复合掺杂ZrO_2固体电解质的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氧化锆固体电解质定氧探头在钢铁精炼中已经获得了广泛应用,但是在低氧(10ppm)条件下,传统氧化镁单一稳定的部分稳定氧化锆由于固体电解质电子电导的影响使其测量精度受到影响。另外,对固体电解质室温下单斜相(m)在升温过程中的相转变程度对高温电导及抗热震性的影响规律的认识不足,前人对于定氧探头的研究思路较倾向于优先保证足够的抗热震性,却轻视了室温相向高温相转变程度对高温电导的影响。因此,本文试图通过多元复合掺杂,并结合热处理,在保证氧化锆高温离子电导的条件下,获得足够的抗热震性能。
     论文首先采用机械复合法制备多元掺杂氧化锆固体电解质,探讨了多元复合掺杂氧化锆陶瓷的无压烧结工艺,通过调整烧结工艺参数获得了相对密度较高,掺杂元素分布较均匀的复合掺杂固体电解质陶瓷材料。同时,通过对不同掺杂比例的试样进行烧结后热处理实验研究,发现复合掺杂材料中Y203含量对m相含量起主导作用。烧结后的不同温度热处理可以改变复合掺杂材料的晶粒尺寸,经1150℃热处理后复合掺杂材料中颗粒长大最明显。A1203的加入形成尖晶石可以有效抑制复合掺杂材料颗粒的长大。
     热膨胀及抗热震性试验结果表明,在掺杂总量一定时Y203与MgO的相对比例越高,单斜相转变温度范围越窄,且起始转变温度越高,导致复合掺杂材料热震后的强度损失率越大。800-1000℃之间的收缩程度越大,强度损失率也越大。
     通过研究不同掺杂含量的烧结试样的电阻抗性能,发现复合稳定的氧化锆固体电解质的电性能并不是随着某一掺杂剂含量的升高而线性变化的。此结果与传统的单一稳定剂在全稳定范围内电性能随稳定剂含量线性增长的规律有所差异。但对比Mg-PSZ在900℃时的总电导率,可以看出,复合稳定的PSZ电解质的总电导率要高一个数量级。
     对PSZ固体电解质不同温度交流阻抗谱拟合后发现,晶界电导活化能与总电导活化能的走势一致,说明晶界电导率对PSZ电解质电导率的影响占主要地位。并且中高温下的晶界电导高于晶粒电导。在对等效拟合电路进行分析的基础上,得到材料内部组织结构随温度变化的演变趋势模型。
     通过对热膨胀性质及抗热震性、电性能的研究,并结合现有理论分析,建立了不同制备条件下得到的平均热膨胀系数与m相含量之间的线性关系模型,将其作为原料选择及制定烧结工艺的参考依据;对m相含量进行量化、控制t相热膨胀系数与m相含量之间的关系,理论上可以得到抗热震性优良的固体电解质材料。同时,建立了t相含量与电导率之间的数值演化模型;发现材料体系高温下出现的热膨胀系数突变点,可以作为预测固体电解质电性能的一个重要指标。对两类模型各影响因素的分类分析,能够为固体电解质制备过程中的相比例的控制提供依据。
The oxygen probe for iron and steel refining has been used extensively, but traditional MgO-single stabled zirconia solid electrolyte, due to the effect of electronic conductivity in low oxygen (10ppm) refining conditions, has some measurement precision problem. And acknowledge in the effect of monoclinic transformation on high-temperature conductivity and thermal shock resistance is lack, the prior authors had more focus on the thermal shock resistance, but they despised the influence of phase-change degree on high-temperature conductivity. Therefore, this paper tries to prepare partially stabled zirconia (PSZ) with high ion conductivity and then thermal shock resistance by adding multi-doping with reasonable heat treatment.
     Firstly, we have adopted the mechanically mixed method and dry pressing to prepare multi-doped zirconia body, then have investigative test to study the pressure less sintering procedure and get the multi-doped zirconia solid electrolyte with higher density and homogeneous elements distribution. By studying the heat treated samples with different doping ratio after sintering, we found that doped Y2O3content in composite materials plays a leading role in m phase content. The heat treatment after sintering can change the grain size of multi-doping material by different temperature, which particles obviously grown up after heat treatment is at1150℃. Spinel formed by doping of Al2O3can effectively inhibit the particles to grow up in multi-doping material.
     The results of thermal expansion and thermal shock resistance test show that the higher the relative doped proportion of Y2O3and MgO under certain total amount, the narrower the transition temperature range of monoclinic phase, also the higher initial transition temperature, that lead to the larger strength loss rate of multi-doping material after thermal shock. The higher degree of the volume contraction between800-1000℃is, the bigger loss rate of strength is.
     After fitting the AC impedance spectrum of PSZ solid electrolyte at different temperature, we found that the trend of total electrical conductivity activation energy was consistent with the grain boundary activation energy, this indicated that the grain boundary conductivity was major influencing factor on the conductivity of PSZ electrolyte. And the grain boundaries conductivity was higher than grain conductivity at mid-high temperature. On the basis of fitting equivalent circuit analysis, the microstructure evolution model with temperature changing was obtained.
     Based on the thermal expansion properties, thermal shock resistance, electric performance mentioned above, a linear relationship model between average thermal expansion coefficient under different preparation condition and m phase content was developed by aggregate analysis, which be considered as a reference for choosing raw material and the sintering process selection; it can theoretically get solid electrolyte materials with good thermal shock resistance by the quantization of m phase content and controlled the relationship between t phase thermal expansion coefficients and m phase content. At the same time, the numerical evolution model between the t phase content and electric conductivity was established; we found that the mutation point of thermal expansion coefficient during high temperature can be as an important index for predicting the solid electrolyte electric property. On the basis of classification of each affect factor in two models, the phase proportion in solid electrolyte could be designed to ensure the material properties.
引文
[1]赵洪运,王国栋,刘相华,et al.新一代钢铁材料——超级钢[J].汽车工艺与材料,2003(10):4.
    [2]Janke D. A new immersion sensor for the rapid electrochemical determination of dissolved oxygen in metallic melts [J]. Solid State Ionics,1981 (3):599-604.
    [3]安胜利,赵文广,安立国.钢铁冶金中的氧传感器及其应用[J].华东冶金学院学报,1997,14(4):353.
    [4]Lou T J, Kong X H, Huang K Q, et al. Solid reference electrode of metallurgical oxygen sensor [J]. J Iron Steel Res (International),2006,13(5):18.
    [5]黄克勤,回世强,吴卫江,et al.钢液定氧探头响应时间和热平衡态[J].北京科技大学学报,1994,16(2):191-194.
    [6]Yutaka T, Mikio M, Fukuyama, et al. Sensor for measuring density of oxygen in molten metal [P]. U.S.Patent:4451350.1984.
    [7]高长贺.氧化锆固体电解质定氧测头性能的改进[D].北京科技大学,2004.
    [8]Nernst W. Uber die elektrolytische Leitung fester Korper bei sehr hohen Temperaturen [J]. Z Electrochem,1899 (6):41.
    [9]Haber F, Versuchen N, Rieff A, et al. Bestatigung des Faradayschen Gesetzes beim Stromdurchgang durch heisses Porzellan (Ⅳ. Mitteilung uber die Knallgaskette) [J]. Z Anorg Chem,1908(57):154-173.
    [10]Wagner C. Uber den Mechanismus der elektrischen Stromleitung im Nernststift[J]. Naturwissenschaften,1943(31):265.
    [11]Weissbart J, Ruka R J. A solid electrolyte fuel cell [J]. J Electrochem Soc,1962,8(109): 723-726.
    [12]后藤和弘,韩其勇译.氧浓差电池在日本炼钢中的应用[J].钢铁,1982(2):47-53.
    [13]邓茂焕,黄正.定氧技术的现状及质量评价[J].工业计量,2004,14(4):26-28.
    [15]Gao C H, Zhao H L, Liu Q G, et al. Effect of ZrO2 (9mol%Y2O3) coating thickness on the electronic conductivity of Mg-PSZ oxygen sensors [J]. J Univ Sci Technol Beijing (Materials),2005,12(2):160.
    [16]唐裕华,李福燊,刘庆国.金属液的长寿命定氧测头[J].钢铁,1994,29(10):54.
    [17]Hannink R H J. Growth morphology of the tetragonal phase in partially stabilized zirconia [J]. J Mat Sci,1978,11(13):2487-2496.
    [18]Liu Q G The development of high temperature electrochemical sensors for metallurgical processes [J]. Solid State Ionics,1996(86-88):1037-1043.
    [19]黄克勤,夏玉华,吴卫江,et al.用于测定钢液低氧含量的双层固体电解质研究[J].硅酸盐学报,1994,22(2):195-201.
    [20]Caproni E, Carvalho F M S, Muccillo R. Development of zirconia-magnesia/ zirconia-yttria composite solid electrolytes [J].Solid State Ionics,2008(179): 1652-1654.
    [21]钟勤,文洪杰,杨粉荣.ZrO2固体电解质在金属熔体中的应用研究[J].硅酸盐通报,2006,25(3):136.
    [22]Cai S, Zhou L L, Li J Y, et al. Fabrication and properties of 3Y-TZP/ZrO2/ A12O3/MgO ceramics [J]. Trans Tianjin Univ,2006(2):112-115.
    [23]马亚鲁.A1302掺杂对微晶(Y,Mg)-PSZ材料性能的影响[J].陶瓷学报,1999,20(1):32-34.
    [24]Bikramjit B, Jozef V, Omer V D B. Transformation behaviour of tetragonal zirconia: role of dopant content and distribution [J]. Mat Sci and Eng A,2004,366(2):338-347.
    [25]王征,潘慧英,徐颖,et al.定氧测头用固体电解质-ZrO2管式元件的制备与性能研究[J].钢铁研究总院学报,1983,2(3):290-295.
    [26]安胜利,赵文广,王正德,et al.氧化锆固体电解质定氧测头在冶金过程中的应用[J].包头钢铁学院学报,1997,16(2):97-101.
    [27]陶颍,王零森,陈振华,et a1.陶瓷的离子导电性及其应用[J].中国陶瓷,1999,35(5):10.
    [28]Duran P, Gonzales M, et al. Processing-microstructure-mechanical properties relationship in Ce-doped tetragonal zirconia, in:Ceramic Powder Science III [C]. Vincenzini P edited. Amsterdam:Elseviser Scientific Publishing Company,1990. 945-952.
    [29]王金艳,王永钤,李立本.钇稳定的二氧化锆(YSZ)的结构及离子导电性[J].宝鸡文理学院学报(自然科学版),2001,21(2):6.
    [30]潘小龙,唐超群,夏正才.钇掺杂ZrO2中电导与氧空位跃迁的关系[J].华中理工大学学报,1997,25(6):109-112.
    [31]Sato T, Ohtaki S, Shimada M. Transformation of yittria patially stabilized zirconia by temerature annealing in air [J]. J Mater Sci,1985(20):1466.
    [32]李英,龚江宏,唐子龙.Zr02基固体电解质研究进展[J].陶瓷学报,1997,18(4):223-227.
    [33]路新瀛,梁开明,顾守仁,et al.氧化锆在电场下的相变[J].硅酸盐学报,1996,24(3):329-332.
    [34]李英.固体氧化物燃料电池用陶瓷材料的合成与电性能[D].清华大学,1995.
    [35]Claussen N, Heuer A H. Advances in Ceramics [M]. Columbus OH:American Ceramic Society,1984.
    [36]Dell R M, Hopper A. Solid Electrolytes [M]. New York:Academic Press,1978.
    [37]万雅竞,房继虹,林勃浩,et al.精炼钢水氧含量的快速测量[J].工业计量,2003(4):35.
    [38]Owaga M. Microstructures and mechanical properties of mullite-(yttria, magnesia-and cerai-stabilized) zirconia composites [J]. J Mater Sci,1997(32):5497-5503.
    [39]陈平.掺纳米MgO的YSZ固体电解质结构与性能研究[D].贵州工业大学,2004.
    [40]蒋凯,张秀英,郭崇峰.固体氧化物燃料电池中的电解质[J].稀有金属,2001,25(2):121-125.
    [41]梁广川,陈玉如.燃料电池固体氧化物电解质研究进展[J].硅酸盐通报,1999,18(5):39-45.
    [42]李海龙.t-ZrO2对YSZ电解质材料力学性能和电性能的影响[D].天津大学,2005.
    [43]Ji Y, Liu J, Zhe L, et al. Study on the properties of Al2O3-doped (ZrO2)0.92(Y2O3)0.08 electrolyte [J]. Solid States Ionics,1999(126):227.
    [44]Feighery A J, Irvine J T S. Effect of alumina additions upon electrical properties of 8mol%yttria-stabilised zirconia [J]. Solid States Ionics,1999(121):209.
    [45]Jong-Heun L, Mori T, Ji-Guang L, et al. Improvement of grain-boundary conductivity of 8 mol%yttria-stabilized zirconia by precursor scavenging of siliceous phase [J]. J Electrochem Soc,2000,147(7):2822-2829.
    [46]Jong-Heun L, Mori T, Ji-Guang L, et al. Precursor scavenging of resistive grain-boundary in 8 mol%ytterbia-stabilized zirconia [J]. J Electrochem Soc,2002,149(3): J35-J40.
    [47]赵文广,安胜利,宋希文.Y2O3与MgO复合掺杂ZrO2材料的电性能研究[J].稀土,2006,27(4):59-62.
    [48]Gong J H, Li Y, Tang Z L, et al. Temperature-dependence of the lattice conductivity of mixed calcia/yttria-stabilized zirconia [J]. Materials Chemistry and Physics,2002(76): 212-216.
    [49]Livage J, Doi K, Mazieres C. Nature and thermal evolution of amorphous hvdrated zirconium oxide [J]. J Am Ceram Soc,1968,51(6):349-353.
    [50]Osendi M I, Moya J S, Serna C J, et al. Metastability of tetragonal zirconia powders [J]. J Am Ceram Soc,1985,68(3):135-139.
    [51]Badwal S P S, Nardella N. Formation of monoclinic zirconia at the anodic face of tetragonal zirconia polycrystalline solid electrolytes [J]. Appl Phys A,1989,49(1):13-24.
    [52]Hillert M. Thermodynamic model of the Cubic → Tetragonal transition in nonstoichiometric zirconia[J]. J Am Ceram Soc,1991,74(8):2005-2006.
    [53]Kountouros P, Petzow G. Defect chemistry, phase stability and properties of zirconia polycrystals. In:Science and Technology of Zirconia V [C]. Somiya S, Yamamoto N, Yanagida H (Eds.).Lancaster-Basel:Technomic,1993.
    [54]Strickler D W, Carlson W G Electrical conductivity in the ZrO2-rich region of several M2O3-ZrO2 systems [J]. J Am Ceram Soc,1965(48):286-289.
    [55]Li Y, Tang Z, Zhang Z, et al. Electrical conductivity of zirconia stabilized with yttria and calcia [J]. J Mat Sci Lett,1999(18):443-444.
    [56]Gong J, Li Y, Tang Z, et al. Ionic conductivity in the termary system (ZrO2)i-0.08x-0.12y-(Y203)0.08x-(CaO)0.12y [J]. J Mat Sci,2000(35):3547-3551.
    [57]Gong J, Li Y, Zhang Z, et al. AC impedance study of zirconia doped with yttria and calcia [J]. J Am Ceram Soc,2000(83):648-650.
    [58]Gong J, Li Y, Tang Z, et al. Enhancement of the ionic conductivity of mixed calcia/yttria stabilized zirconia [J]. Mat Lett,2000(46):115-119.
    [59]Li Y, Gong J, Xie Y, et al. Microstrutural dependence of electrical conductivity of (ZrO2)0.90-(Y2O3)0.04-(CaO)0.06 solid electrolyte [J]. Mat Sci and Eng B,2000(56): 140-144.
    [60]Lei Y Y, Ito Y, Browning N D. Segregation effects at grain boundaries in fluorite-structured ceramics [J]. J Am Ceram Soc,2002,85(9):2359-2363.
    [61]路新瀛,梁开明,顾守仁,et al.氧空位对氧化锆相结构稳定及相变过程的影响[J].硅酸盐学报,1996,24(6):670-674.
    [62]韩敏芳,彭苏萍,李伯涛.YSZ电解质电性能研究[J].中国科学技术大学学报,2002(32):274-278.
    [63]Kiguchi T, Saiki A, Shinozaki K, et al. Effect of radius of rare earth ions of ferroelastic domain switching of zirconia [J]. J Ceram Soc Japan,1997,105(9):775-778.
    [64]Matsuzawa M, Horibe S. Analysis of non-elastic strain produced in zirconia ceramics [J]. Materials Science and Engineering A,2003,346(1/2):75-82.
    [65]Pawlowski A, Bucko M M, Pedich Z. Microstructure evolution and electrical properties of yttria and magnesia stabilized zirconia [J]. Materials Research Bulletin, 2002,37 (3):425-438.
    [66]黄荣生.炼钢厂3#转炉定氧试验总结[J].包钢科技,1996(4):141.
    [67]Huang K Q, Xia Y H, Liu Q G Seebeck effect in oxygen probe used for oxygen determination in liquid steel [J]. J University of Science and Technology Beijing,1995, 2(1):57-62.
    [68]孔祥华.ZrO2固体电解质的制备、结构和性能研究[D].北京科技大学,2001.
    [70]Iwase M, Tanida M, Mclean A, et al. Electronically driven transport of oxygen from liquid iron to CO+CO2 gas mixtures through stabilized zirconia [J]. Met Trans B, 1981(12B):517-524.
    [71]Iwase M, Mori T. Oxygen permeability of calcia-stabilized zirconia [J]. Met Trans B, 1978(9B):365-370.
    [72]Hu Y G, Xiao J Z, Rong L, et al. Improving repeatability in different oxygen probes at low oxygen potentials in molten steel [C]. Advanced Materials Research,2012(402): 480-483.
    [73]Janke D, Fischer W A. Parameter pe'of partial electronic conductivity in ZrO2 (CaO) and ThO2(Y2O3) solid electrolytes between 1200 and 1650℃ [J]. Arch Eisenhuttenwes,1975,45(8):477-482.
    [74]Stubican V S, Ray S P. Phase equilibria and ordering in the system ZrO2-CaO [J]. J Am Ceram Soc,1977,60(11/12):534-537.
    [75]孙家跃,杜海燕.无机制造与应用[M].北京:化学工业出版社,2001.
    [76]Abe F, Muneki S, Yagi K. Tetragonal to monoclinic transformation and miscro-struture evolution in ZrO2-9.7 mol%MgO during cyclic heating and cooling [J]. Journal of Materials Science,1997,32(2):513-522.
    [77]周玉.陶瓷材料学(第二版)[M].北京:科学出版社,2004.
    [78]贾德吕,周玉.陶瓷材料抗热震性研究进展[J].材料科学与工艺,1993,1(4):96-102.
    [79]张彪,郭景坤,诸培南,et a1.抗热震陶瓷材料的设计[J].硅酸盐通报,1995,14(3): 35-40.
    [80]徐永东,张立同,韩金探.高温结构陶瓷材料的设计准则[J].硅酸盐通报,1997,16(3):55-58.
    [81]单水维,安胜利,张军,et al.掺杂量变化对ZrO2(Y2O3)陶瓷导热性能的影响[J].陶瓷学报,2008,29(1):6-9.
    [82]Ishitsuka M, Sato T, Endo T, et al. Grain-size dependence of thermal shock resistance of ytria-doped tetragonal zirconia polycrystals [J], J Am Ceram Soc,1990,73(8):2523-2525.
    [83]Gupta T K. Strength degradation and crack propagation in thermally shocked Al2O3 [J]. J Am Ceram Soc,1972,55(5):249-253.
    [84]Schon S, Prielipp H, Janssen R, et al. Effect of microstructure scale on thermal shock resistance of aluminum-reinforced alumina [J]. J Am Ceram Soc,1994,77(3):701-704.
    [85]张瑞霞.(MgO,Y2O3)-PSZ型钢水定氧探头锆管材料的研究[D].华中科技大学,2006.
    [86]李晓红,赵团,赵文广.稳定氧化锆陶瓷的热膨胀特性[J].包头钢铁学院学报,1998,17(2):91-93.
    [87]黄克勤,刘庆国.固体电解质直接定氧技术[M].北京:冶金工业出版社,1993.
    [88]Liu Q G, An S L, Qiu W H. Study on thermal expansion and thermal shock resistance of MgO-PSZ [J]. Solid State Ionic,1999,121(1/4):61-65.
    [89]Sato T, Ish1tsuka M, Shimada M. Thermal shock resistance of ZrO2 based ceramics [J]. Materials & Design,1998,9(4):204-212.
    [90]He P F, Liu T J, Clegg W J. The cracking of zirconia refractory tubes under hot shock[J]. Journal of Materials Science,2000,35(10):2443-2449.
    [91]陈常连.Ca-ZrO2陶瓷及其孔隙率梯度材料的制备与抗热震性能[D].武汉理工大学,2008.
    [92]Buchanan R C, Ircar A. Densification of calcia-stabilized zirconia with borates [J]. Journal of the American Ceramic Society,1983,66(2):C20-21.
    [93]Colin S, Dupre B, Gleitzer C, et al. Decalcification of stabilized zirconia by silica and some other oxides [J]. J Euro Ceram Soc,1992,9 (5):389-395.
    [94]Barinov S M. High-temperature fracture behavior of porous zirconia ceramics [J]. Materials Science and Engineering A,1992,154(2):L11-L14.
    [95]Wei W C J, Lin Y P. Mechanical and thermal shock properties of size graded MgO-PSZ refractory [J]. Journal of the European ceramic Society,2000,20(8):1159-1167.
    [96]Ishitsuka M. Sato T, Endo T, et al. Grain-size dependence of thermal shock resistance of ytria-doped tetragonal zirconia polycrystals [J]. J Am Ceram Soc,1990,73(8): 2523-2525.
    [97]郭密.钢水定氧中Mg-PSZ管的抗热震性研究[D].武汉科技大学,2006.
    [98]安胜利.氧化镁部分稳定氧化锆的相变与抗热震性能研究[J].包头钢铁学院学报,2003,22(4):305-308.
    [99]Mustafa E, Wilhelm W, Wrusse W, et al. Microstructure and phase stability of Y-PSZ codoped with MgO or CaO prepared via polymeric route[J]. British Ceramic Transactions,2002,101(2):78-83.
    [100]蔡舒,申志平,董政,et al. CeO2对Mg-PSZ陶瓷显微结构和相组成的影响[J].兵器材料科学与工程,2006,29(1):21-23.
    [101]Adams J W, Nakamura H H. Thermal expansion behavior of single-crystal zirconia[J]. J Am Ceram Soc,1985,68(9):c228-231.
    [102]Swain M V, Garvie R C, Hannink R H J. Influence of thermal decomposition on the mechanical properties of magnesia-stabilized cubic zirconia [J]. J Am Ceram Soc, 1983,66(5):358-362.
    [103]An S L, Zhang L Y, An L G, et al. Fracture Toughness and Microstructure of MgO-PSZ[C].10th International Conference on Solid State Ionics. Sigapore:1995.
    [104]Tsubakino H, Sonoda K, Nozato R. Martensite transformation behaviour during isothermal ageing in partially stabilized zirconia with and without alumina addition [J]. J Mater Sci Lett,1993,12(3):196-198.
    [105]Trubelja M F, Stubican V S. Phase equilibria and ordering in the system zirconia-hafnia-yttria [J]. J Am Ceram Soc,1988,71(8):662-666.
    [106]Pascual C, Duran P. Subsolidus phase equilibria and ordering in the system ZrO2-Y2O3 [J]. J Am Ceram Soc,1983,66(1):23-27.
    [107]Scott H G Phase relationships in the yttria-rich part of the yttria-zirconia system [J]. J Mater Sci,1977,12(2):311-317.
    [108]Stubican V S, Hink R C, Ray S P. Phase equilibria and ordering in the system ZrO2-Y2O3 [J]. J Am Ceram Soc,1978,61(1/2):17-20.
    [109]Serena S, Sainz M A, de Aza S, et al. Thermodynamic assessment of the system ZrO2-CaO-MgO using new experimental results calculation of the isoplethal section MgO-CaO-ZrO2 [J]. J Eur Ceram Soc,2005,25:681-693.
    [110]Gupta T K. Sintering of tetragonal zirconia and its characteristics[J]. Sci Sintering, 1978,10(3):205-216.
    [111]郭瑞松.工程结构陶瓷[M].天津:天津大学出版社,2002.
    [112]陈加庚.陶瓷材料抗热震断裂性和抗热震损伤性统一的理论[J].中国陶瓷,1995,31(5):31-34.
    [113]Karaulov A G, Grebenyuk A, Rudyak I. Effect of phase composition of zirconium dioxide on spalling resistance [J]. Izv Acad Nauk SSSR,1967,3(6):1101-1103.
    [114]Okubo T, Nagamoto H. Low-temperature preparation of nanostructured zirconia and YSZ by sol-gel processing[J]. J Mater Sci,1995,30(3):749-757.
    [115]Chen X J, Khor K A, Chan S H, et al. Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte [J]. Mater Sci Eng A,2002,335: 246-252.
    [116]Kleitz M, Bernard H, Fernandez E, et al. Impedance spectroscopy and electrical resistance measurements on stabilized zirconia. In:Adcances in Ceramics, Vol.3, Science and Technology of Zirconia I [C], Heuer A H & Hobbs L W ed. Columbus OH:American Ceramic Society,1981, pp310-336.
    [117]Gibson I R, Dransfield G P, Irvine J T S. Sinterability of commercial 8 mol%yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity [J]. J Mater Sci,1998,33(17):4297-4305.
    [118]Verkerk M J, Middelhuis B J, Burggraaf A J. Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics [J]. Solid State Ionics,1982,6(2): 159-170.
    [119]张艳红,李福燊,张文,et al. Mg-PSZ固体电解质电性能研究[J].中国稀土学报,2004(22):81-83.
    [120]Guo X, Waser R. Electrical properties of the grain boundaries of oxygen ion conductors:Acceptor-doped zirconia and ceria [J]. Prog Mater Sci,2006,51(2):151-210.
    [121]郭新.稳定化氧化锆的晶界导电模型[J].物理学报,1998,47(8):1332-1338.
    [122]Kilner J A, Steele B C H. Non stoichiometric Oxides[M]. New York:Academic Press, 1981, p233-269.
    [123]Abraham M M, Weeks R A, Clark G W, et al. Electron spin resonance of rare-earth ions in CeO2:Yb3+and Er3* [J]. Phys Rev,1966,148(1):350-352.
    [124]Nakamura A, Wagner J B. Defect structure, ionic conductivity, and diffusion in yttria stabilized zirconia and related oxide electrolytes with fluorite structure [J]. J Electrochem Soc,1986,133(8):1542-1548.
    [125]Mackrodt W C, Woodrow P W. Theoretical estimates of point defect energies in cubic zirconia [J]. J Am Ceram Soc,1986,69(3):277-280.
    [126]Butler V, Catlow C R A, Fender B E F. The defect structure of anion deficient ZrO2[J]. Solid State Ionics,1981(5):539-542.
    [127]Murch G E, Nowick A S. Diffusion in crystalline solids [M]. Orlando:Academic, 1984,p143-188.
    [128]Orliukas A, Bohac P, Sasaki K, et al. The relaxation dispersion of the ionic conductivity in cubic zirconias[J]. Solid State Ionics,1994(72):35-38.
    [129]Maier J. Ionic conduction in space charge regions[J]. Prog Solid St Chem,1995, 23(3):171-263.
    [130]Etsell T H, Flengas S N. Electrical properties of solid oxide electrolytes[J]. Chem Rev, 1970,70 (3):339-376.
    [131]崔万秋,沈志奇,周德保.Li2Mo(2-x)WxO6多晶材料的结构、电学性能与导电机理的研究[J].物理学报,1991(40):1101.
    [132]Van Dijk T, Burggraaf A J. Grain boundary effects on ionic conductivity in ceramic GdxZr1-xO2-(x/2) solid solutions[J]. Phys Status Solidi A,1981,63(1):229-240.
    [133]Schouler E, Giroud G, Kleitz M. Application selon Bauerle du Trace des Diagrammes de Admittance Complexe en Electrochimie des Solides Ⅱ [J]. J Chem Phys, 1973(70):1309-1316.
    [134]Bauerle J E. Study of solid electrolyte polarization by a complex admittance method[J]. J Phys Chem Solids,1969,30(12):2657-2670.
    [135]Fleig J, Maier J. The impedance of ceramics with highly resistive grain boundaries: validity and limits of the brick layer model [J]. J Euro Ceram Soc,1999,19(6/7): 693-696.
    [136]Muccillo E N S, Kleitz M. Impedance spectroscopy of Mg-partially stabilized zirconia and cubic phase decomposition [J]. J Eur Ceram Soc,1996,16(4):453-465.
    [137]Jonscher A K. The'universal'dielectric response[J]. Nature,1977,267(5613):673-679.
    [138]李英,龚江宏,谢裕生,et al. Y2O3稳定ZrO2材料的电导活化能[J].无机材料学报,2002(17):811.
    [139]Bauerle J E, Hrizo J. Interpretation of the resistivity temperature dependence of high purity (Zr02)0.90(Y203)0.10 [J]. J Phys Chem Solids,1969,30(3):565-570.
    [140]胡永刚,肖建中,夏风,et al.基于热膨胀性质的Zr02固体电解质性能与相关系模型[J].物理学报,2010,59(10):7447-7451.
    [141]Zhang T S, Ma J, Chen Y Z, et al. Different conduction behaviors of grain boundaries in SiO2-containing 8YSZ and CGO20 electrolytes [J]. Solid State Ionics,2006, 177(13/14):1227-1235.
    [142]Hsieh G, Ford S J, Mason T O, et al. Experimental limitations in impedance spectroscopy:Part VI. Four-point measurements of solid materials systems[J]. Solid State Ionics,1997,100(3/4):297-311.
    [143]Fehrenbacker L L, Jacpbson L A. Metallographic observation of the monoclinic-tetragonal phase transformation in ZrO2[J]. J Am Ceram soc,1965,48(3):157-161.
    [144]Bansal G K, Heuer A H. On a Martensitic phase transformation in zirconia (ZrO2)-I. Metallographic evidence [J]. Acta Metallurgica,1972,20(11):1281-1289.
    [145]Chen I W, Chaio Y H. Statistics of martensitic nucleation[J]. Acta Metallurgica,1985, 33(10):1847-1859.
    [146]Bucko M M. Ionic conductivity of CaO-Y2O3-ZrO2 materials with constant oxygen vacancy concentration [J]. J Eur Ceram Soc,2004,24(6):1305-1308.
    [147]郭新,袁润章,孙尧卿,et al.晶界在多晶Zr02基固体电解质中的作用[J].物理学报,1996(5):860-861.
    [148]周泽华,丁培道,陈蓓,et al.氧化锆烧成性能的匹配性及其应用[J].材料科学与工程,2002(1):35-37.
    [149]吴兴惠,项金钟.现代材料计算与设计教程[M].北京:电子工业出版社,2002.
    [150]Muccillo R, Muccillo E N S, Saito N H. Thermal shock behavior of ZrO2:MgO solid electrolytes [J]. Materials Letters,1998,34(3/6):128-132.
    [151]高运明,郭兴敏,周国治.利用阻抗谱测定氧化锆试样的电导率[J].武汉科技大学学报(自然科学版),2005(3):237-240.
    [152]Zhu W Z. Grain size dependence of the transformation temperature of tetragonal to monoclinic phase in ZrO2(Y2O3) ceramics [J]. Ceramics International,1996,22(5): 389-395.
    [153]An S L, Wu W J, Liu Q G. Measurement of electronic conductivity and phase ratio for MgO partially stabilized zirconia [J]. Solid State Ionics,1988,28/30(1):546-549.
    [154]An S L, Zhou T P, Wu W J, et al. Investigation of electronic conductivity and thermal shock stability for MgO partially stabilized zirconia [J]. Solid State Ionics,1990, 40/41(2):750-753.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700