3d过渡金属掺杂In_2O_3稀磁半导体材料的制备与研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀磁半导体材料具有可以同时利用电子电荷和电子自旋的属性,表现出优异的磁、磁光、磁电性能,使其在自旋电子学领域有广阔的应用前景,已成为材料领域的研究热点。In203是一种透明的,宽禁带(3.75 eV)半导体,具有立方方铁锰矿结构,对过渡金属离子有较大的固熔量,可有效避免二次杂质相的产生,形成均相结构的稀磁半导体。因此,过渡金属掺杂In203稀磁半导体的研究备受人们的关注。本论文采用固相反应、真空退火技术和脉冲激光沉积方法在In203半导体中掺入了Fe、Mn和Cr过渡金属元素,通过分析样品的结构、磁性和电子输运特性等之间的关系,对样品的铁磁性来源和磁性机制进行了探讨。主要研究内容如下:
     (1)采用固态反应方法和真空退火技术制备了(In1-xFex)2O3 (x=0.02,0.05,0.2)粉末。系统研究了Fe含量和真空退火温度对(In1-xFex)2O3粉末结构和磁性的影响。结果表明,Fe离子进入到In203的立方晶格取代了In离子,样品为均匀的单相结构,样品表现出明显的铁磁性,居里温度高达793 K,Fe含量和真空退火温度对样品的铁磁性有重要影响。一系列结构和磁性测量结果表明,(In1-xFex)2O3粉末的铁磁性不是来源于Fe团簇或者Fe的氧化物二次相,而是和氧空位密切相关。
     (2)采用脉冲激光沉积技术在A12O3(0001)基片上制备了Fe掺杂In203薄膜,系统研究了Fe含量和氧气分压对薄膜的结构、组成、磁性和输运性质的影响。X射线衍射表明(In1-xFex)2O3薄膜为均匀的单相立方方铁锰矿In2O3结构,以In2O3 (222)择优取向,且Fe已取代了In203晶格中的In; X射线光电子能谱表明当氧气分压较低时,薄膜中Fe以Fe2+和Fe3+离子的形式存在,当氧气分压较高时Fe以Fe3+离子的形式存在。(In1-xFex)2O3薄膜表现出明显的室温铁磁性,其导电类型为n型。薄膜的载流子浓度与Fe含量和氧气分压密切相关,并且大部分薄膜处于金属区,一部分薄膜处于绝缘区。进一步分析表明,处于金属区的薄膜,其铁磁性与载流子浓度密切相关,载流子浓度越高,磁性越大,铁磁性来源符合载流子诱导机制;处于绝缘区的薄膜,其载流子浓度很小,在低温时的输运性质符合Mott的变程跳跃机制,铁磁性来源符合束缚磁极子理论。磁光效应测量结果进一步说明(In1-xFeX)203薄膜的铁磁性是本征的,来源于Fe取代了In的均相结构。
     (3)采用真空退火技术和脉冲激光沉积技术制备了Sn和Cu共掺杂的(In0.92Fe0.05Sn0.03)2O3和(In0.92Fe0.05Cu0.03)2O3粉末和薄膜,研究了共掺杂剂Sn和Cu对样品结构、磁性与输运等性质的不同影响。虽然X射线衍射测量结果表明(In0.92Fe0.05Sn0.03)2O3和(In0.92Fe0.05Cu0.03)2O3粉末为均匀的单相结构,但是场冷却-零场冷却测量结果表明样品的室温铁磁性都来源于样品中的Fe3O4纳米颗粒。然而,(In0.92Fe0.05Sn0.03)2O3和(In0.92Fe0.05Cu0.03)2o3薄膜的铁磁性来源明显不同。(In0.92Fe0.05Sn0.03)2O3薄膜中Fe-Sn易于形成非补偿性p-n对,而p-n对受主和施主离子之间存在静电作用,很容易同时取代两个近邻位的阳离子,使整个体系能量降低,阻止了Fe离子的化合和团聚。同时各种表征手段也都没有检测到任何二次相,因此我们认为(In0.92Fe0.05Sn0.03)2O3薄膜的铁磁性是本征的,来源于Fe和Sn取代了In的均相结构;而且Sn的掺入可以有效增大体系的载流子浓度,其磁性来源于载流子诱导机制。对于Fe-Cu共掺杂的(In0.92Fe0.05Cu0.03)2O3薄膜中有金属Fe团簇生成,这是稀磁半导体所不期望的。
     (4)采用脉冲激光沉积技术在A12O3 (0001)基片上成功制备了Mn和Cr掺杂的In203薄膜。Mn掺杂In203薄膜的铁磁性表现出可逆性,通过控制掺入薄膜中Sn的含量控制其载流子浓度,薄膜的铁磁性可在“开”和“关”之间转换。额外载流子的存在对Cr掺杂In203薄膜的铁磁性有重要影响,在薄膜中加入了1%的Sn后,由于载流子浓度的增加,薄膜的铁磁性明显增强,饱和磁化强度达2.10μB/Cr。重要的是,我们的实验结果表明载流子浓度和自旋对样品铁磁性的产生都非常重要。
     总之,我们制备了不同过渡金属元素掺杂的In203基稀磁半导体,研究了样品的结构、磁性和输运等性质。发现载流子浓度对样品的铁磁性有重要影响,载流子浓度较大的铁磁性薄膜在新一代自旋电子器件中有广阔的应用前景。
Diluted magnetic semiconductos (DMSs) have attracted great interest for their potential applications in spintronic devices because the charge and spin of carriers can be simultaneously controlled. In2O3 is a wide band gap (3.75 eV) transparent semiconductor with cubic bixbyite crystal structure. The solubility of transition metal (TM) in In2O3 host lattice was found to be very high, which can effectively avoid the formation of magneitc impurities and also makes it possible to obtain homogenous DMSs for application. In this work, Fe, Mn and Cr doped In2O3 samples were prepared by solid state reaction, a vacuum annealing process and pulsed laser deposition technique. Based on the systematical studies of the structure, magnetism and transport properties of the samples, the origin and mechanism of ferromagnetism in In2O3-based DMSs were discussed. The results are summarized as follows:
     (1) (In1-xFex)2O3 (x=0.02,0.05,0.2) powders were prepared by a solid state reaction method and a vacuum annealing process. A systematic study was done on the structural and magnetic properties of (In1-xFex)2O3 powders as a function of Fe concentration and annealing temperature. The (In1-xFex)2O3 powders appear to be homogeneous and single-phase materials, where Fe elements incorporate into the In sites of the In2O3 lattice rather than forming any secondary phases. The samples were ferromagnetic with the magnetic moment of 0.49-1.73μB/Fe and the Curie temperature around 793 K. The results indicate that the observed high temperature ferromagnetism of vacuum-annealed (In1-xFex)2O3 powders is intrinsic rather than from any magnetic impurities, and is attributed to the ferromagnetic coupling of Fe2+and Fe3+ions via an electron trapped in a bridging oxygen vacancy.
     (2) Fe-doped In2O3 thin films are deposited on sapphire substrates using pulsed laser ablation. The effects of Fe concentration and oxygen partial pressure on the structure, magnetism and transport properties of (In1-xFex)2O3 films are studied systematically. A detailed analysis of the structural properties suggests the substitution of Fe dopant atoms into In lattice sites and the films are textured with (222) orientation. X-ray photoelectron spectroscopy indicates that the valence of substituted Fe in the (In1-xFex)2O3 films varies with oxygen partial pressure, at lower oxygen partial pressures, Fe behaves as a mixture of+2 and +3 valences, whereas Fe3+dominates in the films grown at higher oxygen pressures. Systematic investigations of transport properties for (In1-xFex)2O3 films with a wide range of carrier densities reveal that they occur in both metallic and insulating regimes. The insulating films exhibit variable range hopping at low temperatures and show temperature dependent ferromagnetism, which can be explained by bound magnetic polarons mechanism. For the metallic films, the carrier densities play a crucial role in their robust ferromagnetism and the resistivity and magnetization are independent of temperature; the carrier-mediated exchange mechanism has been suggested as responsible for magnetic ordering in these metallic films. Optical absorption and magneto-optic studies of (In1-xFex)2O3 films indicate further differences between metallic and semiconducting films and show significant magnetic circular dichroism below the In2O3 band edge at room temperature, which also implies intrinsic ferromagnetism.
     (3) (In0.92Fe0.05Sn0.03)2O3 and (In0.92Fe0.05Cu0.03)2O3 powders and films were prepared by a vacuum annealing process and a pulsed laser deposition technique, respectively. The effects of codpants Sn and Cu on the structure, magnetism and transport properties of samples have been investigated. The zero-field-cooled and field-cooled magnetic measurement indicated that the room temperature ferromagnetism of (In0.92Fe0.05Sn0.03)2O3 and (In0.92Fe0.05Cu0.03)2O3 powders both originate from the Fe3O4 nanoparticles although the x-ray diffraction results revealed no crystalline phase other than cubic bixbyite structure In2O3 to be present in the powders. However, the origin of ferromagnetism for (In0.92Fe0.05Sn0.03)2O3 and (In0.92Fe0.05Cu0.03)2O3 films is very different. In (In0.92Fe0.05Sn0.03)2O3 film, the Fe-Sn can constitute p-n pairs. The Columbic attraction between the n- and p-type dopants with opposite charge state substantially enhances both the thermodynamic and, in particular, the kinetic solubilities of the dopant pairs in concerted substitutional doping. More profoundly, the noncompensated p-n pairs of Fe-Sn prevented the aggregation of Fe ions. The mictostructure and magnetic analyses also confirmed that there was no segregation of any secondary phases. So the room temperature ferromagnetism of (In0.92Fe0.05Sn0.03)2O3 film is intrinsic rather than from any other magnetic impurity phases. The magnetic behavior is consistent with a carrier-induced ferromagnetism model. While, the (In0.92Fe0.05Cu0.03)2O3 film was superparamagnetic, and the observed ferromagnetism originated from the nanometer-sized Fe clusters, which is not desirable for device application.
     (4) Mn and Cr-doped In2O3 films with Sn co-doping were deposited on sapphire substrate by pulsed laser deposition. The ferromagnetism of Mn-doped In2O3 films shows reversible behavior, which can be switched between "on" and "off" states by controlling the carrier density via varying Sn concentration. The enhanced ferromagnetism in Cr-doped In2O3 films is observed due to the significant increase in the carrier density with Sn doping, and the saturation magnetization can reach 2.10μB/Cr. Most importantly, both of the experiment results reveal that the carrier density and the net spin are two crucial factors for producing and tuning ferromagnetism.
     In summary, we have prepared different TMs doped In2O3 DMSs materials and studied the various properties of the samples. The results reveal that the carrier densities play a crucial role in the ferromagnetism and the dependence of the magnetism on the carrier density lend support to carrier-mediated mechanism. This clear demonstration of carrier-mediated ferromagnetism at high carrier concentration implies that TMs-doped In2O3 can be used as n-type DMSs at RT, with consequent potential for exploitation in spintronic applications.
引文
[1]Ohno H., Making Nonmagnetic Semiconductors Ferromagnetic [J]. Science,1998,281: 951-956.
    [2]WolfS. A., Awschalom D. D., Buhrman R. A., Daughton J. M., Molnar S.von., Roukes L. M., Chtchelkanova A.Y., and Treger D. M., Spintronics:A Spin-Based Electronics Vision for the Future [J]. Science,2001,294:1488-1495.
    [3]Prinz G. A., Magnetoelectronics [J]. Science,1998,282:1660-1663.
    [4]Chiu P. T., and Wessels B. W., Dependence of magnetic circular dichroism on doping and temperature in In1-xMnxAs epitaxial films [J]. Phys. Rev. B,2007,76:165201.
    [5]Sharma P., Mita A., Rao K. V., Owens F. J., Sharma R., Ahuja R., Guillen J. M. O., Johansson B., and Gehring G. A., Ferromagnetism above room temperature in bulk and transparent thin films of Mn-doped ZnO [J]. Nature Mater.,2003,2:673-677.
    [6]Punnoose A., Seehra M. S., Park W. K., and Moodera J. S., On the room temperature ferromagnetism in Co-doped TiO2 films [J]. J. Appl. Phys.,2003,93:7867.
    [7]Ogale S. B., Choudhary R. J., Buban J. P., Lofland S. E., Shinde S. R., Kale S. N., Kulkami V. N., Higgins J., Lanci C., Simpson J. R., Browning N. D., Sarma S. D., Drew H. D., Greene R. L., and Venkatesan T., High Temperature Ferromagnetism with a Giant Magnetic Moment in Transparent Co-doped SnO2-s [J]. Phys. Rev. Lett.,2003,91: 077205.
    [8]Philip J., Punnoose A., Kim B. I., Reddy K. M., Layne S., Holmes J. O., Satpati B., Leclair P. R., Santos T. S., and Moodera J. S., Carrier-controlled ferromagnetism in transparent oxide semiconductors [J]. Nature Mater.,2006,5:298-304.
    [9]Aggarwal R. L., Furdyna J. K., and Molnar S. von, Dilute Magnetic (Semimagnetic) Semiconductors [J]. Mater. Res. Soc. Proc.,1987,89:97-110.
    [10]Ahn K. Y., and Shafer M. W., Relationship Between Stoichiometry and Properties of EuO Films [J].J.Appl. Phys.,1970,41:1260-1262.
    [11]Ahn K., Pecharsky A. O., Gschneidner K. A., and Pecharsky V. K., Preparation, heat capacity, magnetic properties, and the magnetocaloric effect of EuO [J]. J. Appl. Phys., 2004,97:063901.
    [12]Ott H., Heise S. J., Sutarto r., Hu Z., Chang C. F., Hsieh H. H., Lin H. J., Chen C. T., Tjeng L. H., Soft x-ray magnetic circular dichroism study on Gd-doped EuO thin films [J]. Phys. Rev. B,2006,73:094407.
    [13]Furdyna J. K., Diluted magnetic semiconductors [J]. J. Appl. Phys.,1988,64:R29-64.
    [14]Munekata H., Ohno H., Molnar S. von, Segmuller A., Chang L. L., and Esaki L Diluted magnetic Ⅲ-Ⅴ semiconductors [J]. Phys. Rev. Lett.,1989,63:1849-1852.
    [15]Ohno H., Munekata H., Penney T., Molnar S. von, and Chang L. L., Magnetotransport properties of p-type (In,Mn)As diluted magnetic Ⅲ-Ⅴ semiconductors [J]. Phys. Rev. Lett.,1992,68:2664-2667.
    [16]Ohno H, Shen A., Matsukura F., Oiwa A., Endo A., Katsumoto S., and lye Y., (Ga,Mn)As: A new diluted magnetic semiconductor based on GaAs [J]. Appl. Phys. Lett.,1996,69: 363.
    [17]Chen L., Yan S., Xu P. F., Lu J., Wang W. Z., Deng J. J., Qian X., Ji Y., and Zhao J. H., Low-temperature magnetotransport behaviors of heavily Mn-doped (Ga,Mn)As films with high ferromagnetic transition temperature [J].Appl. Phys. Lett.,2009,95:182505.
    [18]Dietl T., Ohno H., Matsukura F., Cibert J., and Ferrand D., Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors [J]. Science,2000,287: 1019-1022.
    [19]Matsumoto Y., Murakami M., Shono T., Hasegawa T., Fukumura T., Kawasaki T., Ahmet P., Chikyow T., Koshihara S., and Koinuma H., Room-Temperature Ferromagnetism in Transparent Transition Metal-Doped Titanium Dioxide [J]. Science,2001,291: 854-856.
    [20]Sato K., and Yoshida Y. K., Stabilization of Ferromagnetic States by Elecreon Doping in Fe, Co-or Ni-Doped ZnO [J]. Jpn. J. Appl. Phys.,2001,40, L334-L336.
    [21]Ueda K., Tabata H., and Kawai T., Magnetic and electric properties of transition-metal-doped ZnO films [J]. Appl. Phys. Lett.,2001,79:988.
    [22]Li X. L., Wang Z. L., Qin X. F., Wu H. S., Xu X. H., and Gehring G. A., Enhancement of magnetic moment of Co-doped ZnO films by postannealing in vacuum [J]. J. Appl. Phys., 2008,103:023911.
    [23]Xu X. H., Blythe H. J., Ziese M., Behan A. J., Neal J. R., Mokhtari A., Ibrahim R. M., Fox A. M., and Gehring G. A., Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAlO thin films at room temperature [J]. New J. Phys.,2006,8:135.
    [24]Behan A. J., Mokhtari A., Blythe H. J., Score D., Xu X. H., Neal J. R., Fox A. M., and Gehring G. A., Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator [J]. Phys. Rev. Lett.,2008,100: 047206.
    [25]Venkatesan M., Fitzgerald C. B., Lunney J. G., and Coey J. M. D., Anisotropic Ferromagnetism in Substituted Zinc Oxide [J]. Phys. Rev. Lett.,2004,93:177206.
    [26]Fukuma T., Jin Z., Kawasaki M., Shono T., Koshihara S., and Koinuma H., Magnetic properties of Mn-doped ZnO [J]. Appl. Phys. Lett.,2001,78:958-960.
    [27]Kundaliya D. C., Ogale S. B., Lofland S. E., Dhar S., Metting C. J., Shinde S. R., Ma Z., Varughese B., Ramanujachary K. V., Salamanca-Riba L., and Venkatesan T., On the origin of high-temperature ferromagnetism in the low-temperature-processed Mn-Zn-O system [J]. Nature Mater.,2004,3:709-714.
    [28]Wei X. X., Song C., Geng K. W., Zeng F., He B., and Pan F., Local Fe structure and ferromagnetism in Fe-doped ZnO films [J]. J. Phys.:Condens. Matter.,2006,18:7471.
    [29]Liu X., Lin F., Sun L., Cheng W., Ma X., and Shi W., Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition [J]. Appl. Phys. Lett.,2006,88:062508.
    [30]Roberts B. K., Pakhomov A. B., Voll P., and Krishnana K. M., Surface scalling of magnetism in Cr:ZnO dilute magnetic dielectric thin films [J]. Appl. Phys. Lett.,2008,92: 162511.
    [31]Hou D. L., Ye X. J., Meng H. J., Zhou H. J., Li X. L., Zhen C. M., and Tang G. D., Magnetic properties of n-type Cu-doped ZnO thin films [J]. Appl. Phys. Lett.,2007,90: 142502.
    [32]Li X. L., Xu X. H., Quan Z. Y, Guo J. F., Wu H. S., and Gehring G. A., Role of donor defects in enhacing ferromagnetism of Cu-doped Zno films [J]. J. Appl. Phys.,2009,105: 103914.
    [33]Toyosaki H., Fukumubra T., Yasuhiro Y., Nakajima K., Chikyow T., Hasegawa T., Koinuma H., and Kawasaki M., Anomalous Hall effect governed by electron doping in a room-temperature transparent ferromagnetic semiconductor [J]. Nature Mater.,2004, 3:221-224.
    [34]Wang Z., Wang W. Tang J., Tung L., D., Spinu L., and Zhou W., Extraordinary Hall effect and ferromagnetism in Fe-doped reduced rutile [J]. Appl. Phys. Lett.,2003,83: 518-520.
    [35]Hong N., H., Prellier W., Sakai J., and Hassihi A., Fe-and Ni-doped TiO2 thin films grown on LaAlO3 and SrTiO3 substrates by laser ablation [J]. Appl. Phys. Lett.,2004,84: 2850.
    [36]Wang Z., Tang J., Chen Y., Spinu L., Zhou W., and Tung L. D., Room-temperature ferromagnetism in manganese doped reduced rutile titanium dioxide thin films [J]. J. Appl. Phys.,2004,95:7384.
    [37]Kaspar T. C., Heald S. M., Wang C. M., Bryan J. D., Droubay T., Shutthanandan V., Thevuthasan S., McCready D. E., Kellock A. J., Gamelin D. R., and Chambers S. A., Negligible Magnetism in Excellent Structural Quality CrxTi1-xO2 Anatase:Contrast with High-Tc Ferromagnetism in Structurally Defective CrxTi1-xO2 [J]. Phys. Rev. Lett.,2005, 95:217203.
    [38]Duhalde S., Vignolo M. F., Golmar F., Chiliotte C., Rodriguez Torres C. E., Errico L. A., Cabrera A. F., Renteria M., Sanchez F. H., and Weissmann M., Appearance of room-temperature ferromagnetism in Cu-doped TiO2-δ films [J]. Phys. Rev. B,2005,72: 161313.
    [39]Kim J. K., Park J. H., Park B. G., Noh H. J., Oh S. J., Yang J. S., Kim D. H., Bu S. D., Noh T. W., Lin H. J., Hsieh H. H., and Chen C. T., Ferromagnetism Induced by Clustered Co in Co-Doped Anatase TiO2 Thin Films [J]. Phys. Rev. Lett.,2003,90: 017401.
    [40]Park J. H., Kim M. G., Jang H. M., Ryu S., and Kim Y. M., Co-metal clustering as the origin of ferromagnetism in Co-doped ZnO thin films [J]. Appl. Phys. Lett.,2004,84: 1338-1340.
    [41]Yoo Y. K., Xue Q., Lee H., Cheng S., Xiang X. D., Dionne G. F., Xu S., He J., Chu Y. S., Preite S. D., Lofland S. E., and Takeuchi I., Bulk synthesis and high-temperature ferromagnetism of (In1-xFex)2O3_s with Cu co-doping [J]. Appl. Phys. Lett.,2005,86:042506.
    [42]He J., Xu S., Yoo Y. K., Xue Q., Lee H., Cheng S., Xiang X. D., Dionne G. F., and Takeuchi I., Room temperature ferromagnetic n-type semiconductor in (In1-xFex)2O3-δ [J]. Appl. Phys. Lett.,2005,86:052503.
    [43]Gurlo A., Ivanovskaya M., Barsan N., and Weimar U., Corundum-type indium (III) oxide:formation under ambient conditions in Fe2O3-In2O3 system [J]. Inorg. Chem. Commun.,2003,6:569-572.
    [44]Prewitt C. T., Shannon R. D., Rogers D. B., and Sleight A. W., The C Rare Earth Oxide-Corundum Transition and Crystal Chemistry of Oxides Having the Corundum Structure [J]. Inorg. Chem.,1969,8 (9):1985-1993.
    [45]Gonzalez G. B., Mason T. O., Quintana J. P., Warschkow O., Ellis D. E., Hwang J. H., Hodges J. P., and Jorgensen J. D., Defect structure studies of bulk and nano-indium-tin oxide [J]. J. Appl. Phys.,2004,96:3912.
    [46]Gonzalez G. B., Cohen J. B., Hwang J. H., Mason T. O., Hodges J. P., and Jorgensen J. D., Neutron diffraction study on the defect structure of indium-tin-oxide [J]. J. Appl. Phys.,2001,89:2550.
    [47]Coutts T. J, and Naseem S., High efficiency indium tin oxide/indium phosphidesolar cells [J].Appl. Phys. Lett.,1985,46:164-166.
    [48]Kono A, Feng Z., Nouchi N, and Shoji F., Fabrication of low resistivity tin-doped indium oxide films with high electron carrier densities by a plasma sputtering method [J]. Vacuum,2008,83:548-551.
    [49]詹自力,徐甲强,蒋登高.In203基气体传感器研究现状[J].传感器技术2003,22(3):1-3.
    [50]牛新书,仲皓想.In203纳米粉体的制备及其气敏性能研究[J].电子元件与材料,2005,24(11):10-12.
    [51]Jayakumar O. D., Gopalakrishnan I. K., Kulshreshtha S. K., Gupta A., Rao K. V., Louzguine-Luzgin D.V., Inoue A., Glans P. A., Guo J. H., Samanta K., Singh M. K., and Katiyar R. S., Structural and magnetic properties of (In1-xFex)O3 (0.0≤ x≤ 0.25) system: Prepared by gel combustion method [J]. Appl. Phys. Lett.,2007,91:052504.
    [52]Xing P. F., Chen Y. X., Yan S. S., Liu G. L., Mei L. M., Wang K., Han X. D., and Zhang Z., High temperature ferromagnetism and perpendicular magnetic anisotropy in Fe-doped In2O3 films [J]. Appl. Phys. Lett.,2008,92:022513.
    [53]Yan S. M., Ge S. H., Zuo Y. L., Qiao W., and Zhang L., Effects of carbothermal annealing on structure defects and electrical and magnetic properties in Fe-doped In2O3 [J]. Scipta. Mater.,2009,61:387-390.
    [54]Singhal A., Achary S. N., Manjanna J., Jayakumar O. D., Kadam R. M., and Tyagi A. K., Colloidal Fe-Doped Indium Oxide Nanoparticles:Facile Synthesis, Structural, and Magnetic Properties [J].J. Phys. Chem. C,2009,113:3600-3606.
    [55]Kohiki S., Murakawa Y., Hori K., Shimooka H., Tajiri T., Deguchi H., Oku M., Arai M., Mitome M., and Bando Y., Magnetic Behavior of Fe Doped In2O3 [J]. Jpn. J. Appl. Phys., 2005,44:L979-L981.
    [56]Okada K., Kohiki S., Nishi S., Shimooka H., Deguchi H., Mitome M., bando Y., and Shishido T., Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4Nanoparticles [J]. Jpn. J. Appl. Phys.,2007,46:L823-L825.
    [57]Ohno T., Kawahara T., Tanaka H., Kawai T., Oku M., Okada K., and Kohiki S., Ferromagnetism in Transparent Thin Films of Fe-Doped Indium Tin Oxide [J]. Jpn. J. Appl. Phys.,2005,45:L957-L959.
    [58]Peleckis G., Wang X. L., and Dou S. X., Room-temperature ferromagnetism in Mn and Fe codoped In2O3 [J]. Appl. Phys. Lett.,2006,88:132507.
    [59]Berardan D. and Guilmeau E., Magnetic properties of bulk Fe-doped indium oxide [J]. J. Phys.:Condens. Matter.,2007,19:236224.
    [60]Yu Z. G, He J., Xu S., Xue Q., vantErve O. M. J., Jonker B. T., Marcus M. A., Yoo Y. K., Cheng S., and Xiang X. D., Origin of ferromagnetism in semiconducting (In1-x-yFexCuy)2O3-δ [J]. Phys. Rev. B,2006,74:165321.
    [61]Chu D. W., Zeng Y. P., Jiang D. L., and Ren Z. M., Tuning the crystal structure and magnetic properties of Fe doped In2O3 nanocrystals [J]. Appl. Phys. Lett.,2007,91: 262503.
    [62]Hu S. J., Yan S. S., Lin X. L., Yao X. X., Chen Y. X., Liu G. L., and Mei L. M., Electronic structure of Fe-doped In2O3 magnetic semiconductor with oxygen vacancies: Evidence for F-center mediated exchange interaction [J]. Appl. Phys. Lett.,2007,91: 262514.
    [63]Xing P. F., Chen Y. X., Yan S. S., Liu G. L., Mei L. M., and Zhang Z., Tunable ferromagnetism by oxygen vacancies in Fe-doped In2O3 magnetic semiconductor [J]. J. Appl. Phys.,2009,106:043909.
    [64]Chandradass J., Balasubramanisn M., Kumar S., Bae D. S., and Kim K. H., Effect of Fe doping on the room tempearture ferromagnetism in chemically synthesized (In1-xFex)2O3 (0≤x≤0.07) magnetic semiconductor [J]. Curr. Appl. Phys.,2010,10:333-336.
    [65]Xing P. F., Chen Y. X., Tang M. J., Yan S. S., Liu G. L., Mei L. M., and Jiao J., Room-Temperature Anisotropic Ferromagnetism in Fe-Doped In2O3 Heteroepitaxial Films [J]. Chen. Phys. Lett.,2010,27:117503.
    [66]Yu J., Duan L. B., Wang Y. C., and Rao G. H., Influence offuel-to-oxidizer ratio on the magnetic properties of Fe-doped In2O3 nanoparticles synthesized by solution combustion method [J]. J. Solid State Chem.,2009,182:1563-1569.
    [67]Kharel P., Sudakar C., Sahana M. B., Lawes G., Suryanarayanan R., Naik R., and Naik V. M., Room temperature ferromagnetism in Cr-doped In2O3 on high vacuum annealing of thin films and bulk samples [J]. J. Appl. Phys.,2007,101:09H117.
    [68]Bizo L., Allix M., Niu H., and Rosseinsky M. J., Magnetism and Phase Formation in the Candidate Dilute Magnetic Semiconductor System In2-xCrxO3:Bulk Materials are Dilute Paramagnets [J].Adv. Funct. Mater.,2008,18:777-784.
    [69]Berardan D., Guilmeau E., and Pelloquin D., Intrinsic magnetic properties of In2O3 and transition metal-doped-In2O3 [J]. J. Magn. Magn. Mater.,2008,320:983-989.
    [70]Xing G. Z., Yi J. B., Wang D. D., Liao L., Yu T., Shen Z. X., Huan C. H. A., Sum T. C. Ding J., and Wu T., Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3-δ nanostructures [J]. Phys. Rev. B,2009,79:174406.
    [71]Farvid S. S., Ju L., Worden M., and Radovanovic P. V., Colloidal Chromium-Doped In2O3 Nanocrystals as Building Blocks for High-Tc Ferromagnetic Transparent Conducting Oxide Structures [J]. J. Phys. Chem. C, 2008,112:17755-17759.
    [72]Raebiger H., Lany S., and Zunger A., Control of Ferromagnetism via Electron Doping in In2O3:Cr [J]. Phys. Rev. Lett.,2008,101:027203.
    [73]Huang L. M., Silveary F., Araujo C. M., and Ahuja R., Defect-induced strong ferromagnetism in Cr-doped In203 from first-principles theory [J]. Solid State Commun., 2010,150:663-665.
    [74]Hong N. H., Sakai J., Huong N. T., and Brize'V., Co-doped In2O3 thin films:Room temperature ferromagnets [J]. J. Magn. Magn. Mater.,2006,302:228-231.
    [75]Subias G., Stankiewicz J., Villuendas F., Lozano M. P., and Garcia J., Local structure study of Co-doped indium oxide and indium-tin oxide thin films using x-ray absorption spectroscopy [J]. Phys. Rev. B,2009,79:094118.
    [76]Samariya A., Singhal R. K., Kumar S., Xing Y. T., Sharma S. C., Kumari P., Jain D. C., Dolia S. N., Deshpande U. P., Shripathi T., and Saitovitch E., Effect of hydrogenation vs. re-heating on intrinsic magnetization of Co doped In2O3 [J]. Appl. Surf. Sci.,2010,257: 585-590.
    [77]Peleckis G., Wang X., and Dou S. X., High temperature ferromagnetism in Ni-doped In2O3 and indium-tin oxide [J].Appl. Phys. Lett.,2006,89:022501.
    [78]Hong N. H., Sakai J., Huong N. T., and Brize'V., Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin films [J]. Appl. Phys. Lett.,2005,87:102505.
    [79]Gupta A., Cao H., Parekh K., Rao K. V., Raju A. R., and Waghmare U. V., Room temperature ferromagnetism in transition metal (V, Cr, Ti) doped In2O3 [J]. J. Appl. Phys., 2007,101:09N513.
    [80]Park C. Y., Yoon S. G., Jo Y. H., and Shin S. C., Room-temperature ferromagnetism observed in Mo-doped indium oxide films [J]. Appl. Phys. Lett.,2009,95:122502.
    [81]Peleckis G, Wang X. L., and Dou S. X., Magnetic and Transport Properties of Transition Metal Doped Polycrystalline In2O3 [J]. IEEE Trans. Magn.,2006,42:2703-2706.
    [82]Peleckis G, Wang X. L., Dou S. X., Munroe P., Ding J., and Lee B., Giant positive magnetoresistance in Fe doped In2O3 and InRE03 (RE=Eu, Nd) composites [J]. J. Appl. Phys.,2008,103:07D113.
    [83]Zhao B. C., Ho H. W., Xia B., Tan L. H., Huan A. C., and Wang L., Effect of oxygen vacancy on ferromagnetism and electric transport of bulk polycrystalline (Ino.sMo0.05Fe0.15)2O3 [J]. Appl. Phys. Lett.,2008,93:222506.
    [84]Li S. C., Ren P., Zhao B. C., Xia B., and Wang L., Room temperature ferromagnetism of bulk polycrystalline (In0.8s-xSnxFe0.15)2O3:Charge carrier mediated or oxygen vacancy mediated?[J].Appl. Phys. Lett.,2009,95:102101.
    [85]Li X., Xia C., He X., Gao X., Liang S., Pei G., and Dong Y., Enhancement of ferromagnetic properties in In1.99Coo.01O3 by additional Cu doping [J]. Scipta. Mater., 2008,58:171-174.
    [86]Guan L. X., Tao J. G, Huan C. H. A., Kuo J. L. and Wang L., First-principles study on ferromagnetism in nitrogen-doped In2O3 [J]. Appl. Phys. Lett.,2009,95:012509.
    [87]Ruan K. B., Ho H. W., Khan R. A., Ren P., Song W. D., Huan A. C. H., and Wang L., Ferromagnetism in carbon-doped In2O3 thin films [J]. Solid State Commun.,2010,150: 2158-2161.
    [88]Hong N. H., Sakai J., Poirot N., and Brize V., Room-temperature ferromagnetism observed in undoped semiconducting and insulating oxide thin films [J]. Phys. Rev. B, 2006,73:132404.
    [89]Sudakar C., Dixit A., Kumar S., Sahana M. B., Lawes G, Naik R., and Naik V. M., Coexistence of anion and cation vacancy defects in vacuum-annealed In2O3 thin films [J]. Scipta. Mater.,2010,62:63-66.
    [90]Ruderman M. A., and Kittel C., Indirect Exchange Coupling of Nuclear Magnetic Moments by Conduction Electrons [J]. Phys. Rev.,1954,96:99-102.
    [91]戴道生,钱昆明.铁磁学(上册) [M].北京,科学出版社,p235-241.
    [92]姜寿亭,李卫.凝聚态磁性物理[M].北京,科学出版社,p146-159.
    [93]Han S. J., Song J. W., Yang C. H., Park S. H., Park J. H., Jeong Y. H., and Rhie K. W., A key to room-temperature ferromagnetism in Fe-doped ZnO:Cu [J]. Appl. Phys. Lett., 2002,81:4212-4214.
    [94]Slobodsky A. H., Dugaev V. K., and Vieira M., Ferromagnetic ordering in diluted magnetic semiconductors [J]. Conden. Matt. Phys.,2002,3:531-540.
    [95]Zener C., Interaction Between the d Shells in the Transition Metals [J]. Phys. Rev.,1951, 81:440-444.
    [96]Zener C., Interaction between the d-Shells in the Transition Metals. Ⅱ. Ferromagnetic Compounds of Manganese with Perovskite Structure [J]. Phys. Rev.,1951,82:403-405.
    [97]焦正宽,曹光旱,磁电子学[M].浙江,浙江大学出版社,p235-236.
    [98]Coey J. M. D., Venkatesan M., and Fitzgerald C. B., Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nature Mater.,2005,4:173-179.
    [99]Hsu H. S., Huang J. C. A., Huang Y. H., Liao Y. F., Lin M. Z., Lee C. H., Lee J. F., Chen S. F., Lai L. Y., and Liu C. P., Evidence of oxygen vacancy enhanced room-temperature ferromagnetism in Co-doped ZnO [J]. Appl. Phys. Lett.,2006,88:242507.
    [100]Stankiewicz J., Villuendas F., and Bartolome J., Magnetic behavior of sputtered Co-doped indium-tin oxide films [J]. Phys. Rev. B,2007,75:232508.
    [101]Coey J. M. D., Douvalis A. P., Fitzgerald C. B., and Venkatesan M., Ferromagnetism in Fe-doped SnO2 thin films [J]. Appl. Phys. Lett.,2004,84:1332-1334.
    [102]Hu S. J., Yan S. S., Lin X. L., Yao X. X., Chen Y. X., Liu G. L., and Mei L. M., Electronic structure of Fe-doped In2O3 magnetic semiconductor with oxygen vacancies: Evidence for F-center mediated exchange interaction [J]. Appl. Phys. Lett.,2007,91: 262514.
    [1]Hong N. H., Sakai J., Huong N. T., and Brize' V., Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin films [J]. Appl. Phys. Lett.,2005,87:102505.
    [2]Hinnerman B., Hinrichsen H., and Wolf D. E., Unusual Scaling for Pulsed Laser Deposition [J]. Phys. Rev. Lett.,2001,87:135701.
    [3]Xu X. H., Zhang R. Q., Dong X. Z., and Gehring G. A., A study of the optimization of parameters for pulsed laser deposition using Monte Carlo simulation [J]. Thin Solid Films 2006,515:2754-2759.
    [4]Pyziaka L., Stefaniuka I., Virt I., and Kuzma M., Monte Carlo simulation of CdTe layers growth on CdTe (001) and Si (001) substrates [J]. Appl. Surf. Sci.,2004,226:114-119.
    [5]Dijkkamp D., Venkatesan T., Wu X. D., Shaheen S. A., Jisrawi N., Min-Lee Y. H., McLean W. L., and Croft M., Preparation of Y-Ba-Cu oxide superconductor thin films using pulsed laser evaporation from high Tc bulk material. [J]. Appl. Phys. Lett.,1987, 51(8):619-621.
    [6]赵九蓬,李垚,刘丽.新型功能材料设计与制备工艺[M].北京,化学工业出版社.p150-152.
    [7]M.Von奥尔曼,激光束与材料相互作用的物理原理及应用[M].北京,科学出版社,1994.
    [8]Chen X. Y., and Liu Z. G., Interaction between laser beam and target in pulsed laser deposition:laser fluence and ambient gas effects [J]. Appl. Phys. A,1999, S69: S523-S525.
    [9]Hastie J.W., Bonne D.W., and Pau A. J., Gas dynamics and chemistry in the pulsed laser deposition of oxide dielectric thin films [J]. Mater. Res. Soc. Symp. Proc.,1994, 334:305.
    [10]敖育红,胡少六,龙华,徐业斌,王又青.脉冲激光沉积薄膜技术研究新进展[J].激光技术,2003,27(5):454-459.
    [11]戴嘉维,张惠娟,李戈扬.基片与膜厚对硬质薄膜力学性能的影响[J].真空科学与技术,2003,23:147-151.
    [12]李爱丽,王本军,闫金良,孙学卿.薄膜厚度对Cu膜光电性能的影响[J].鲁东大学学报,2008,24:145-148.
    [13]张鲁殷,胡晓君.铁电薄膜电容率与厚度的关系研究[J].山东科技大学学报,2001,20:19-21.
    [14]刘汉法,张化福,类成新,袁长坤.薄膜厚度对ZnO:Zr透明导电薄膜光电性能的影响[J].液晶与显示,2008,23:707-710.
    [15]辛荣生,林钰.薄膜厚度对ITO膜结构与性能的影响[J].真空,2007,44:22-24.
    [16]钱存富,耿岩.X射线晶体学[M].沈阳,东北大学出版社,2003.
    [17]钱逸泰.结晶化学导论[M].安徽,中国科技大学出版社,1999.
    [18]唐伟忠,薄膜材料制备原理、技术及应用[M].北京,北京冶金工业出版社,2003.
    [19]郭沁林,X射线光电子能谱[J].实验技术,2007,36:405-409.
    [20]袁欢欣,欧阳健明.X射线光电子能谱在配合物研究中的应用及其研究进展[J].光谱与光谱分析.2007,2:395-399.
    [21]文美兰,X射线光电子能谱的应用介绍[J].化学时刊,2006,20:54-56.
    [22]王其武,刘文汉,X射线吸收精细结构及其应用[M].北京,科学出版社,1994.
    [23]马礼敦.X射线吸收光谱及发展[J].上海计量测试,2007,6:2-10.
    [24]王芳,许小红.振动样品磁强记在磁记录介质中的应用[J].信息记录材料,2005,6:55-59.
    [25]黄昆.固体物理[M].北京,高等教育出版社,1998,p344-346.
    [26]陈长乐.固体物理学[M].西安,西北工业大学出版社,1998,p190-193.
    [27]Ando K., Chiba A., and Tanoue H., Magneto-optic study of Ni-based diluted magnetic semiconductors [J]. J. Appl. Phys.,1998,83:6575-6547.
    [28]赵建华,邓加军,郑厚值.稀磁半导体的研究进展[J].物理学进展,2007,27: 109-150.
    [29]Chiu P. T., and Wessels B. W., Evidence of room temperature sp-d exchange in InMnAs epitaxial films [J].Appl. Phys. Lett.,2006,89:102505.
    [30]Ando K., Magneto-optical studies of s,p-d exchange interactions in GaN:Mn with room-temperature ferromagnetism [J].Appl. Phys. Lett.,2003,82:100-102.
    [1]Yoo Y. K., Xue Q., Lee H., Cheng S., Xiang X. D., Dionne G. F., Xu S., He J., Chu Y. S., Preite S. D., Lofland S. E., and Takeuchi I., Bulk synthesis and high-temperature ferromagnetism of (In1-xFex)2O3-δ with Cu co-doping [J]. Appl. Phys. Lett.,2005,86: 042506.
    [2]He J., Xu S., Yoo Y. K., Xue Q., Lee H., Cheng S., Xiang X. D., Dionne G. F., and Takeuchi I., Room temperature ferromagnetic n-type semiconductor in (In1-xFex)2O3-δ [J]. Appl. Phys. Lett.,2005,86:052503.
    [3]Singhal R. K., Samariya A., Kumar S., Sharma S. C., Xing Y. T., Deshpande U. P., Shripathi T., and Saitovitch E., A close correlation between induced ferromagnetism and oxygen deficiency in Fe doped In2O3 [J] Appl. Surf. Sci.,2010,257:1053-1057.
    [4]Xing P. F., Chen Y. X., Yan S. S., Liu G. L., Mei L. M., Wang K., Han X. D., and Zhang Z., High temperature ferromagnetism and perpendicular magnetic anisotropy in Fe-doped In2O3 films [J].Appl. Phys. Lett.,2008,92:022513.
    [5]Singhal A., Achary S. N., Manjanna J., Jayakumar O. D. Kadam R. M., and Tyagi A. K., Colloidal Fe-Doped Indium Oxide Nanoparticles:Facile Synthesis, Structural, and Magnetic Properties [J]. J. Phys. Chem. C,2009,113:3600-3606.
    [6]Yu J., Duan L. B., Wang Y. C., and Rao G. H., Influence offuel-to-oxidizer ratio on the magnetic properties of Fe-doped In2O3 nanoparticles synthesized by solution combustion method [J]. J. Solid State Chem.,2009,182:1563-1569.
    [7]Jayakumar O. D., Gopalakrishnan I. K., Kulshreshtha S. K., Gupta A., Rao K. V., Louzguine-Luzgin D.V., Inoue A., Glans P. A., Guo J. H., Samanta K., Singh M. K., and Katiyar R. S., Structural and magnetic properties of (In1-xFex)2O3 (0.0≤ x≤ 0.25) system: Prepared by gel combustion method [J]. Appl. Phys. Lett.,2007,91:052504.
    [8]Descostes M., Mercier F., Thromat N., Beaucaire C., and Gautier-Soyer M., Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples:constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium [J]. Appl. Surf. Sci.,2000,165:288-302.
    [9]Preisinger M., Krispin M., Rudolf T., Horn S., and Strongin D. R., Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies [J]. Phys. Rev. B,2005,71:165409.
    [10]Ndilimabaka H., Colis S., Schmerber G., Muller D., Grob J. J., Gravier L., Jan C., Beaurepaire E., and Dinia A., As-doping effect on magnetic, optical and transport properties of Zn0.9Co0.1O diluted magnetic semiconductor [J]. Chem. Phys. Lett., 2006,421:184-188.
    [11]Mi W. B., Bai H. L., Liu H., and Sun C. Q., Microstructure, magnetic and optical properties of sputtered Mn-doped ZnO films with high-temperature ferromagnetism [J]. J. Appl. Phys.,2007,101:023904.
    [12]Heo Y. W., Ivill M. P., Ip K., Norton D. P., Pearton S. J., Kelly J. G., Rairigh R., Hebard A. F., and Steiner T., Effects of high-does Mn implantation into ZnO grown on sapphire [J]. Appl. Phys. Lett.,2004,84:2292.
    [13]Jaffe J. E., Droubay T. C., and Chambers S. A., Oxygen vacancies and ferromagnetism in CoxTi1-xO2-x-y [J]. J.Appl. Phys.,2005,97:073908.
    [14]Mi W. B., Jiang E. Y., and Bai H. L., Fe3+/Fe2+ ratio controlled magnetic and electrical transport properties of polycrystalline Fe3(1-δ)O4 films [J]. J. Phys. D:Appli. Phys.,2009, 42:105007.
    [15]Arcas J., Hernando A., Barandiaran J. M, Prados C., Vazquez M, Marin P and Neuweiler A., Soft to hard magnetic anisotropy in nanaostructured magnets [J]. Phys. Rev. B,1998,58:5193.
    [16]Stoner E. C., and Wohlfarth E. P., A mechanism of magnetic hysteresis in heterogeneous alloys [J]. IEEE Trans. Magn.,1991,27:3475-3518.
    [17]Ney V., Ye S., Kammermeier T., Ney A., Zhou H., Fallert J., Kalt H., Lo F. Y. Melnikov A., and Wieck A. D., Structural, magnetic, and optical properties of Co and Gd-implanted ZnO (0001) substrates [J]. J. Appl. Phys.,2008,103:083904.
    [18]Duan L. B., Rao G. H., Wang Y. C., Yu J., and Wang T., Magnetization and Raman scattering studies of (Co,Mn) codoped ZnO nanoparticles [J]. J. Appl. Phys.,2008,104: 013909.
    [19]Vigreux C., Binet L., Gourier D., and Piriou B., Formation by Laser Impact of Conductingb-Ga2O3-In2O3 Solid Solutions with Composition Gradients [J]. J Solid State Chem.,2001,157:94-101.
    [20]Coey J. M. D., Douvalis A. P., Fitzgerald C. B., and Venkatesan M., Ferromagnetism in Fe-doped SnO2 thin-films [J]. Appl. Phys. Lett.,2004,84:1332-1334.
    [1]Yu Z. G., He J., Xu S., Xue Q., vantErve O. M. J., Jonker B. T., Marcus M. A., Yoo Y. K., Cheng S., and Xiang X. D., Origin of ferromagnetism in semiconducting (In1-x-yFexCuy)2O3-δ [J]. Phys. Rev. B,2006,74:165321.
    [2]Xing P. F., Chen Y. X., Yan S. S., Liu G. L., Mei L. M., and Zhang Z., Tunable ferromagnetism by oxygen vacancies in Fe-doped In2O3 magnetic semiconductor [J]. J. Appl. Phys.,2009,106:043909.
    [3]Yan S. M., Ge S. H., Zuo Y. L., Qiao W., and Zhang L., Effects of carbothermal annealing on structure defects and electrical and magnetic properties in Fe-doped In2O3 [J]. Scipta. Mater.,2009,61:387-390.
    [4]Jiang F. X., Xu X. H., Zhang J., Wu H. S., and Gehring G. A., High temperature ferromagnetism of the vacuum-annealed (In1-xFex)2O3 powders [J].Appl. Surf. Sci.2009, 255:3655-3658.
    [5]Kohiki S., Murakawa Y., Hori K., Shimooka H., Tajiri T., Deguchi H., Oku M., Arai M., Mitome M., and Bando Y., Magnetic Behavior of Fe Doped In2O3 [J]. Jpn. J. Appl. Phys., 2005,44:L979-L981.
    [6]Berardan D. and Guilmeau E., Magnetic properties of bulk Fe-doped indium oxide [J]. J. Phys.:Condens. Matter.,2007,19:236224.
    [7]Peleckis G., Wang X. L., and Dou S. X., Room-temperature ferromagnetism in Mn and Fe codoped In2O3 [J]. Appl. Phys. Lett.,2006,88:132507.
    [8]Hong N. H., Sakai J., Huong N. T., and Brize'V., Room temperature ferromagnetism in laser ablated Ni-doped In2O3 thin films [J]. Appl. Phys. Lett.,2005,87:102505.
    [9]Xu X. H., Jiang F. X., Zhang J., Fan X. C., Wu H. S., and Gehring G. A., Magnetic and transport properties of n-type Fe-doped In2O3 ferromagnetic thin films [J]. Appl. Phys. Lett.,2009,94:212510.
    [10]Hinnerman B., Hinrichsen H., and Wolf D. E., Unusual Scaling for Pulsed Laser Deposition [J]. Phys. Rev. Lett.,2001,87:135701.
    [11]Choopun S., Vispute R. D., Noch W., Balsamo A., Sharma R. P., Venkatesan T., lliadis A., and Look D. C., Oxygen pressure-tuned epitaxy and optoelectronic properties of laser-deposited ZnO films on sapphire [J]. Appl. Phys. Lett.,1999,75:3947.
    [12]Descostes M., Mercier F., Thromat N., Beaucaire C., and Gautier-Soyer M., Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples:constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium [J]. Appl. Surf. Sci.,2000,165:288-302.
    [13]Preisinger M., Krispin M., Rudolf T., Horn S., and Strongin D. R., Electronic structure of nanoscale iron oxide particles measured by scanning tunneling and photoelectron spectroscopies [J]. Phys. Rev. B,2005,71:165409.
    [14]Ye L. H., Freeman A. J., and Delley B., Half-metallic ferromagnetism in Cu-doped ZnO: Density functional calculations [J]. Phys. Rev. B,2006,73:033203.
    [15]Ohno T., Kawahara T., Tanaka H., Kawai T., Oku M., Okada K., and Kohiki S., Ferromagnetism in Transparent Thin Films of Fe-Doped Indium Tin Oxide [J]. Jpn. J. Appl. Phys.,2005,45:L957-L959.
    [16]Behan A. J., Mokhtari A., Blythe H. J., Score D., Xu X. H., Neal J. R., Fox A. M., and Gehring G. A., Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator [J]. Phys. Rev. Lett.,2008,100: 047206.
    [17]Lu Z., Hsu H. S., Tzeng Y., and Huang J. C. A., Carrier-mediated ferromagnetism in single crystalline (Co,Ga)-codoped ZnO films [J]. Appl. Phys. Lett.,2009,94:152507.
    [18]Xu Q., Hartmann L., and Schmidt H., s-d exchange interaction induced magnetoresistance in magnetic ZnO [J]. Phys. Rev. B,2007,76:134417.
    [19]Rosen J. and Warschkow O., Electronic structure of amorphous indium oxide transparent conductors [J]. Phys. Rev. B,2009,80:115215.
    [20]Hamberg I., Granqvist C. G., Berggren K. F., Sernelius B. E., and Engstrom L., [J]. Band-gap widening in heavily Sn-doped In2O3 [J]. Phys. Rev. B,1984,30:3240.
    [21]Yan S. S., Liu J. P., Mei L. M., Tian Y. F., Song H. Q., Chen Y. X., and G. L. Liu, Spin-dependent variable range hopping and magnetoresistance in Ti1-xCoxO2 and Zn1-xCoxO magnetic semiconductor films [J]. J. Phys.:Condens. Matter.,2006,18: 10469.
    [22]Coey J. M. D., Venkatesan M., and Fitzgerald C. B., Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nature Mater,2005,4:173-179.
    [23]King P. D. C., Veal T. D., Fuchs F., Wang Ch. Y., Payne D. J., Bourlange A., Zhang H., Bell G. R., Cimalla V., Ambacher O., Egdell R. G., Bechstedt F., and McConville C. F., Band gap, electronic structure, and surface electron accumulation of cubic and rhombohedral In2O3 [J]. Phys. Rev. B,2009,79:205211.
    [24]Walsh A., Da Silva J. L. F., Wei S. H., Korber C., Klein A., Piper L. F. J., DeMasi A., Smith K. E., Panaccione G, Torelli P., Payne D. J., Bourlange A., and Egdell R. G, Nature of the Band Gap of In2O3 Revealed by First-Principles Calculations and X-Ray Spectroscopy [J]. Phys. Rev. Lett.,2008,100:167402.
    [25]Erhart P., Klein A., Egdell R. G., and Albe K., Band structure of indium oxide:Indirect versus direct band gap [J]. Phys. Rev. B,2007,75:153205.
    [26]Novkovski N. and Tanusevski A., Origin of the optical absorption of In2O3 thin films in the visible range [J]. Semicond. Sci. Technol.,2008,23:095012.
    [27]Piper L. F. J., DeMasi A., Cho S. W., Smith K. E., Fuchs F., Bechstedt F., Korber C., Klein A., Payne D. J., and Egdell R. G, Electronic structure of In2O3 from resonant x-ray emission spectroscopy [J]. Appl. Phys. Lett.,2009,94:022105.
    [28]Fuchs F. and Bechstedt F., Indium-oxide polymorphs from first principles:Quasiparticle electronic states [J]. Phys. Rev. B,2008,77:155107.
    [29]Granqvist C. G. and Hultaker A., Transparent and conducting ITO films:new developments and applications [J]. Thin Solid Films,2002,411:1-5.
    [30]Chakraborti D., Narayan J., and Prater J. T., Room temperature ferromagnetism in Zn1-xCuxO thin flms [J]. Appl. Phys. Lett.,2007,90:062504.
    [31]Tiwari A., Snure M., Kumar D., and Abiade J. T., Ferromagnetism in Cu-doped ZnO films:Role of charge carriers [J]. Appl. Phys. Lett.,2008,92:062509.
    [32]Song C., Liu X. J., Geng K. W., Zeng F., Pan F., He B., Wei S. Q., Transition from diluted magnetic insulator to semiconductor in Co-doped ZnO transparent oxide [J]. J. Appl. Phys.,2007,101:103903.
    [1]Li X., Xia C., He X., Gao X., Liang S., Pei G., and Dong Y., Enhancement of ferromagnetic properties in In1.99Co0.01O3 by additional Cu doping [J]. Scipta. Mater., 2008,58:171-174.
    [2]Peleckis G, Wang X. L., and Dou S. X., Magnetic and Transport Properties of Transition Metal Doped Polycrystalline In2O3 [J]. IEEE Trans. Magn.,2006,42:2703-2706.
    [3]He J., Xu S., Yoo Y. K., Xue Q., Lee H., Cheng S., Xiang X. D., Dionne G. F., and Takeuchi I., Room temperature ferromagnetic n-type semiconductor in (In1-xFex)2O3-δ [J].Appl. Phys. Lett.,2005,86:052503.
    [4]Ho H. W., Zhao B. C., Xia B., Huang S. L., Wu Y., Tao J. G., Huan A. C. H., and Wang L., Magnetic and magnetotransport properties in Cu and Fe co-doped bulk In2O3 and ITO [J]. J. Phys.:Condens. Matter.,2008,20:475204.
    [5]Li S. C., Ren P., Zhao B. C., Xia B., and Wang L., Room temperature ferromagnetism of bulk polycrystalline (In0.85-xSnxFe0.15)2O3:Charge carrier mediated or oxygen vacancy mediated? [J]. Appl. Phys. Lett.,2009,95:102101.
    [6]Yang X. L., Chen Z. T., Wang C. D., Zhang Y., Pei X. D., Yang Z. J., Zhang G. Y., Ding Z. B., Wang K., and Yao S. D., Structural, optical, and magnetic properties of Cu-implanted GaN films [J]. J. Appl. Phys.,2009,105:053910.
    [7]Wang X., Xu J. B., Cheung W. Y., An J., and Ke N., Aggregation-based growth and magnetic properties of inhomogenous Cu-doped ZnO nanocrystals [J]. Appl. Phys. Lett., 2007,90:212502.
    [8]Tay M., Wu Y., Han G. C, Chong T. C, Zheng Y. K., Wang S. J., Chen Y, and Pan X., Ferromagnetism in inhomogenous ZnCoO thin flms [J]. J. Appl. Phys.,2006,100: 063910.
    [9]Xu J. P., Shi S. B., Li L., Zhang X. S., Wang Y. X., Chen X. M., Wang J. F., Lv L. Y, Zhang F. M., and Zhong W., Structural, optical, and ferroamgnetic properties of Co-doped TiO2 films annealed in vacuum [J]. J. Appl. Phys.,2010,107:053910.
    [10]Ramachandran S., Narayan J., and Prater J. T., Magnetic properties of Ni-doped MgO diluted magnetic insulators [J]. Appl. Phys. Lett.,2007,90:132511.
    [11]Makhlouf S. A., Parker F. T., Spada F. E., and Berkowitz A. E., Magnetic anomalies in NiO nanoparticles [J]. J. Appl. Phys.,1997,81:5561-5563.
    [12]Mi W. B., Jiang E. Y, and Bai H. L., Fe+/Fe2+ratio controlled magnetic and electrical transport properties of polycrystalline Fe3(1-δ)O4 films [J]. J. Phys. D:Appli. Phys.,2009, 42:105007.
    [13]Okada K., Kohiki S., Nishi S., Shimooka H., Deguchi H., Mitome M., Bando Y, and Shishido T., Room Temperature Ferromagnetism of Fe Doped Indium Tin Oxide Based on Dispersed Fe3O4 Nanoparticles [J]. Jpn. J. Appl. Phys.,2007,46:L823-L825.
    [14]Wi S. C., Kang J. S., Kim J. H., Cho S. B., Kim B. J., Yoon S., Suh B. J., Han S. W., Kim K. H., Kim K. J., Kim B. S., Song H. J., Shin H. J., Shim J. H., and Min B. I., Electronic structure of Zn1-xCoxO using photoemission and x-ray absorption spectroscopy [J].Appl. Phys. Lett.,2004,84:4233-4235.
    [15]Groot F. D., Multiplet effects in X-ray sepectroscopy [J]. Coord. Chem. Rev.,2005,249: 31-36.
    [16]Yu Z. G, He J., Xu S., Xue Q., vantErve O. M. J., Jonker B. T., Marcus M. A., Yoo Y. K., Cheng S., and Xiang X. D., Origin of ferromagnetism in semiconducting (In1-x-yFexCuy)2O3-δ [J]. Phys. Rev. B,2006,74:165321.
    [17]Zhu W. G., Qiu X. F., Iancu V., Chen X. Q., Pan H., Wang W., Dimitrijevic N. M., Rajh T., Meyer H. M., Paranthaman M. P., Stocks G. M., Weitering H. H., Gu B. H., Eres G., and Zhang Z. Y., Band Gap Narrowing of Titanium Oxide Semiconductors by Noncompensated Anion-Cation Codopong for Enhanced Visible-Light Photoactivity [J]. Phys. Rev. Lett.,2009,103:226401.
    [18]Zhu W. G, Zhang Z. Y, and Kaxiras E., Dopant-Assisted Concentration Enhancement of Substitutional Mn in Si and Ge [J]. Phys. Rev. Lett.,2008,100:027205.
    [19]Xu X. H, Blythe H. J., Ziese M., Behan A. J., Neal J. R., Mokhtari A., Ibrahim R. M., Fox A. M., and Gehring G. A., Carrier-induced ferromagnetism in n-type ZnMnAlO and ZnCoAIO thin films at room temperature [J]. New J. Phys.,2006,8:135.
    [1]Philip J., Punnoose A., Kim B. I., Reddy K. M., Layne S., Holmes J. O., Satpati B., Leclair P. R., Santos T. S., and Moodera J. S., Carrier-controlled ferromagnetism in transparent oxide semiconductors [J]. Nature Mater.,2006,5:298-304.
    [2]Kharel P., Sudakar C., Sahana M. B., Lawes G., Suryanarayanan R., Naik R., and Naik V. M., Room temperature ferromagnetism in Cr-doped In2O3 on high vacuum annealing of thin films and bulk samples [J]. J. Appl. Phys.,2007,101:09H117.
    [3]Bizo L., Allix M., Niu H., and Rosseinsky M. J., Magnetism and Phase Formation in the Candidate Dilute Magnetic Semiconductor System In2-xCrxO3:Bulk Materials are Dilute Paramagnets [J]. Adv. Funct. Mater.,2008,18:777-784.
    [4]Xing G. Z., Yi J. B., Wang D. D., Liao L., Yu T., Shen Z. X., Huan C. H. A., Sum T. C., Ding J., and Wu T., Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3-δ nanostructures [J]. Phys. Rev. B,2009,79:174406.
    [5]Peleckis G., Wang X. L., and Dou S. X., Ferromagnetism in Mn-doped In2O3 oxide [J]. J. Magn. Magn. Mater.,2006,301:308-311.
    [6]Brize V., Sakai J., Hong N. H., Degradation of magnetic ordering in In2O3 thin films due to Mn and Cu dopings [J]. Pyhs. B,2006,392:379-392.
    [7]Schwartz D. A., and Gamelin D. R., Reversible 300 K Ferromagnetic Ordering in a Diluted Magnetic Semiconductor [J]. Adv. Mater.,2004,16,2115-2118.
    [8]Kittilstved K. R., Schwartz D. A., Tuan A. C., Healed S. M., Chambers S. A., and Gamelin D. R., Direct Kinetic Correlation of Carriers and Ferromagnetism in Co2+:ZnO [J]. Phys. Rev. Lett.,2006,97:037203.
    [9]Raebiger H., Lany S., and Zunger A., Control of Ferromagnetism via Electron Doping in In2O3:Cr [J]. Phys. Rev. Lett.,2008,101:027203.
    [10]Coey J. M. D., Venkatesan M., and Fitzgerald C. B., Donor impurity band exchange in dilute ferromagnetic oxides [J]. Nature Mater.,2005,4:173-179.
    [11]Behan A. J., Mokhtari A., Blythe H. J., Score D., Xu X. H., Neal J. R., Fox A. M., and Gehring G. A., Two Magnetic Regimes in Doped ZnO Corresponding to a Dilute Magnetic Semiconductor and a Dilute Magnetic Insulator [J]. Phys. Rev. Lett.,2008,100: 047206.
    [12]Lu Z., Hsu H. S., Tzeng Y., and Huang J. C. A., Carrier-mediated ferromagnetism in single crystalline (Co,Ga)-codoped ZnO films [J]. Appl. Phys. Lett.,2009,94:152507.
    [13]Xu Q., Hartmann L., and Schmidt H., s-d exchange interaction induced magnetoresistance in magnetic ZnO [J]. Phys. Rev. B,2007,76:134417.
    [14]Pan H., Yi J. B., Shen L., Wu R. Q., Yang J. H., Lin J. Y., Feng Y. P., Ding J., Van L. H., and Yin J. H., Room-Temperature Ferromagnetism in Carbon-Doped ZnO [J]. Phys. Rev. Lett.,2007,99:127201.
    [15]Ye X. J., Song H. A., Zhong W., Xu M. H., Qi X. S., Jin C. Q., Yang Z. X., Au C. T., and Du Y. W., The effect of nitrogen incorporation on the magnetic properties of carbon-doped ZnO [J]. J. Phys. D:Appl. Phys.,2008,41:155005.
    [16]Yu C. F., Lin T. J., Sun S. J., and Chou H., Orgin of gerromagnetism in nitrogen embedded ZnO:N thin films [J]. J. Phys. D:Appl. Phys.,2007,40:6497.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700