改性异氰酸酯—脲醛树脂复合胶黏剂的制备及其固化反应规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
脲醛树脂胶粘剂由于其制造工艺简单,原料廉价易得,初始粘度大,粘接强度较高,无色透明等优点。但脲醛树脂胶粘剂存在这耐水性差、固化物脆性大、耐老化性能差、游离甲醛含量过高等一系列问题,一直未得到有效解决,严重影响了脲醛树脂胶粘剂的主导地位。非甲醛系异氰酸酯胶粘剂具有胶接性能优良、较好耐水性、较好耐老化、无甲醛污染等优点、对被胶接材料适应范围广,同时异氰酸酯也具有活泼性大、胶接效果好、胶接工艺性较好。作为木材胶粘剂使用的封闭异氰酸酯要求其解封闭温度低于100℃,且封闭效力高,常温保存稳定性好,对于乳化异氰酸酯具有工艺简单,改性成本低廉而具有较好的应用基础。
     论文系统介绍了异氰酸酯的用途和作用机理,针对它在实际应用方面存在的缺陷,阐明了对它进行封闭和乳化的必要性;并且将改性异氰酸酯与脲醛树脂进行复合,系统研究了改性异氰酸酯与脲醛树脂复合固化机理反应。具体研究内容如下:
     (1)本文系统地研究搅拌速度对封闭异氰酸酯产物的影响,采用促进剂和稳定剂对封闭异氰酸酯乳液进行稳定性研究,以产物封闭率、pH、黏度、产物解封闭性能为评价指标。通过粒径、DSC、TGA、以及FTIR方法进行分析测试。FTIR结果表明,在封闭反应中,异氰酸酯特征官能团-N=C=O会随着封闭反应的进行而消失;在解封闭反应研究中,异氰酸酯完全被封闭,红外研究结果还表明解封闭温度范围60-100℃,60℃开始解封闭,当解封闭温度达到70℃后,解封闭速度也越快。DSC结果表明,在50-100℃温度区间有吸热现象,证明封闭异氰酸酯乳液发生解封闭反应,其中最佳条件的封闭产物吸收峰值明显而尖锐,解封闭反应较快,且随着恒温温度的升高,解封闭速度越快,其解封闭反应的时间约为10min。热重分析结果表明,采用不同比例促进剂、稳定剂以及不同处理方法制备封闭异氰酸酯有明显不同的热稳定性能差异。NaHSO3/NCO摩尔比为1.2的配比最为适合。促进剂加入摩尔比例为0.2mol,稳定剂为0.5%的条件下,制备的封闭异氰酸酯乳液粒径最小,分散最均匀。用不同溶剂对封闭异氰酸酯乳液进行洗涤处理以及进行冷冻干燥处理,分别采用DSC、TGA、FTIR和XPS以及定量方法对其产物进行表征。实验结果进一步证实,亚硫酸氢钠能够完全封闭异氰酸酯,N,N-二甲基甲酰胺(DMF)可以促进封闭异氰酸酯的解封闭反应速度,化学测试测得的封闭率要偏高,实验封闭率在86.18%以上。本研究制备亚硫酸氢钠封闭异氰酸酯产物可在50-90之间进行解封闭效果较好。
     (2)采用不同条件和合成工艺制备乳化异氰酸酯,通过对其乳化现象、粘度、异氰酸酯基含量等乳液性能指标,研究了稳定剂浓度,摩尔比、乳化剂浓度等影响因素对乳液稳定性能的影响。结果表明,异氰酸酯基与羟基的摩尔比为50:1、稳定剂浓度为0.9%、乳化剂浓度为2%条件下制备异氰酸酯乳液的2小时异氰酸酯基含量、粘度和活性期较稳定。采用粒径对异氰酸酯乳液的粒径进行系统分析研究,结果表明:预聚体的粘度、摩尔比以及异氰酸酯基含量与其外观和粒径分布有直接影响,粒径越小,表明乳化异氰酸酯稳定性越高,因此选择摩尔比50:1为宜。乳化剂和稳定剂浓度的粒径测试图形趋势和粘度、适用期的趋势相同。
     (3)采用封闭异氰酸酯改性UF胶黏剂的热稳定性和固化反应规律研究,得到下列结论:在最佳条件下,以合成方式制备封闭异氰酸酯(BPI)对UF树脂胶黏剂的固化速度起促进作用,BPI对UF胶的固化过程起到比氯化铵更强的催化作用。以NaHSO3与p-MDI先复合加入UF树脂胶黏剂中,此种方法复合适用期较长,但对UF胶黏剂的固化比前者弱。DSC测试结果,以NaHSO3与p-MDI先复合加入UF中对复合胶黏剂的固化速度以及固化温度起的促进作用比BPI效果弱一些。TGA测试结果表明,封闭异氰酸酯加入能够提高复合胶黏剂的热稳定性能,但加入比例要适中,不能高于5/5,在2/8最好。通过FTIR分析,结果表明BPI与UF复合胶黏剂复合与NaHSO3与p-MDI混合加入UF树脂中的复合胶黏剂固化产物中含有新的化学键,分别是氨基甲酸酯-氨基键,氨基甲酸酯-亚甲基键,封闭异氰酸酯加入比例不同,生成的氨基甲酸酯键和取代脲吸收峰强度不同。通过XPS分析表明,BPI与UF制备的复合胶粘剂,NaHSO3与p-MDI混合加入UF树脂制备的复合胶粘剂,固化产物中都含有反应基团-N-C=O-C和-N-C=0-N。BPI与UF复合胶黏剂的-N-C=O-N官能团相对含量大于-N-C=O-C官能团,说明BPI中的异氰酸酯与UF中的氨基反应占优势。NaHSO3与p-MDI混合加入UF的复合胶黏剂,固化产物中的-N-C=O-C相对含量大于-N-C=O-N,说明复合胶黏剂体系的异氰酸酯与UF中的羟基反应生成氨基键占优势。
     (4)同时,研究了乳化异氰酸酯改性脲醛树脂胶黏剂的热反应规律研究,通过对比实验,可以得出乳化异氰酸酯与脲醛树脂的复合比例,固化剂的酸性强弱对复合胶黏剂固化反应速率和热稳定性的影响。结果表明,乳化异氰酸酯加入可以促进脲醛树脂的固化反应速度,提高复合胶黏剂的热稳定性,但随着乳化异氰酸酯比例加大,热稳定性有下降趋势。固化剂的酸性对异氰酸酯改性脲醛树脂具有一定影响。当固化剂酸性越强,混合胶的适用期越短,而固化剂的催化效果较弱时,不能够满足实际生产需要,因此固化剂选择氯化铵与甲酸混合(pH为1)。通过FTIR和XPS测试分析,结果表明,EPU与UF混合反应发生反应生成氨基甲酸酯-氨基键,氨基甲酸酯-取代脲键;采用XPS方法可以对异氰酸酯改性脲醛树脂的固化结构进行较好表征,并由此可以定量得出异氰酸酯与脲醛树脂固化产物的化学结构。
Urea formaldehyde adhesive was widely used with the advantages such as low cost, high viscosity, high bonding strength and light color. However, the utilization of urea formaldehyde adhesive is always constrained due to low water resistance, evident frangibility, poor aging property and high deviated formaldehyde content. Isocyanate adhesive included in non-formaldehyde class is of well bonding property, water resistance and aging-resistant performance. Meanwhile, isocyanate possesses the advantages such as great reactivity and fine manufacturability. Used as wood adhesive, blocked isocyanate was required to be of low deblocking temperature (lower than100℃), high blocking efficiency and well stability under ambient situation.
     In this paper, the utilization and reaction mechanism of isocyanate was introduced and the necessity for blocking and emulsion of isocyanate was explained according to the drawbacks in practical application. Then the modified isocyanate was blended with urea-formaldehyde resin, and the curing mechanism of this mixture was studied systematically. The research was shown in detail as follows.
     (1) The effect of stir speed on blocked isocyanate was studied according to the determinations of blocking ratio, pH, viscosity and deblocking performance. The LPS, DSC, TGA as well as FTIR were employed to conduct the analysis of the blocking resultant. The FTIR results showed that blocked isocyanate could be deblocked within the temperature ranging from60to100℃and the deblocking reaction got faster from70℃on. DSC results indicated that the phenomenon of heat absorption was aroused within the temperature from50to100℃, which could testified that the deblocking reaction definitely occurred. It was also concluded that the deblocking reaction got faster with the increase of temperature and the time spent on deblocking reaction was around10min. The TGA results displayed that the blocked isocyanate prepared by different methods with different consumptions of accelerant and stabilizer obtained evidently different thermal properties. At last, it was found that the appropriate NaHSO3/NCO molecular ratio was1.2. While the accelerator consumption was0.2mol and the percent of stabilizer was0.5%, the blocked isocyanate emulsion possessed little size particles and well dispersity. Thereafter, the blocked isocyanate emulsion was washed by different kinds of solvents and then frozen dried. The DSC, TGA, FTIR, XPS and titration analysis methods were employed to characterize the resultant. The experimental results demonstrated that isocyanate could be blocked by sodium bisulfite completely and the deblocking reaction of blocked isocyanate could be accelerated by DMF. The sodium sulfite-blocked isocyanate could be debloced well at the temperature ranging from50to90℃.
     (2) The emulsified isocyanate was prepared with various methods under different situations. Then the effects of molecular ratio, emulsifier consumption and other factors on stability of emulsion were studied according to the experimental results about emulsifying phenomenon, viscosity and the content of isocyanate group. The experimental results indicated that the emulsion was most stable while the ratio of NCO/OH was50:1and the consumptions of stabilizer and emulsifier were0.9%and2%, respectively. In addition, the particle size distribution of isocyanate emulsion was analyzed. The experimental results showed that viscosity of oligomer, molecular ratio and the content of NCO played important roles on the appearance and distribution of particle size. The smaller the particle size, the more stable the emulsified isocyanate was. The results of particle size were corresponded with viscosity and pot life.
     (3) The following conclusions were obtained by the study on thermal stability and curing structure of blocked isocyanate modified UF adhesive:Under the optimized conditions, blocked isocyanate (BPI) prepared by synthesis played a catalytic role on the curing rate of UF resin adhesives. BPI has stronger catalysis than ammonium chloride on the UF adhesive curing process. The way that NaHSO3and PAPI were put into UF resin adhesive in the composite has longer curing time, but weak effect in UF curing process. Results of the DSC test show that the curing rate and the curing temperature effect of BPI was better than that NaHSC>3and PAPI were put into UF in the composite. The TGA results show that the blocked isocyanate was added to improve the thermal stability of UF adhesive at proper ratios of2:8. By FTIR analysis, the results show that the BPI compound with UF and UF mixed with NaHSO3and PAPI produce a new chemical bond:carbamate-amino bond, carbamate-methylene bond. Amino and substituted ureas have different absorption strength with different ratio of blocked isocyanate. The XPS analysis show that curing product contains-N-C=O-C and-N-C=O-both in UF adhesives prepared with BPI composite and NaHSO3and p-MDI mixed compound prepared by adding UF adhesive. The-NC=ON functional groups in BPI and UF composite adhesive has more content than that of-NC=OC, which indicating the isocyanate in the BPI has dominant reaction with amino in the UF. The curing product which NaHSO3and p-MDI mixed compound prepared by adding UF adhesive contains more-N-C=O-C than-N-C=O-N, which indicating that the isocyanate in the composite adhesive system has the dominant reaction with hydroxyl group in UF.
     (4) Meanwhile, a study was taken to test the law of the thermal reaction of emulsified isocyanate modified urea-formaldehyde resin adhesive. By comparing the experiments results, we can get the ratio of emulsified isocyanate compound with the urea-formaldehyde resin and the curing reaction rate and thermal stability of adhesive were affected by acidity of crosslinker. The results showed that emulsified isocyanate added in urea-formaldehyde resin can promote the curing reaction rate and improve the thermal stability of the composite adhesive, but with the ratio of isocyanate emulsion increasing, thermal stability has a downward trend. Acidity of curing agent has a certain impact on isocyanate modified urea-formaldehyde resin. The stronger acid curing agent is, the shorter period of application mixed micelles have. When the catalytic effect of curing agent is weak, the production cannot meet the actual needs, thus ammonium chloride is mixed with formic acid as curing agent (pH=1). FTIR and XPS results show that, EPU was mixed with UF urethane to produce carbamate-amino and carbamate-substituted urea bond; XPS analysis can be used to obtain better characterization of the structure of curing urea-formaldehyde resin modified by isocyanate, and the chemical structure can be quantitatively derived from cured products made by isocyanate and urea-formaldehyde resin.
引文
[1]毛安,李建章,雷得定等.脲醛树脂胶黏剂研究进展[J].粘接,2007,28(1):51-54.
    [2]金立维,陈日清,王春鹏等.木材工业用脲醛树脂研究进展[J].林产化学与工业,2006,26(2):122-126.
    [3]崔昆朋,郑国强.脲醛树脂胶粘剂改性研究进展[J].化工文摘,2009(1):45-50.
    [4]赵佳宁.脲醛树脂弱酸性条件起始反应技术[D].东北林业大学硕士论文,2007.
    [5]陈维宁,林景武,黄晓丹.脲醛树脂的发展概况[J].粘接,1997,18(3):25-27.
    [6]曾黄元,杜官本.加快UF固化,缩短热压时间的研究进展[J].林业机械和木工设备,2006,34(1):8-11.
    [7]刘宇,顾继友,高振华.脲醛树脂的复合固化剂体系及基固化特性研究[J].化学工程师,2011,(6):75-78.
    [8]李东光.脲醛树脂胶粘剂[M].北京:化学工业出版社,2002:1-2.
    [9]PIZZI A. Wood Adhesives Chemistry and Technology [M]. New York and Basel:Marcel Dekker,1993.
    [10]邬国铭.高分子材料加工工艺学[M].北京:中国纺织工业出版社,2000.
    [11]杨斌峰.低甲醛释放量刨花板用脲醛树脂的机理和工艺[D].中国林业科学研究院博士学位论文,1992.
    [12]J.R.Ebdon, RE.Heaton, T.N.Huekerby. Characterization of Urea-Formaldehyde and Melamine-Formaldehyde adducts and Resins by 15N-NMR spectroscopy [J]. Polymer,1984, 25(6):821-825.
    [13]樋口光夫,等.MUF树脂的固化过程和聚合物构造(第1报).木材学会志,1991,37(11):1041-1049.
    [14]赵佳宁.弱酸性条件起始合成脲醛树脂机理研究[D].东北林业大学博士论文,2010.
    [15]雷隆和.脲醛树脂及其应用.四川省林产工业公司林产工业情报分站,1982.
    [16]富田文一郎.用13C核磁共振法(NMR)解析标记13C浓缩甲醛引起的三聚氰胺和尿素的共缩聚反应.木材学会志,1995,4l(3):349-354.
    [17]颜镇.我国木材胶粘剂发展概况[J].中国胶粘剂,1995,4(1):3-9.
    [18]G E Maciel, N M.szeverenyi, T A Early Myers.13C-NMR Studies of solid Urea-Formaldehyde Resins Using Cross Polarization and Magic-Angle Spinning. Macromolecules, 1983,16(4):598-604.
    [19]E.罗发埃尔著,王定选.等译.人造板和其他材料的甲醛散发[M].北京:中国林业出版社,1990.
    [20]顾继友,包学耕.E1级干法中密度纤维板制造工艺研究[J].林产工业,1993,20(6):1-4.
    [21]孙振鸢,吴书泓.脲醛树脂的结构与形态—脲醛树脂胶体理论及其进展[J].林业科 学,1993,29(1):49-52.
    [22]De Jong J I, De Jonge J. The formation and decomposition of dimethylolure. Recueil des Travaux Chimiques des Pays-Bas.1952, (71):661-667.
    [23]De Jong J I, De Jonge J. The reaction between urea and formaldehyde inconcentrated solutions. Recueil des Travaux Chimiques des Pays-Bas.1952, (71):891-898.
    [24]De Jong J I, De Jonge J. The reaction of urea with formaldehyde. Recueil des Travaux Chimiques des Pays-Bas.1952, (71):643-660.
    [25]朱利平.低甲醛脲醛树脂的合成工艺及其结构性能研究[D]杨杰.低成本环保脲醛树脂合成工艺的研究[D].中国石油大学硕士论文,2007.
    [27]邓绍宏.UF-G低毒粉状脲醛树脂研制中南林业科技大学硕士论文,2007.
    [28]黄勤雨.低毒脲醛树脂的合成工艺研究[D].福州大学硕士论文,2006.
    [29]卞祥,班丽娜,梅允福,等.绿色节能脲醛树脂粘合剂的生产新方法[J].广州化工2007,35(3):8-10.
    [30]张晓欢.人造板用脲醛树脂胶黏剂低毒化改性研究[D].中南林业科技大学硕士论文,2010.
    [31]崔波,曹长青,张青瑞,等.尿素和甲醛合成脲醛树脂粘合剂的动力学研究[J].中国胶粘剂,1997,6(4):4-7.
    [32]高伟,李建章,周文瑞,等.尤戎(Uron)树脂及其用法对脲醛树脂性能的影响[J].中国胶黏剂,2007,16(1):23-25,33.
    [33]Chung-Yun Hse, Zhi-Yuan Xia, Bunichiro omita. Effects of reaction pH on properties and performance of urea-foramldehyde resins. Holzfordc 1994,48(6):527-532.
    [34]韦双颖.胶合板预压问题及环保型脲醛树脂胶粘剂的研究[D].东北林业大学硕士论文,2003.
    [35]严顺英,顾丽莉.脲醛树脂的研究现状与研究前景[J].化工科技,2005,(4):53-57.
    [36]顾丽莉,罗云,刘静等.低毒脲醛树脂的合成机理[J].中国胶粘剂,1998,7(5):19-23.
    [37]李东光.脲醛树脂胶粘剂[M].北京:化学工业出版社,2002,119-120.
    [38]王敏娟,王建华.低游离醛脲醛树脂的合成[J].热固性树脂,2001,16(04):19-20.
    [39]赵瑛,张海燕,齐国庆.低醛脲醛树脂的制备[J].石化技术与应用,2000,5(5):272-274.
    [40]朱利平,顾丽莉,张彦民.低毒耐水脲醛树脂的合成[J].林产工业,2003,30(4):25-28.
    [41]李建章,李文军,周文瑞,等.脲醛树脂固化机理及其应用[J]皮齐.木材胶粘剂化学与工艺学(史广兴等译)[M].北京:中国林业出版社,1992,4-5.
    [43]樋口光夫等.MUF树脂的固化过程和聚合物构造(第3报).木材学会志,1992,38(4):374-381.
    [44]王永秋,胡美平.改性5011脲醛树脂粘合剂[J].粘接,1997,18(6):13-14.
    [45]高翔,张雄.低毒改性脲醛树脂合成工艺的研究[J]化工科技市场,2008,31(10):19-23.
    [46]B D Park, Y.S.Kim, A.P Singh etal. Reactivity, Chemical Structure, and Molecular Mobility of Urea-Formaldehyde Adhesives Synthesized Under Different Conditions Using FTIR and Solid-State 13C-CP/MAS NMR Spectroscopy[J]. Journal of Applied Polymer Science,2003,88(11):2677-2687.
    [47]杨明平,彭荣华,李国斌.环保型UF树脂胶粘剂合成工艺的研究[J].湘潭矿业学院学报,2003,18(3):92-94.
    [48]A Pizzi. A Molecular Mechanics Approach to the Adhesion of Urea Formaldehyde Resins to Cellulose. Journal of Adhesion Science and Technology,1990,4(7):589-596. K Siimmer, T Pehk, P Christjanson. Study of the Structural Changes in Urea-Formaldehyde Condensates During Synthesis. Macromolecular Symposia,1999,148(1):149-156.
    [49]P. Christjanson, K Siliner, T Pehk, et al. Structural Changes in Urea Formaldehyde Resins During storage. HolzalsRoh-unWerkstoff,2002,60(1):379-384.
    [50]S Chow, P R Steiner. Comparison of the Phenol-Fbnnaldehyde Novolac and Resol Systems by Different Scanning Calorimeter. Joumal of APPlled Polymer Science,1979,23(7): 1973-1985.
    [51]郭伟玲,张长武,何灵芝.UF树脂分子量分布与胶合性能关系的研究[J].林业科技,2002,25(4):30-34.
    [52]刘兰香,毕玉遂.改性UF树脂胶豁剂制备的研究[J].山东工程学院学报,2001,15(3):65-67.
    [53]刘国军.浅谈影响UF树脂胶贮存性能的因素[J].林业科技情报,2004,36(3):85-86
    [54]顾继友.DN-6号胶生产应用研究.建筑人造板[J].1993,(4),23-25,44.
    [56]Ji-You GU, Mitsuo HIGUCHI, Mitsuhiro MORITA and Chung-Yun HSE. Synthetic Conditions and Chemical Structures of Urea-Formaldehyde Resins I. Properties of the resins synthesized by three different procedures, 《Mokuzaigakkaishi》,1995,41(12),1115-1121.
    [57]李秀苗.木材工业用脲醛树的进展[J].安徽化工,1997,(1):9-18.
    [58]马力宇.改性脲醛树脂研究新进展[J].宁夏石油化工,2005,(3):6-9.
    [59]严顺英.低毒型脲醛树脂的合成反应动力学研究[D]昆明理工大学硕士论文,2006.
    [60]翟淑妙,徐晓俨.甲醛的暴露与健康效应[J].环境与健康杂志,1994,11(5):238-240.
    [61]倪荣超,顾继友,林秀南.脲醛树脂结构设计初探[J].中国胶粘剂,2005,14(7):50-54.
    [62]J I De Jong, J De Jonge. The chemical compositions of some condensatesof urea and Formaldehyde. Reel Trav Chim Pays-Bas,1953,72(b):1027-1036.
    [63]R M Rammon, W E Johns, J Magnuson, et al. The Chemical Structural of UF Resins[J]. The Journal of Adhesion,1986,19(2):115-135.
    [64]林爱娇,杜光山.低含醛量UF树脂勃合剂的研究[J].福州大学学报(自然科学版),1996,2(24):111-113.
    [65]S. Chow, P R Steiner. Catalytic, Exothermic Reaction of Urea Formaldehyde Resin[J]. Holforschung,1975,29(1):4-10.
    [66]杜官本,等.尿素-三聚氰胺-甲醛共缩聚树脂应用进展[J].林产工业,2002,29(2):1 3-16.
    [67]A Pizzi. Wood adhesive chemistry and technology [M]. New York:Marcel Dekker,1983.
    [68]翟怀风,李东光.实用木材勃合剂生产与检验[M].北京:金盾出版社,1995:27.
    [69]李子东.实用胶薪剂手册[M].上海:上海科学技术文献出版社,1987:238-239.
    [70]杨进元,李新法沈百栓.胶合板用UF胶勃剂制造方法的研究[J].中国胶粘剂,1995,4(3):20-22.
    [71]古绪鹏,陈同云,张永光.UF树脂胶豁剂耐水性与稳定性[J].化学建材,1995,(4):159-160.
    [72]谭德智.甲醛在UF树脂胶粘剂中的功与过[J].北京木材工业,1995,15(3):27-30.
    [73]储九荣.有机填料改性的无毒耐水UF树脂胶[J].化学与黏合,1999,(4):176-177.
    [74]黄元波,霍庆砚.异氰酸酯胶黏剂在木材工业中的应用[J].黑龙江生态工程职业学院学报,2006,(1):34-35.
    [75]李志国.异氰酸酯对木材胶接固化机理的研究[D].东北林业大学硕士论文,2004.
    [76]汪多仁.异氰酸酯MDI制造及市场概况[J].弹性体,1997,6(5):44-49.
    [77]李绍雄,等.聚氨酯胶粘剂讲座.聚氨酯工业,1992,7(2):45-49.
    [78]王春鹏,赵临五.木材工业用胶粘剂发展现状及发展趋势[J].木材工业,2001,28(2):9-11.
    [79]张岩.相转移催化法亚硫酸氢钠封闭异氰酸酯的研究[D].东北林业大学硕士论文,2010.
    [80]冯庆民,杨振翔.水基胶粘剂的研究与应用进展[J].广州化工.2009,37(7):15-20.
    [81]耿志忠.异氰酸酯与木材各组分反应物的研究[D].东北林业大学硕士论文,2007.
    [82]Wilson J B. Isocyanate Adhesives as Binders for Composition Board [J]. Adhesives Age, 1981,24:41-44.
    [83]黄元波.湿固化异氰酸酯胶粘剂_YQJ_S_胶接性能及其应用研究[D].东北林业大学硕士论文,2005.
    [84]竺玉书.中国聚氨酯工业及聚氨酯涂料[J].涂料工业,1995,(3):26.
    [85]G. B.Guise, M. B. Jackson, J. A Maclaren. Aust. J.Chem,1972,25:2583
    [86]J. L. Ohlson, I. E. Isgur, US Patent 1983,4,421,826
    [87]J. Fukuoka. Japan Kokai Tokkyo Koho JP 05,279,957(1993).
    [88]T. Iwashita, K.Watanabe, Japan Kokai Tokkyo Koho JP 06,009,750(1994)
    [89]T. Iwashita, K. Watanabe, Japan Kokai Tokkyo Koho JP 06,032,865 (1994)
    [90]J.YJ. Chung, P. H. Markusch, M. W. Witman, European Patent EP158263A2 (1985)
    [91]K.E. Atkins, GC. Rex, PCT Int. Appl., WO 93/07216 (1993)
    [92]A. H. Weinstein, H. A. Colvin, D. K. Parker, European Patent EP 385918B1 (1994)
    [93]童身毅.封闭型异氰酸酯在粉末涂料中的应用[J].现代涂料与涂装,2003,(5):3-6
    [94]张彦华.封闭异氰酸酯的制备及其解封闭研究[D]. Gu Jiyou, Gao Zhenhua. The Diseusson Producing Agro-residuecom Positewith Isoeyanate Resin[J]. Journal of Forestry Reasearch,2002,13:74-76.
    [96]顾继友,高振华,谭海彦,等.异氰酸酷树脂胶枯剂刨花板制板工艺研究[J].木材工业,1999,13:7-10.
    [97]Gu Jiyou, Gao Zhenhua. The Discusson Utilizing Agricultural Residuesas Materials of Composite Produeing. Symposium on utilization of agrieultural and forestryre sidues, Nanjing, PRChina:2001.303-307.
    [98]石锐.用异氰酸酷做胶粘剂在生产刨花板的工艺[J].林产工业,1988,13:5-8.
    [99]顾继友,高振华,谭海彦等.异氰酸酷稻草刨花板制造工艺的研究[J].林产工业,2000.27:14-18.
    [100]陆仁书,濮安彬,张显权等.异氰酸酷胶在刨花板中的应用[J].林产工业,1997.24:22-25.
    [101]唐朝发,刘彦龙,李杉,等.低成本水性高分子异氰酸酯胶粘剂的研究[J].林产工业,2003,30(2):22-27.
    [102]陈丽娟,顾继友.水性高分子—异氰酸酯胶乳剂的改性研究[J].粘接,2001.6(22):9-10.
    [103]夏赤丹,王峥,余汉年.二异氰酸酯与聚乙烯醇胶水固化反应的研究[J].化学与粘接,1998,(3):159-161.
    [104]时君友,李海连.实木复合地板用无醛胶粘剂研究[J].中国胶粘剂,1998,9:21-25.
    [105]时君友.水性高分子—异氰酸酷胶粘剂的研究和玉米淀粉的酯化利用[D].东北林业大学硕士论文,2002.
    [106]顾继友.高振华,李志国,等.木材加工用单组分空温固化异氰酸酯树脂的研制[J].中国胶粘剂,2002,11:15-18.
    [107]赵飞,顾继友,杨光.湿固化聚氨酯热融拼板胶的研制[J].中国胶粘剂,2006,7(15):27-29.
    [108]皮齐.木材胶粘剂化学与工艺学[M].北京:中国林业出版社,1992.
    [109]C.Y.Hse, T.F. ShuPe, J.Wang. Mechanical and Physical ProPerties of composite Products from bagasse and ricehusks. SymPOsium onutiliZation of agrieultural and forestry residues, Nanjing, PR China:2001,187-192.
    [110]王伟宏UF-MDI混合胶低毒刨花板胶接机理和工艺理论的研究[D].东北林业大学博士论文,2002.
    [111]顾继友.异氰酸酯胶粘剂[J].国际木业,2002,8-16.
    [112]高振华.异氰酸酯室温下与醇、水反应及较高温度下与纤维素反应的研究[D]刘益 军,李绍雄.聚氨酯胶粘剂讲座(连载十).聚氨酯工业[J],1994,(3):42-47.
    [114]张彦华,顾继友,邸明伟,等.异氰酸酯改性脲醛树脂胶粘剂的研究进展[J]庞小仁异氰酸酯—PVAc—脲醛树脂胶粘剂[J].粘合剂,1990,3:34-35.
    [116]郝丙业,刘正添.稻草刨花板制造工业的初步研究[J].木材工业,1993,7(3):2-7.
    [117]Fritz Troger, Gerd Wegener, Claus Seemann.Miscanthus and flax as raw material for reinforced. [J]. Industrial Corps and Products.1998,1:113-121.
    [118]周安安.低成本环保型脲醛树脂的研制[J].浙江科学学院学报,2005,17(3):191-194.
    [119]王伟宏,陆仁书EMDI—UF混合胶刨花板制造工业条件的研究[J].林产工业,2004,3(1):33-36.
    [120]王伟宏,陆仁书UF-MDI混合胶刨花板制造过程中施胶方式的探讨[J].林业科学,2005,41(2):124-128.
    [121]A.Despres, A, Pizzi, L.Delmotte.13CNMR Investigation of the Reaction in Water of UF Resins With Blocked Emulsifiable Isocyanates [J]. Apply Polymer Science,2006,99:589-596.
    [122]G厄特尔编著.聚氨酯手册(德)[M].北京:化学工业出版社,1992:123-125.
    [123]Zeno W. Wicks. Bloked isocyanates [J]. Progress in Organic Coating,1975, (3):73-99.
    [124]长仓稔.色材学会志(日文),1980,53(4):676.
    [125]Douglas A. Wicks, Zeno W. Wicks Jr. Blocked isocyanates Ⅲ:Part B:Uses and applications of blocked isocyanates [J]. Progress in Origanic Coatings.2001,41:35-45.
    [126]朱家琪.封闭异氰酸酯在脲醛树脂中的反应和交联[J].人造板通讯,2004,11(1):27-35.
    [127]郝丙业.刘正添.应用DSC研究脲醛树脂胶和异氰酸酯胶混合液的固化过程[J].木材工业,1993,7(2):2-6.
    [128]张洋,华毓坤.用DSC法研究麦秸人造板用胶的热反应特征[J].南京林业大学学报,2000,24(5):17-20.
    [129]周兆兵,张洋,贾翀.木质材料动态润湿性能的表征[J].2007,31(5):71-74.
    [130]C.Simon, B. George, A. Pizzi. Copolymerization in UF/PMDI Adhesives Networks [J]. Journal of Applied Polymer Science.2002,86:3681-3688.
    [131]A Despres, A Pizzi, L Delmotte.13CNMR Investigation of the Reaction in Water of UF Resins with Blocked Emulsifiable Isocyanates [J].Apply Polymer Science,2006,99:589-596.
    [132]马建中,兰云军.制革整饰材料化学[M].北京:中国轻工业出版社,1998:425.
    [133]丁伟峰,汤心颐等.水溶性聚氨酯的制备[J].聚氨酯工业,1991,(3):13-16.
    [134]孙哲,李贵贤,王刚,等.水分散封闭型多异氰酸酯的合成[J].涂料工业,2008,38(1):34-36.
    [135]艾军.麦秸纤维特性及脲醛树脂麦秸纤维板工艺研究[D].东北林业大学博士论文,2001:30-31.
    [136]陈道义等.合成胶粘剂丛书(第二册).胶接基本原理[M].北京:科学出版社, 1992:126-128.
    [137]吴瑾光.近代傅立叶变化红外光谱技术及应用(上)[M].北京:科学技术文献出版社,1994.
    [138]山西省化工研究所编.聚氨酯弹性手册[M].北京:化学工业出版社,2001,1.
    [139]Q.W. Han and M.W.Urban. Surface/interfacial changes during polyurenthane crosslinking:asectroscopic study [J]. Appl Polym Sci,2001,81:2045-2054.
    [140]吴瑾光.近代傅立叶变化红外光谱技术及应用(上)[M].北京:科学技术文献出版社,1994
    [141]A. M. Kaminski and M. W. Uraban. Interfacial studies of crosslinked polyurenthanes (Ⅰ). J. Coaling Technology.1997,69:55-56.
    [142]Douglas A. Wicks, Zeno W. Wicks. Jr. Blocked isocyanatesⅢ:Part A.Mechanisms and Chemistry [J]. Progress in Organic Coatings.1999,36:148-172
    [143]K. Umemura, A. Takahashi and Kawai. Durability of isocyante resin adhesives for wood (11).J.Appl. Polym. Sci.,1999,74:1807-1814.
    [144]徐晓红.纤维蛋白基纳米纤维的交联、表征及生物相容性研究[D].东华大学硕士论文,2010.
    [145]蔡正千.热分析[M].北京:高等教育出版社,1983,258.
    [146]严如岳,华庆恒,李岩松,等.X光电子谱(XPS)表面分析[J].半导体杂志,1991,16(2):31-36.
    [147]刘洁,刘芬,赵良仲.创新设计的K-Alpha电子能谱仪[J].现代仪器,2007,1:53-56.
    [148]文美兰.X射线光电子能谱的应用介绍[J].化工时刊,2006,20(8):54-56.
    [149]卢炯平.X射线光电子能谱在材料研究中的应用[J].分析测试技术和仪器,1995,1(1):1-12.
    [150]张欣艳,苏润洲,赵达,等.X射线光电子能谱(XPS)在木质材料研究领域中的应用[J].黑龙江八一农垦大学学报,2007,19(2):79-84.
    [151]周晓芸.低温等离子体改性后竹材表面界面特性的研究[D].南京林业大学,硕士论文,2008.
    [152]C. J. Powell, P. E. Larson. Quantitative Surface Analysis by X-ray photoelectron spectroscopy [J]. Applications of Surface Science,1978,1(2):186-201.
    [153]李绍雄,刘益军.聚氨酯胶粘剂[M].北京:化学工业出版社,1998,206-208.
    [154]Douglas A. Wicks, Zeno W. Wicks. Jr. Blocked isocyanatesⅢ:Part A.Mechanisms and Chemistry [J]. Progress in Organic Coatings.1999,36:148-172.
    [155]Engonga, P.E., Marchetti, V. Grafting of perfluoroalkyl chains onto wood using blocked isocyanates [J]. Journal of Fluorine Chemistry,2000,101:19-25.
    [156]Subramani, S., Park, Y.J., Lee, Y.S and Kim, J.H. New Development of polyurethane dispersion derived from blocked aromatic diisocyanate [J]. Progress in Organic Coatings,2003, 48(1):71-79.
    [157]Sankar, G and Nasar, A.S. Amine-blocked polyisocyanates. Ⅰ. Synthesis of novel N-methylaniline-blocked polyisocyanates and deblocking studies using hot-stage Fourier transform infrared spectroscopy [J]. Journal of Polymer Science; Part A; Polymer Chemistry, 2007 45(8):1557-70.
    [158]Sankar, G and Nasar, A.S. Effect of isocyanate structure on deblocking and cure reaction of N-methylaniline-blocked diisocyanates and polyisocyanates [J]. European Polymer Journal, 2009,45:911-22.
    [159]严勇军,汪剑炜,丁马太.光稳定聚氨酯胶粘剂的研制[J].1997,18(6):1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700