J].石油勘探与开发,2000,27(6):47-49
    [83]熊良淦,王胜利,史淑芳,等.前梨园凹陷西坡深层低渗储层成岩相与孔隙演化研究[J].石油勘探与开发,2003,10(5):37-39
    [84]曹寅,朱樱,黎琼.扫描电镜与图像分析在储层研究中的联合应用[J].石油勘探与开发,2001,23(2):221-225
    [85]李学万,宋柏荣,高占琴,等.扫描电镜在辽河油田变质岩储层研究中的应用[J].电子显微学报,2005,24(4):335-336
    [86]文玲,李时平.五号桩油田沙三下湖相浊积扇砂体的扫描电镜研究[J].电子显微学报,2003,22(6):617-615
    [87]盖东玲,王胜利,秦贵丞,等.中原油田文东沙三中储层孔隙结构特征评价[J].内蒙古石油化工,2003,27(1):116-120
    [88]谢然红,肖立志.储层流体及其在岩石孔隙中的核磁共振弛豫温度特性[J].地质学报,2007,81(2):280-284.
    [89] Fatt I. The net work model of porousm id ia I. Capillary pressure characteristics[J] . Trans AME, 1956:144-159.
    [90] Du llien F A,Francis S, KaiY. Hydraulic continuity of residual welting phase in porous media[J]. Colloid and interface science, 1991: 210-218.
    [91] Dullien F A,Zarcone I F,Maedonald A C. The effects of surface roughness on the capillary-pressure curves and the heights f capillary rise in glass bead packs[J]. Journal of Colloid and Interface science,1989:362-372.
    [92]高慧梅,姜汉桥,陈民锋.储层孔隙结构对油水两相相对渗透率影响微观模拟研究[J].西安石油大学学报(自然科学版),2007,22(2):56-59.
    [93]高慧梅,姜汉桥,陈民锋,等.储集层微观参数对油水相对渗透率影响的微观模拟研究[J].石油勘探与开发,2006,33(6):734-737.
    [94]乔能林.三维孔隙网络模型渗流机理算法及软件研制[D].中国地质大学硕士论文,2008:1-30.
    [95]姚军陶军李爱芬.利用三维随机网络模型研究油水两相流动[J].石油学报,2007,28(2):94-97.
    [96]王克文,关继腾,范业活.孔隙网络模型在渗流力学研究中的应用[J].力学进展,2005,35(3):353-359.
    [97] Jerauld G R, Salter S J. The effect of pore-structure on hysteresis in relative permeability and capillary pressure: Pore level modeling[J] . Transport in Porous Media, 1990:103-151.
    [98] Koplik J,Redner S,Wilk inson D. Transport and dispersion in random networks withpercolation disorde[J]. Physical Review A, 1988, 37(7): 2619-2636.
    [99] Bryant S,BluntM. J. Prediction of relative permeability in simple porous media[J]. Physical ReviewA,1992:2004-2011.
    [100] Mcdougal S R,Sorbie K S. The impact of wettability on waterflooding pore-scale simulation[J]. SPE Reservoir Engineering,1995:208-213.
    [101] Wilk inson D., Willemsen J F. Invasion Percolation-a New Form of Percolation Theory[J]. Journal of Physics A:Mathem atical and Genera,1983:3365-3376.
    [102] AHRaoush R,Thompson K E,Willson C S.Comparison of network generation techniques for unconsolidated porous media systems[J]. Soil Science Society of America Journal, 2003:687-1700.
    [103]高慧梅,姜汉桥,陈民锋.多孔介质孔隙网络模型的应用现状[J].大庆石油地质与开发,2007,26(2):74-79.
    [104]王金勋,吴晓东,杨普华,等.孔隙网络模型法计算气液体系吸吮过程相对渗透率[J].天然气工业,2003,23(2):8-11.
    [105]吴晓东,潘新伟,王金勋,等.气藏水束缚堵塞规律的研究[J].石油大学学报,2005,29(1):41-43.
    [106]胡雪涛,李允.随机网络模拟研究微观剩余油分布[J].石油学报,2000,21(4):46-51.
    [107]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [108] Rintou IM D,Torquato S,Yeong C. Structure and transport properties of a porousm agnetiegel via x-ray microtom ography [J]. Physical Review E, 1996: 2663-2669.
    [109] Okabe H,BluntM J. Multiple-point statistics to generate geologically realistic pore-scale representations[C]. Proceedings of the society of core analysts annual meeting, 2003, 22-25.
    [110] Mohanty K K,Davis H T, Scriven L E. Physics of Oil Entrapment in Water-wet Rock [J]. SPE Reservoir Engeneering 1987,2(1):113-128.
    [111] Blunt M,King P.Relative Permeabilities from two and three-dimensional pore-scale network modeling [J].Transport in Porous Media,1991,407-433.
    [112]李振泉,侯健,曹绪龙,等.储层微观参数对剩余油分布影响的微观模拟研究[J].石油学报,2005,26(6):69-73.
    [113]陈民锋,姜汉桥.基于孔隙网络模型的微观水驱油驱替特征变化规律研究[J].石油天然气学报,2006,28(5):91-96.
    [114]侯健,李振泉,关继腾,等.基于三维网络模型的水驱油微观渗流机理研究[J].力学学报,2005,37(6):783-787.
    [115]王克文,孙建孟,关继腾.聚合物驱后微观剩余油分布的网络模型模拟[J].中国石油大学学报,2006,30(1):72-76.
    [116]姚军,陶军,李爱芬.利用三维随机网络模型研究油水两相流动[J].石油学报,2007,28(2):94-98.
    [117]于俊波,郭殿军,王新强.基于恒速压汞技术的低渗透储层物性特征[J].大庆石油学院学报,2006,30(2):22-25.
    [118]时宇,齐亚东,杨正明,等.基于恒速压汞法的低渗透储层分形研究[J].油气地质与采收率,2009,16(2):88-90.
    [119]刘峰.基于恒速压汞技术的基山砂体孔隙结构特征研究[J].中国科技信息,2008
    [120]朱永贤,孙卫,于锋.应用常规压汞和恒速压汞实验方法研究储层微观孔隙结构[J].天然气地球科学,2008,19(4):553-556.
    [121]王金勋,杨普华,刘庆杰.应用恒速压汞实验数据计算相对渗透率曲线[J].石油天然气学报,2003,27(4):66-69.
    [122]吴文祥,刘洋.聚合物驱后岩心孔隙结构变化特性研究[J].油田化学,2002,19(3):253-256.
    [123]米红,张文璋.实用现代统计分析方法[M].北京:当代中国出版社,2000:241-247.
    [124]杨正明.低渗透油藏渗流机理及其应用[D].中科院博士学位论文
    [125]古建伟.高含水开发期基于微观渗流机理的宏观油藏数值模拟研究[D].中国海洋大学博士学位论文
    [126]吴济畅,王强.毛管数对濮城沙一下油藏渗流规律的影响研究[J] .油气采收率技术,1999,6(1):50-56.
    [127]熊维亮,潘增耀,王斌.特低渗透油田裂缝发育区剩余油分布及调整技术[J].石油勘探与开发,1999,23(5):31-34
    [128]俞启泰.注水油藏_大尺度_未波及剩余油开采技术[J].新疆石油地质,2002,23(2):134-138
    [129]杨二龙,宋考平,张勇,等.应用改进的POLYMER软件研究聚合物驱后剩余油分布[J].石油钻采工艺,2006,28(5):38-41
    [130]李孟涛,张英芝,刘先贵.大庆榆树林油田天然气驱油研究[J].天然气工业,2006,26(5):84-86
    [131]何秋轩,高永利.沈阳油田储层微观驱油效率研究[J].西南石油学院学报,1996,48(2):20-24
    [132]贺承祖,华明琪.低渗砂岩气藏的孔隙结构与物性特征[J] .新疆石油地质,2005,26(3):280-283
    [133]兰玉波,杨清彦,李斌会.聚合物驱波及系数和驱油效率实验研究[J].石油学报,2006,27(1):64-68
    [134]张立娟,岳湘安.亲油岩石壁面残余油膜的微观驱替机理[J].油气地质与采收率,2007,14(1):79-82,85
    [135] Robert.M.Sneider等著,叶秋成译.储集层研究提高勘探成功率[M].油气勘探译丛书,石油科技情报研究所,1985:5-8.
    [136]郭双亭,李玉桓,朱宜南.荧光图象技术判断油层水淹状况研究[J].河南石油,2003,14(3):13-17.
    [137]王淑芝,李松花,王兆安,等.利用岩屑孔隙物质的荧光性判别油水层[J].大庆石油地质与开发,2003,22(5):13-16.
    [138] Per H. Valvatne.Predictive Pore-Scale Modelling of Multiphase Flow [D].Imperial college london博士学位论文
    [139] Mohammad Piri.P Pore-Scale Modelling of Three-Phase Flow [D].Imperial college london博士学位论文
    [140] Mohammed S. Al-Gharbi . Dynamic Pore-Scale Modelling of Two-Phase Flow [D].Imperial college london博士学位论文
    [141] Hiroshi Okabe.Pore-Scale Modelling of Carbonates [D].Imperial college london博士学位论文
    [142] Hassan S. Behbahani.Analysis, Scaling and Simulation of Counter-Current Imbibition [D].Imperial college london博士学位论文
    [143] Xavier Lopez.Pore-Scale Modelling of Non-Newtonian Flow [D].Imperial college london博士学位论文
    [144] Vural Sander Suicmez.Pore Scale Simulation of three phase flow [D].Imperial college london博士学位论文
    [145] Mathieu Jurgawczynski.Predicting absolute and relative permeabilities of carbonate rocks using image analysis and effective medium theory [D].Imperial college london博士学位论文
    [146] Anwar S.Z Al-Kharusi.Pore Scale Characterization of Carbonate Rocks [D].Imperial college london博士学位论文
    [147] Matthew E. Rhodes.Transport in heterogeneous porous media [D].Imperial college london博士学位论文
    [148] Hu Dong.Micro CT Imaging and Pore Network Extraction [D].Imperial college london博士学位论文
    [149] Taha Sochi . Pore-Scale Modeling of Non-Newtonian Flow in Porous Media [D].Imperial college london博士学位论文
    [150] Blunt M J, King M J. Simulation and theory of two-phase flow in porous media[J].Physical Review A, 1992, 46(12):7680-7699.
    [151] Bryant,S.P., King,R., and Mellor,D.W. Network model evaluation of permeabilityand spatial correlation in a real random sphere packing[J].Transport in Porous Media, 1993, 11: 53–70.
    [152] Mason G,Morrow N R.Capillary behavior of a perfectly wetting liquid in irregular triangular tubes [J].J. of Colloid and Interface Science, 1991, 141(1): 262-274.
    [153] Patzek, T. W., Verification of a complete pore network simulator of drainage and imbibition [J].SPE Journal, 6, 2001:44-156
    [154] Patzek, T. W., and J. G. Kristensen, Shape factor correlations of hydraulicconductance in noncircular capillaries II. Two-phase creeping flow[J].Journalof Colloid and Interface Science, 2001, 236: 305-317,.
    [155] Patzek, T. W., and D. B. Silin, Shape factor and hydraulic conductance innoncircular capillaries I. One-phase creeping flow[J].Journal of Colloid and Interface Science, 2001, 236: 295-304.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700