基于聚乙二醇链段杂化固体电解质的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文设计合成了两种不同的聚合物固体电解质:聚乙二醇/SiO_2固体电解质和聚乙二醇单甲醚/SiO_2固体电解质。用红外光谱、扫描电镜、透射电镜、X射线衍射、热重—差热等测试方法对固体电解质膜进行表征。用DDS—11A型离子电导率仪对固体电解质膜进行离子电导率测量。
     对聚乙二醇/SiO_2电解质膜,正硅酸乙酯水解产生的无机SiO_2粒子通过化学键的作用与聚合物基体结合形成了交联结构,使得聚合物电解质具有比较好的热稳定性。随温度升高,固体电解质的离子电导率出现最大值。离子电导率与PEG与HDI的比值有关,当两者比值为1:2时,离子电导率最高。离子电导率随着固体电解质中聚乙二醇链段长度增加而出现最大值,此时链段长度为800。
     前驱体和正硅酸乙酯(TEOS)在酸性条件下水解得到聚乙二醇单甲醚/SiO_2电解质溶液的SiO_2,粒径范围比较大,并形成了外层为聚合物,内层为SiO_2的具有核壳结构的粒子,正硅酸乙酯加入量越多,则其粒子容易发生团聚。正硅酸乙酯在酸性条件下水解形成无机SiO_2粒子后,得到的固体电解质膜呈非晶态,无机SiO_2破坏了聚合物的结晶。离子电导率随着温度升高而增加,因为温度升高有利于离子迁移。离子电导率随固体电解质中聚乙二醇单甲醚分子链段增加而增加。随着TEOS加入量增多,离子导电率增加,但是过量的TEOS会导致离子电导率下降。在不加入TEOS情况下,锂离子也可能通过Si-O-Si键中的氧来传递,离子电导率较大。随着高氯酸锂用量的增加,离子电导率出现最大值,此时高氯酸锂与聚乙二醇单甲醚中EO单元摩尔比为1:5。
In this dissertation,two kinds of Poly(ethylene glycol)/SiO2 solid electrolyte and methoxy Poly(ethylene glycol)/Si02 solid electrolyte were designed and sythesized. The structure of hybrid solid electrolytes were characterized by FT-IR, SEM, TEM. XRD, TG-DSC etc.. The ionic conductivity(σ ) of the solid electrolyte membrane was measured with Model DDS-11A conductor.
    For Poly(ethylene glycol)/SiO2 solid electrolyte membrane , Polymer solid electrolyte membrane had good heat resistance because inorganic SiO2 particles had a chemical bond with the polymer, σ showed a maximum conductivity with increasing of temperature, σ reached the highest at PEG/HDI of 1:2. The hybrid solid electrolyte showed a maximum value when the segments of Poly(ethylene glycol) were 800.
    The diameter distribution of core-shell SiO2 particles in the acid environment synthesized by sol-gel reaction were not uniformly. If the amount of TEOS used was abundant, SiO2 particles aggregated. SiO2 particles destroyed the crystallization of polymer,and the membrane was amorphous, σ increased as temperature rised, because the Li+ could move easily, σ rised with the rising of segments of methoxy Poly(ethylene glycol) . σ rised when the amount of TEOS increased, but too much TEOS added result in a lower conductivity. Without TEOS, σ was relatively higher for Li+ might transmit through oxygen in Si-O-Si bond. Conductivity rised with the increasing of [Li+]/[EO] till the proportion of [Li+]/[EO] was 1:5.
引文
[1] Fenton D E,Wright P V, Parker J M .Polymer.1973, 14: 589
    [2] Wright P V.Polymer.1975,7:319
    [3] Armand M B,Chabagno J M ,Duclot. Amsterdam(Elsevier). 1979:131
    [4] 吴伯荣,苏兰英.高分子材料科学与工程.1997,6:128~131
    [5] Quatarone E,Tomasic. Electrochimica Acta. 1998,43:1435~1439
    [6] Stallworth P E,Greenbaum S G.Electrochimica Acta. 1995,40:2137~2140
    [7] Guyomard D T, Tarascon J M.Highvoltage stable liquid electrolyte for Lil_(1-x)Mn_2O_4/Carbon rocking-chair lithium batteries.Power Sources. 1995,54:92~98
    [8] Guan J G, Yuan R Z,Xie H Q.Study on conductivity of two kinds of cross-linked polyether solid electrolytes and electroheological properties of anhydrous suspensions based on them.Polymer. 1998,5307~5313
    [9] Xu W, Zhang X Z,Deng Z H.Solid State Ionics.1998,111(3~4):219
    [10] Alan V, Chadwick.Nature.2000,408:925~926
    [11] Murata K.Electrochimica,Acta. 1995,40:2177~2184
    [12] Baudry P, Lascauds,Majastre H. Power Source. 1997,68:432~435
    [13] 土田英俊,户捣直树等编,方世壁译.高分子络合物的电子功能.1992:111~129
    [14] Hou X P, Siow K S. Polymer electrolytes based on acrylonitrile-butadienestyrene Copolymer. Solid State Electro-chemistry
    [15] Appetecchi G B,Groce F.Power Sources. 1997,66:77~82
    [16] Song J Y, Wang Y Y.Power Sources,1999,77 1:183~197
    [17] Killis A,Lenest J F, Gandini A. Solid State Ionics.1984,14:231~237
    [18] 倪建龙,林青云,王佛松.高分子学报.1992,10:585~588
    [19] 汪国杰,周震淘,潘慧铭.高分子材料科学与工程.2001,5:78~81
    [20] Reiche A,Tubke J,Sabder B.Solid State Ionics. 1996,85:121
    [21] Misha R,Baskaran N,Ramakrishan P A.Solid State Ionics. 1998,112:261~273
    [22] 余春晴,黄海燕,吴益华.电源技术.2000,3:139-140
    [23] 侯欣平,张肇熙,夏笃炜.高分子材料科学与工程.1996,2:119~122
    [24] Gozdz A S,Tarascon J M,Waren P C.USP,1995,5:418
    
    
    [25] Kwawiec W.Power Sources.1995,54:310~315
    [26] 于明昕,石桥,周啸.高分子学报.2002,1:38~42
    [27] Sun H Y, Sohn H J. Electrochemica soc.1999,146(5):1672~1674
    [28] Matsuo,Kuwano.Solid state ionics. 1995,79:295~299
    [29] Y.Liu,J Y Lee,L.Hong.In situ preparation of poly(ethylene oxide)-SiO_2 composite polymer electrolytes.Power sources.2004,129:303~311
    [30] Peter P. Chu, M. Jaipal Reddy.Sm_2O_3 composite PEO solid polymer electrolyte.Power sourses.2003,115:288~294
    [31] Th. Joykumar Singh, S.V. Bhat.Increased lithium-ion conductivity in (PEG)_(46)LiCIO_4 solid polymer electrolyte with -Al_2O_3 nanoparticles. Power sourses. 2004,129:280~287
    [32] Qi Li, Takahito Itoha, Nobuyuki Imanishi, Atsushi Hirano,Yasuo Takeda, Osamu Yamamoto.All solid lithium polymer batteries with a novel composite polymer electrolyte. Solid State Ionics.2003,159:97~109
    [33] Graham S, Macglashan, Yurig, Andreev & Peter Gbruce. Nature. 1999, 398:792~794
    [34] Zlatka Gadjourova, David P.Nature.2002,412:520~523
    [35] 周宁琳编.有机硅聚合物导论.科学出版社,2000,5
    [36] 章基凯主编.有机硅材料.中国物资出版社,1999,10
    [37] 王家芳,章文贡.溶胶-凝胶法合成有机/无机杂化材料进展——1组分间以化学键作用的有机/无机杂化材料.高分子通报.2001,2:60~67
    [38] 胡春圃.含某些碱金属盐的互穿聚合物网络的离子导电性.高分子材料科学与工程.1990,3:50~54
    [39] 含方鹏飞,李光远,汪溶.NaI的环氧树脂-PEO互穿网络高分子固体电解质的离子电导研究.功能高分子学报.1998,3:71~75
    [40] 卢翠红,潘春秋.聚合物电解质离子电导率的影响因素.材料导报.2003,4:58~60
    [41] S-L Chen.Preparation of monosize silica spheres and their crystalline stack。Colloids and Surfaces.1998, 142:59~63
    [42] 陈小泉,古国榜.W/O微乳体系酸催化水解硅酸乙酯合成单分散酸性超微二氧化硅.现代化工.2002,3:26~30
    [43] 许佩新,谢文明,陈治中.聚(丙烯酸-丙烯酰胺)-碱金属盐复合物的离子电导性.高分子材料科学与工程,1999,15,23~25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700