西藏碰撞造山带冈底斯中新世斑岩铜矿成矿作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冈底斯斑岩铜矿带位于西藏造山带南部拉萨地体南侧冈底斯花岗岩基的中东部东西长约350km、南北宽达80kin的带状区域内。带内分布有十余个斑岩型铜矿床(点)。含矿斑岩形成于中新世,侵入于冈底斯花岗岩基和火山岩以及沉积岩地层中。它们在空间分布上受横跨拉萨地体的正断层系统和平行于造山带的逆冲带共同控制,具有东西成带、南北呈串的展布特点。成矿作用时间与含矿斑岩活动时间一致,在14~17Ma之间,岩浆活动与成矿事件发生在印度-亚洲大陆碰撞后的地壳伸展时期。
     含矿斑岩体为浅成复式岩体,岩性为二长花岗斑岩、花岗斑岩,少量为石英二长斑岩,石英正长斑岩、碱性花岗斑岩和花岗闪长斑岩。岩石化学特征显示含矿斑岩属于高钾钙碱性岩石系列。岩石明显高SiO_2、Al_2O_3、K_2O,Mg~#,低Y和HREE,富集大离子亲石元素(LILE)K、Rb、Th、U、Sr、Pb和LREE,亏损高场强元素(HFSE)Nb、Ta、Ti、Yb,高Sr/Y比值,具有埃达克岩浆亲合性。岩石的微量元素组成与Sr-Nd-Pb同位素组成特征表明含矿斑岩岩浆起源与增厚的下地壳和/或残存在上地幔的俯冲洋壳板片熔融有关,形成环境明显不同于岛弧、大陆边缘的俯冲环境。
     冈底斯斑岩铜矿带由其南侧的斑岩型铜矿化带和北侧的铜多金属矿化带组成,南带的斑岩型Cu、Mo矿化与北带的矽卡岩型铜多金属矿化共同构成了冈底斯斑岩铜矿成矿系统。矿化类型与斑岩体侵位的围岩环境有关。斑岩体内为单一的细脉浸染状Cu或Cu-Mo矿化,铜矿体多出现在钾硅酸岩化蚀变带。在碳酸盐岩围岩中形成矽卡岩型脉状、块状、似层状铅锌铜多金属矿化。
     斑岩铜矿的蚀变分带特征类似于Lowell和Guilbert模式,从中心向外依次为钾硅酸岩化带→石英绢云母化带→青磐岩化带。与岛弧、陆缘弧环境斑岩蚀变不同,冈底斯斑岩铜矿的蚀变分带简单,蚀变矿物组合稳定,泥化蚀变不发育,矿化主要发生在钾硅酸岩化带。
     冈底斯斑岩铜矿的成矿流体特征与成矿作用与岛弧、陆缘弧环境的斑岩铜矿基本相似。与成矿有关的流体包裹体可以分为气相包裹体、液相包裹体、含子晶的多相包裹体三类。包裹体内的子晶以石盐为主,并有较多的黄铜矿子晶分布于高盐度的包裹体内。成矿流体为高盐度流体,盐度变化范围为(1.91~66.75)wt NaCl%。流体成分组成显示成矿流体属于Na~+-K~+-SO_4~(2-)-Cl~--H_2O-CO_2型。包裹体均一温度为(191~>550)℃,主要集中于(300~550)℃之间。均一压力变化范围为(64.33~236.42)×10~5Pa。成矿流体的氧逸度(lgfo_2=-20.763~-38.078)和硫逸度(lgf_(s2)=-2.21~-7.62)较高。含矿斑岩和金属硫化物的S、Pb同位素组成、流体的H、O同位素组成、流体成分特点以及流体活动的环境参数表明成矿流体与成矿物质直接来自于岩浆,具有高氧逸度的含矿斑岩岩浆在就位后于较为封闭的环境中演化;冈底斯斑岩铜矿的蚀变与矿化是岩浆流体单向演化的结果,外来流体对成矿贡献不大。成矿作用主要发生在岩浆期后高温阶段(钾硅酸岩化蚀变阶段)。高温阶段岩浆流体的二次沸腾作用和流体混合作用是冈底斯斑岩铜矿成矿的两个重要方式。
     冈底斯斑岩铜矿具有快速成矿特点。含矿斑岩中长石矿物年龄与矿石辉钼矿Re-Os年龄对比显示出冈底斯单个斑岩铜矿床成矿流体活动持续时间多在2Ma以内,矿化活动维系时间约1Ma左右。
     在与不同构造背景下斑岩铜矿进行对比的基础上,提出了冈底斯含矿斑岩构造控制模式,初步建立了碰撞造山带冈底斯中新世斑岩铜矿的区域成矿模式。
The Gangdese porphyry copper belt is located in the central-east segment of the Gangdese granitoid batholiths, southern margin of the Lhasa terrane in the Tibetan collisional orogen, paralleling with the Yarlung-Zangbo suture. The Miocene mineralized porphyry bodies, intruded the Gangdese granitoid batholiths and surrounding the Triassic-Cretaceous sedimentary sequence as multiple hypabyssal intrusions, were locally controlled by either near NS-striking normal faults or the intersection of thrust zone with normal fault. Across the batholiths, these intrusive appear as beaded clusters trending within the normal faulting systems or graben basins.
     The ~(187)Re- ~(187)Os isochron ages yielded by molybdenite samples from the deposits in the belt vary from14 Ma to 17 Ma, suggesting that Cu (-Pb-Zn) mineralization took place in the middle-late stage of the lifetime of the Miocene magmatic Cu systems during post-collisional crustal extension period.
     The dominant porphyries are granitic, and monzogranitic, with subordinate quartz monzoniti1, quartz synitic, granitic, and granodiorite. The porphyries characterized by high-SiO_2, Al_2O_3, K_2O, and Mg# and low Y, and HREE contens with high Sr/Y are shoshonitic and high-K ealc-alkaline. The rocks are enriched in LILE(e.g. K, Rb, Th, U, Sr, Pb) and LREE, and depleted in HFSE(e.g. Nb, Ta, Ti, Yb), showing adakite magmatic affinity. The characteristics of the rare elements compositions and the signatures of Sr, Nd, and Pb isotope of the rocks inferred that the mineralized porphyry related to the partial melting of the subducted oceanic slab remaining in the mantle and of the lower crust under Gangdese and to the interaction between slab-derived melt and overlying mantle.
     The Gangdese porphyry copper belt consists of two mineralize subzones, viz. porphyry type copper mineralize zone in the south Gangdese belt and skarn type copper polymetal mineralize zone in the north Gangdese belt, which form the metallogenic system of Gangdese porphyry copper deposit. Two styles of mineralization can be recognized in the porphyry deposits. One style is the Cu or Cu-Mo mineralization in the interior of porphyry intrusions with veinlet-disseminated and fine veinlet pyrite + chalcopyrte+molybdenite+bornite assemblages, the Cu orebodies mostly occurred in K-silicate zone whereas Mo orebodies in quartz-sericite zone. The second mineralization predominantly produced stratiform or lenticular Pb-Zn-Cu polymetallic orebodies, mainly associated with the skarn bodies along the contact between the porphyries and surrounding carbonate rocks.
     Multiple hydrothermal alterations progressing from early central K-silicate styles to late sericitic, silicification and argillic types were extensively developed around mineralizing intrusions. Three zones can be distinguished according to the altered mineral assemblages. The concentric alteration zones from the inner outward are successively the K-silicate zone, the quartz-sericite zone, and the propylitic zone. The orebodies mostly occur in the K-silicate alteration zones. The argillic alteration controlled by structure locally occurs as patches, overprinted the other alteration zone.
     The feature of the inclusions in quartz phenocrystal, vein quartz and anhydrite and the compositions of the ore-fluid in the deposits indicate that the fluid is the type of Na~+-K~+-SO_4~(2-)-Cl~--H_2O-CO_2. The salinities of the fluid vary remarkable from 1.91 to 66.75 wt%NaCl equivalent. The homogenization temperatures of the fluid inclusions are various, ranging from 191℃to 550℃, with mostly between 300℃and 550℃. The range of the homogenization pressures is from 64.33×10~5Pa to 236.42×10~5Pa. The fugacity of oxygen and that of sulfur are high, varying from -20.763~-38.078 (lgfo_2) and -2.21~-7.62 (lgf_(s2), respectively. The compositions of hydrogen, oxygen isotope of the fluid and the signatures of sulfur, lead isotopes of the rocks and the sulfide from the deposits indicate that the ore fluid and ore-forming matter are directly from the magmas developed closely in high fugacity of oxygen. The mineralization mainly took place in the postmagmatic stage in high temperatures. The alterations and the mineralization resulted from the unilateral evolution of the magmatic fluid. The secondary boiling of the magmas in high temperature and the mixing of different fluids are two important mineralizing ways in the copper deposits in the Gangdese belt. The size of the single copper deposit in Gangdese is restricted by the limited scale of the oceanic slab remaining in the mantle under the Gangdese.
     The comparison of the age date yielded by the phenocrystal plagioclases and by the molybdenites from the mineralized porphyry intrusions suggests that the ore fluid developed in a short session with time limit of active no more than 2 Ma, and the time span of mineralizing is even more shorter, 1 Ma or so, implying the speciality of rapid mineralizing of the copper deposits in Gangdese.
     Based on the mineralization characteristics of the Gangdese copper deposits and the contrast of the copper deposits occurred in different settings, the tectonic model of the mineralized magmas and the metallogenic model of the Gangdese Miocene porphyry copper deposits in the Tibetan collisional orogen have been proposed in this paper.
引文
常海亮,汪雄武,李桃叶,2003.质疑新疆阿希、石英滩浅成低温热液金矿床“高钾”流体.矿床地质,22(2):129~133.
    陈毓川,朱裕生,1993.中国矿床成矿模式.北京:地质出版社.
    程力军,李志,刘鸿飞,等.2001.冈底斯东段铜多金属成矿带的基本特征.西藏地质,19(1):43~53.
    丛柏林.1979.板块构造与火成岩组合.北京:地质出版社.
    邓万明,孙宏鹃,张玉泉.1999.青海囊谦盆地新生代火山岩的K-Ar年龄.科学通报,44(23):2554-2558.
    邓万明,孙宏娟,张玉泉.2001.囊谦盆地新生代钾质火山岩成因岩石学研究.地质科学,36(3):304~318.
    杜安道,何红廖,殷万宁,等.辉钼矿的铼.锇同位素地质年龄测定方法研究.地质学报,1994,68:339-346.
    杜心范,谭庆元.1983.西藏玉龙斑岩铜矿带矿床围岩蚀变与矿化.青藏高原地质文集(13)(增刊).北京:地质出版社.
    高山,金振民.1997.拆沉作用及其壳幔演化动力学意义.地质科技情报,16(1):1~8.
    高永丰,侯增谦.魏瑞华,等.2003.冈底斯晚第三纪斑岩的岩石学、地球化学及其地球动力学意义.岩石学报.19:418~428.
    侯增谦,高永丰,曲晓明,等.2004.西藏冈底斯中新世斑岩铜矿带:埃达克质斑岩成因与构造控制.岩石学报,20(2):239~248
    侯增谦,曲晓明,黄卫,等.2001.冈底斯斑岩铜矿带有望成为西藏第二条玉龙铜矿带.中国地质,28(10):27~40.
    侯增谦,莫宣学,高永丰,等.2003.埃达克岩:斑岩铜矿的一种可能的重要含矿母岩.矿床地质,22(1):1-12.
    侯增谦,曲晓明,王淑贤,等.2003.西藏高原冈底斯斑岩铜矿带辉钼矿Re-Os年龄:成矿作用时限与动力学背景应用.中国科学(D辑),2003,33:609-618.
    侯增谦.2004.斑岩Cu-Mo-Au矿床:新认识与新进展.地学前缘.11(1):131~144.
    黄崇轲,白冶,朱裕生,等.2001.中国铜矿床.北京:地质出版社.
    黄汲青,陈炳蔚.1987.中国及邻区特提斯的演化.北京:地质出版社.
    黄朋,顾雪祥,唐菊兴.2000.西藏玉龙斑岩铜(钼)矿金属迁移、沉淀机制探讨.四川地质学报,20(1).:57~61.
    姜春发,杨经绥,冯秉贵,等.1992.昆仑开合构造.北京:地质出版社.
    金成伟等.1990.拉萨至格尔木的深成岩.中-英青藏高原综合地质考察队,青藏高原地质演化.北京:科学出版社,1~350.
    李光明,王高明,高大发,等.2002.西藏冈底斯南缘构造格架与成矿系统.沉积与特提斯地质,22(2):1~7.
    李光明,冯孝良,黄志英,等.2000,西藏冈底斯构造带中段多岛弧盆系及其演化.沉积与特提斯地质,20(4):38-46.
    李光明,杨家瑞,丁俊.2003.西藏雅鲁藏布江成矿区矿产资源评价新进展.地质通报,22(9):699~703.
    李曙光.1994.Nd-La、Ba/Nb、Nb/Th图对地幔不均—性研究的意义—岛弧火山岩分类及EMⅡ端元的分解.地球化学,23(2):105~114.
    李荫清,芮宗瑶,程来仙.1981.龙斑岩铜钼矿床的流体包裹体及成矿作用研究.地质学报,55(3):216~312.
    刘斌,沈昆.1999.流体包裹体热力学.北京:地质出版社.1~290.
    刘显凡,战新志,高振敏,等.1999.云南六合深源包体与富碱斑岩成岩成矿的关系.中国科学(D辑),29:413 420.
    刘增乾,徐宪,潘桂棠,等.1990.青藏高原大地构造与形成演化.北京:地质出版社.
    刘振声,王洁民.1994.青藏高原南部花岗岩地质地球化学.四川科学技术出版社.
    马鸿文.1990.西藏玉龙斑岩铜矿带花岗岩类与成矿.武汉:中国地质大学出版社.
    马鸿文.1991.西藏玉龙斑岩铜矿带的成矿地质背景与控矿因素,中国西部特提斯构造演化与成矿.成都:电 子科技大学出版社.
    莫宣学,路风香,赵崇贺,等.1991.三江地区碰撞后弧火山作用及成矿作用-学术讨论会文集.成都:成都科技出版社.
    莫宣学,赵志丹,邓晋福,等.2003.印度-亚洲大陆主碰撞过程的火山作用响应.地学前缘,10(3):135~148.
    倪培,饶冰,丁俊英,等.2003.人工合成包裹体的实验研究及其在激光拉曼探针测定方面的应用.岩石学报,19(2):319~326
    宁奇生,李永森.1979.中国斑岩铜(钼)矿的主要特征及分布规律.地质论评,25(2):36~46.
    潘桂棠,陈智梁,李兴振,等.1997.东特提斯地质构造形成演化.北京:地质出版社.
    潘桂棠,王培生,徐耀荣,等.1990.青藏高原新生代构造演化.北京:地质出版社.
    潘桂棠,王立全,李兴振,等.2001.青藏高原区域构造格局及其多岛弧盆系的空间配置.21(3):1-26.
    潘裕生.1999.青藏高原的形成与隆升.地学前缘,6(3):159~163.
    秦克章.2002.中外斑岩铜矿成矿环境对比及对我国斑岩铜矿勘查的启示.见:中国地质调查局,国内外斑岩铜矿研究进展.259~271.
    曲晓明,侯增谦,黄卫.2001.冈底斯斑岩铜矿成矿带:西藏第二条玉龙铜矿带? 矿床地质,20:355-366.
    曲晓明,候增谦,李振清.2002.S、Pb同位素对冈底斯斑岩铜矿带成矿物质来源和造山带物质循环的指示.地质通报,21(11):768~776.
    曲晓明,侯增谦,李振清.2003.冈底斯斑岩铜矿带含矿斑岩的~(40)Ar/~(39)Ar年龄及其地质意义.地质学报,77(2):245~252.
    芮宗瑶,侯增谦,曲晓明,等.2003.冈底斯斑岩铜矿成矿时代与青藏高原隆升.矿床地质,22:217~225.
    芮宗瑶,黄崇轲,齐国明,等.1984.中国斑岩铜(钼)矿床.北京:地质出版社.
    芮宗瑶.2000.西北、华北、东北斑岩铜矿床研究.见:涂光炽等.中国超大型矿床.北京:科学出版社.397~425.
    芮宗瑶,李光明,张立生,等.2004.西藏斑岩铜矿对重大地质事件的响应.地学前缘,11(1):145~152.
    唐仁鲤,罗怀松.1995.西藏玉龙斑岩铜(钼)矿带地质.北京,地质出版社.
    涂光炽,张玉泉,王中刚,等.1982.西藏南部花岗岩类地质地球化学.北京:科学出版社.
    王成善,丁学林.1998.青藏高原隆升研究新进展综述.地球科学进展,13(6):526-531.
    王江海,尹安,Harrison T H,等.2001.青藏东缘新生代高钾岩浆活动的热年代学制约.矿物岩石地球化学通报,20(4):231~4.
    王奖臻,李朝阳,胡瑞忠.2001.斑岩铜矿研究的若干进展.地球科学进展,16(4):514~519.
    王强,许继锋,赵振华.2001.一种新的火成岩—埃达克岩的研究综述.地球科学进展,16(2):201-208.
    王强,许继峰,赵振华.2003.强烈亏损重稀土元素的中酸性火成岩(或埃达克质岩)与Cu、Au成矿作用.地学前缘,10(4):561~572.
    王全海,王保生,李金高,等.2002.西藏冈底斯岛弧及其铜多金属矿带的基本特征与远景评估.地质通报,21(1):35~40.
    王小春,晏子贵,周维德,等,2002.初论西藏冈底斯带中段尼木西北部斑岩铜矿地质特征.地质与勘探,38(1):5~8.
    魏文博,陈乐寿,谭捍东,等.1997.关于印度板块俯冲的探讨—据INDEPTH MT研究结果.现代地质,11(3):379~386.
    西藏自治区地质矿产局.1993.西藏自治区区域地质志.北京:地质出版社.
    肖序常,李廷栋.2000.青藏高原的构造演化与隆升机制.广州:广东科技出版社.
    肖序常,李廷栋,等.1988.喜玛拉雅期岩石圈构造演化总论.地质专报,五(7).北京:地质出版社.
    谢广连.1993.喜马拉雅及邻区特提斯构造带前中生代的几个构造事件.见:TGGP第321项目中国工作组编,亚洲的增生.北京:地震出版社
    熊小林,石满全,陈繁荣.2001.浅成-次火山岩黑云母Cu,Au成矿示踪意义.矿床地质,21(2:107-111.
    徐正余,陈福忠,郑延中,等,1991.青藏高原主要矿产及其分布规律.北京:地质出版社.
    杨德明,李才,王天武.2001.西藏冈底斯东段南北向构造特征与成因.中国区域地质,20(4):392~397.
    尹安.2001.喜马拉雅--青藏高原造山带地质演化.地球学报,22(2):193-230.
    张理刚.1985.稳定同位素在地质科学中的应用-金属活化热液成矿作用及找矿.西安:陕西科学出版社.
    张绮玲,曲晓明,徐文艺,等.2003.西藏南木斑岩铜矿床的流体包裹体研究.岩石学报.19(2):251~259.
    张玉泉,谢应雯,粱华英,等.藏东玉龙斑岩铜矿带含矿斑岩及成岩系列.地球化学,1998,27:236-243.
    郑淑蕙,等.1982,西藏地热水的氢和氧稳定同位素研究.北京大学学报(自然科学版),第一期.
    郑有业,王保生,樊子珲,等.2002.西藏冈底斯东段构造演化及铜金多金属成矿潜力分析.地质科技情报,21(2):55~60.
    中国科学院青藏高原综合科学考察队.1981.西藏岩浆活动和变质作用.北京:科学出版社.
    中-英青藏高原联合地质考察队.1990.青藏高原地质演化.北京;科学出版社.
    钟大赉,丁林.1998.青藏高原隆升过程及其机制探讨.中国科学(D辑),26(4):289-295.
    周肃,方念乔,董国臣,等.2001.西藏林子宗群火山岩的氩-氩同位素测年.矿物学岩石学地球化学杂志,2001.20:317~319.
    周肃.2002.西藏冈底斯岩浆岩带及雅鲁藏布蛇绿岩带关键地段同位素年代学研究[博士论文].北京:中国地质大学.
    赵振华.1997.微量元素地球化学原理.北京:科学出版社.
    朱金初,金章东,饶冰,等.2002.德兴铜厂斑岩铜矿流体过程.南京大学学报(自然科学),38(3):418~434.
    朱训,黄崇轲,芮宗瑶,等.1983.德兴斑岩铜矿.北京:地质出版社.
    Aguirre, et al., 1974. Pacific geology, (8): 1~38.
    Allegre C J, Girardeau J, Marcoux J, et al,, 1984. Structure and evolution of the Himalayan-Tibet orogenic belt. Nature, 307: 17~22.
    Armbrus W J. 1977. Geology of the El Abra porphyry copper deposit, Chile. Econ. Geol., 72: 1065~1085.
    Arribas A J, Hedenquist J W, Itaya T, et al., 1995. Contemporanceous formation of adjacent porphyry and epithermal Cu-Au deposits over 300 ka in northern Luzon, Philippines. Geology, 23: 337-340.
    Arribas A Jr., 1995. Characteristics of high-sulfidation epithermal deposits and their relation to magmatic fluid. Mineralogical Association of Canada Short Course Series, 23: 419-454.
    Babcock R C J, Ballantyne G H, Phillips C H. 1995. Summary of the geology of the Bingham District, Utah. Arizona Geological Society Digest, 20: 316-335.
    Baker R C, Guilbert J M. 1987. Regional structural control of porphyry copper deposits in northern Chile. The Geological Society of America. Programs of 1987 Annual Meeting and Exposition of Geological Society of America 19 (Abstract). New York: The Geological Society of America, 578.
    Baldwin J A, Pearce J A, 1982. Discrimination of productive and nonproductive porphyritic intrusions in the Chilean Andes. Economic Geology, 77: 664-674.
    Bean R E, Titley S R. 1981. Porphyry copper deposits: hydrothermal alteration and minerlization. Econ. Geol., 75th Anniv. 1: 235~269.
    Bektas O, Vassileff L, Stanisheva V G. 1990. Porphyry copper systems as markers of the Mesozoic-Cenozoic active margin of Eurasia; discussion and reply. Tectonophysics. 172, 1-2: 191-194.
    Berg J P and Chen G M. 1984. Tectonics and structural formation of southern Tibet, China. Nature, 311: 219~223.
    Bllsnluk P M, Hacker B, Glodny J, et al., 2001. Normal faulting in central Tibet since at least 13.5 Myr ago. Nature, 412: 628~632.
    Boiron M C, Dubessy J, Andre N, et al., 1991. Analysis of monoatomic ions in dividual fluid inclusions by laser-produced plasma emission spectroscopy. Geochimica et Cosmochimica Acta, 55: 917~923
    Bordnar R J. 1994. Synthetic fluid inclusions: Ⅻ: The system H20-NaCI experimental determination of the halite liquidus and isochors for a 40wt%NaCleq solution. Geochimica et Cosmochimica Acta, 58: 1053~1063
    Bordnar R J. 1995. Fliud-inclusion evidence for a magmatic source for metals in porphyry copper deposits: Mineralogical Association of Canada Short Course Series 23:139-152
    Boynton W V. 1984. Geochemistry of the rare earth elements: meteorite studies. In: Henderson P. ed. Rare earth e lement geochemistry. Elservier, 63-114.
    
    Burnham C W, Ohmoto H. 1980.Late-stage processes of felsic magmatism. Mining geology special issue, 8:1-11.
    Burnham C W. 1967. Hydrothermal fluids at the magmatic stage. In: Barnes H L. (ed.) Geochemistry of hydrothermal ore deposits. New York. 34-76.
    Burnham C W. 1979. Magmas and hydrothermal fluids. In: Barnes H L. (ed.) 2nd edit. Geochemistry of hydrothermal ore deposits. New York. 34-76.
    Camus F, Silltioe R H, Petersen R. 1996. Andean copper deposits: new discoveries, mineralization style and metallogeny. Society of Economic Geologists Special Publication 5, 5:198.
    
    Candela P A, Holland H D, 1986. A mass transfer modle for copper and molybdenum in magmatic hydrothermal system: the origin of porphyry-type ore deposits. Econ Geol., 81:1-19
    
    Candela PA. 1991. Physics of aqueous phase evolution in plutonic environment. Amer. Mineral, 76:1091~1099
    Chang Cheng-Fa, Zheng Shi-Lang. 1973. Tectonic Fetures of the Mount Jolom Lungma region in southern Tibet, China. Scientia Geologica Sinica, (1): 1—12.
    Chen W J, Li Q, Hao J, et al., 1999. Postcrystallization thermal evolution history of Gangdese batholithic zone and its tectonic implication.Science in China, 42(1): 37-44.
    Chou IM, 1987. Phase relations in the system NaCl-H_2O. III: Solubilities of halite in vapor-saturated liquids above 445°C and redetermination of phase equilibrium properties in the system NaCl-H_2O to 1000°C and 1500 bars. Geochimica et Cosmochimica Acta, 15: 1965-1975.
    Chung S L, Lo C H, Lee T Y, et al., 1998. Diachronous uplift of the Tibetan plateau starting 40 Myr ago. Nature, 394:769-773.
    Clark G H. 1990. Panaguna copper-gold deposit. Hughes F E (ed.). Geology of the Mineral Deposits of Australia and Papua New Guinea. Australian: Australian Institute of Mining and Metallurgy, 1807-1816.
    Cline J S, Bondnar R J. 1991.Can economic porphyry copper minerlization be generated by a typical calc-alkaline melt? Journal of Geophysical Research, 96:8113-8186.
    Cline J S, Bordnar R J, 1994. Direct evolution of brine from a crystallizing silicic melt at the Queta, New Mexico, Molybdenum deposit. Econ Geol., 89:1780-1802.
    
    Cloke P L, Kesler S E. 1979. The halite trend in hydrothermal solutions. Econ Geol., 74: 1823-1831.
    Coleman M, Hodges K V. 1995. Evidence for Tibetan plateau uplift before 14 Myr ago from a newminimum age for east west extension. Nature, 4:49-52.
    Copeland P, Harrison Y M,Yun P. 1995, Thermal evolution of the Gangdes batholith, Southern Tibet: A history of episodic unroofing. Tectonics, 14: 223-236.
    Corbertt G J, Leach T M. 1998. Southwest Pacific Rim gold-copper systems: structure, alteration and mineralization. Society of Economic Geologists Special Publication 6, 240.
    Cornjo P, Tosdal R M, Mpodozis C, et al., 1997. El salvasor, Chile porphyry copper deposit revisited: geologic and geochronologic framework. International Geology Review, 39: 22-54.
    Coulon C, MAluski H, Bollinger C, et al., 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: ~(39)Ar/~(40)Ar dating, petrological characteristics and geodynamic significance. Earth Planet. Sci. Lett., 79: 281-302.
    Crerar D A, Barnes H L. 1976. Ore solution chemistry V. Solubilities of chalcopyrite assemblages in hydrothermal solution at 200 to 350°C. Econ Geol., 71: 772-794.
    Dammam Kras M S, Touret L R J, Rieffe C E Kramer A L M,et al., 1996. PIXE and EM analyses of fluid inclusions in quartz crystals from the K-alteration zone of the Rosia Poieni porphyry-Cu deposit, Apuseni Mountains, Rumania. European Journal of Mineralogy, 8:1081-1096.
    Davidson J, Mpodozis C. 1991. Regional geological setting of epithermal gold deposits, Chile. Econ. Geol., 86: 1174-1186.
    Defant M J.Drummond M S.1990. Derivation of some modern arc magmas by melting of young subducted lithosphere: Nature, 347:662-665.
    Dewey J F, Shackelton R M, Chang C, et al., 1988. The tectonic evolution of the Tibetan plateau. Phil. Trans. Roy. Soc. Lond.,A327:379~413.
    Diamond I W, Marshall D D, Jackman J A, et al., 1990. Elemental analysis of individual fluid inclusions in minerals by secondary ion mass spectrometry(SIMS): Application to cation ratios of fluid inclusions in an Archaean mesothermal gold-quartz vine. Geochimica et Cosmochimica Acta, 54: 545-552
    Dilles J H, Solomon G G, Taylor H P Jr., et al., 1992. Oxygen and Hydrogen isotope characteristics of hydrothermal alteration at the Ann- Mason porphyry copper deposit, Yertington, Nevada. Econ Geol., 87:44-63.
    Dilles J H, 1987. Petrology of the Yerington batholith, Nevada: evidence for evolution of porphyry copper ore fluids. Econ.Geol., 82:1750-1759.
    Ding L, Zhong D L, Yin A, et al., 2001. Cenozoic structural and metamorphic evolution of the eastern Himalayan syntaxis(Namche Barwa). Earth Planet. Sci. Lett., 19:423-438.
    Drummond S E, Ohmoto H. 1985. Chemical eolution and mineral deposition in boiling hydrothermal sytems. Econ. Geol., 80:126-147.
    Durr S B. 1996. Provenance of Xigaze fore-arc basin clastic rocks (Cretaceous, south Tibet). Geol. Soc. Am. Bull., 108:669-684.
    Eastoe G G. 1978. A fluids inclusion study of the Panguna porphyry copper deposit, Bougainville, Papua New Guinea. Econ Geol., 73:721-748.
    Einaudi M T. 1982. Description of skarns associaled with porphyry copper plutons. Titley Sr.(ed.). Advances in geology of the porphyry copper deposits, southwestern North America Univ. Ariszona Press, Tucson, 139-184.
    Gaetani M, Garzanti E. 1991. Multicyclic history of northerm India continental margin(northwestern Himalaya). Am Assoc. Pet. Geol. Bull., 75:1427-1446.
    Gao Y F, Hou Z Q, Wei R H. 2003. Post-collisional adakitic porphyries in Tibet: Geochemical and Sr-Nd-Pb isotopic constraints on partial melting of oceanic lithosphere and crust-mantle interaction. Acta Geologica Sinica,77: 123-135.
    Garza R A P, Titley S R, Francisco P B. 2001. Geology of the Escondida porphyry copper deposit, Antofagasta region, Chile. Econ. Geol., 96:307-324.
    Grant J A. 1986. The isocon diagram-a simple solution to Gresens' equation for metasomatic alteration. Econ. Geol., 81:1976-1982.
    Guilbert J M. 1995. Geology, alteration, mineralization and genesis of the bajo de la Alumbrera porphyry copper-gold deposit, Catamarca province, Argentina. Arizona Geological Society Diges, 20: 646-656.
    Guilermo O C, Roberto F C, Gustafson L B, et al., 2001. Geology of the Chuquicamata Mine: A Progress Report. Econ. Geol., 96:249-270.
    Gustafson L B, Orgrera W, Mewilliams M, et al., 2001. Multiple centers of mineralization in the Indio Muerto district, El Slavador, Chile, Econ.Geol.96:325~350.
    Gustafson L B., 1979. Porphyry copper deposits and calc-alkaline volcanism. In: McElhinny M W., ed., The Earth: its origin, structure and evolution. New York, Academic Press, 427-468.
    Gustafson L B, Hunt J P. 1975. The porphyry copper deposit at El Salvasor, Chile. Economic Geology. 70: 857-912.
    Harris N B W, Xu R, Lewis C L, et al., 1988. Isotope geochemistry of the 1985 Tibet Geotraverse, Lhasa to Golmud. Phil Trans Roy. Soc. Lond. A327:263~285.
    Harrision T M, Grove M, McKeegan K. D, et al., 1999. Origin and episodic emplacement of the Manaslu instrusive complex, Central Himalaya. J Petrol. 40:3-19.
    
    Harrison T M, Copeland P, Kidd W S F, et al., 1992. Raising Tibet. Science, 255: 1663-1670.
    Harrison T M, Yin A, Grove M, et al., 2000. Displacment history of the Gangdese thrust, Southeastern Tibet. J. Geophys. Res. 105:19211-19230.
    Harrsion T M, Copeland P, Kidd W S F, et al., 1995. Activation of the Nyainqentanghla shear zone: Implications for uplift of the southern Tibetan Plateau. Tectonics, 14:658-676.
    Hedenquist J W, Arribas A J, Gonzalez-Urien E. 2000. Exploration for epithermal gold deposits. Reviews in Economic Geology, 13: 245-277.
    Hedenquist J W, Arribas A J, Reynolds T J. 1998. Evolution of an intrusion-centered hydrothermal system: Far Southeast-Lepanto porphyry and epithermal Cu-Au deposits, Philippines. Econ. Geol., 93: 373-404.
    Hedenquist J W, Richards J P. 1998. The finfluence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 10:235-256.
    Heinrich C A, Ryan C G, Mernagh T P, Eadington P J. 1992. Segregation of ore metals between magmatic brine and vapor: A fliud inclusion study using PIXE microanalysis. Econ Geol., 87: 1566-1583.
    Hemley R W, Mcnabb A. 1978. Magmatic vapor plumes and ground-water interaction in porphyry copper emplacement. Econ. Geol., 73:1-20.
    
    Henderson P. 1984. Rare earth element geochemistry. London: Elsevier Science Publishers, 1-284.
    Hendry D A F, Chivas A R, Reed S B T, et al., 1989. Geochemical evidence form agmatic fluid in porphyry copper mineralization, part .Ion-probe analysis of Cu Contents of mafic minerals, koloula Igneous complex. Contrib. Mineral. Pertol, V86:404~412.
    Hezarkhani A, Willians-Jones AE, 1998 .Controls of alteration and mineralization in the Sungun porphyry copper deposit, Iran: evidence from fluid inclusions and stable isotopes. Econ. Geol., 93:651-670.
    Hezarkhani A, Williams-Jones A E, Gammons C H. 1999. Factors controlling copper solubility and chalcopyrite deposition in the Sungun porphyry copper deposit, Iran. Mineralium Deposita.34:770~783.
    Hollister V F. 1978. Geology of the porphyry copper deposits of the western hemisphere. New York .Society of Mining Engineers of the American Institute of Mining, Metallurgical, and petroleum Engineers, Inc. New York, 1-219.
    Hollister V F. 1991. Models for prospect evaluation of porphyry copper deposits. Hollister V F(ed.). Porphyry copper, molybdenum, and gold deposits, volcanogenic deposits (massive sulfides), and deposits in layered rock. New York: Society for Mining, Metallurgy and Exploration. Littleton, CO., United States. 3:5-10.
    Holliter V F. 1974. Regional characteristics of porphyry copper deposits of south America. Trans, SME-AIME, 256:45-53.
    Hou Z Q, Ma H W, Khin Zaw.et al., 2003. The Yulong Porphyry Copper Belt: Product of Large-Scale Strike-Slip Faulting in Eastern Tibet: Economic Geology, 98:125-145.
    Hou Z Q, Mo X X, Qu X M, et al., 2004a. The mid-Miocene potassic adakite generation related to interaction of subducted Neo-Tethyan slab with overlying Asian mantle in South Tibet. Earth Planet. Sci. Lett., 220:139-155.
    Hou Z Q, Qu X M, Gao Y F, et al., 2004b.Tectonic controls on the Gangdese potassic adakitic porphyry copper belt in the Tibetan orogen. Geology, (submtted).
    Hou Z Q, Qu X M, Rui Z Y, et al., 2004c. The Miocene Gangdese porphyry copper belt generated during post-collisional extension in the Himalayan-Tibetan Orogen. Economic Geology, (accepted).
    Hou Z Q, Zeng P S, Gao Y F, et al., 2004. The Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: constraints from Re-Os dating of molybdenite. Mineralum Deposita (in press).
    Houseman G, England P. 1996. A lithospheric thickening model for the Indo-Asian collision. In The tectonic evolution of Asia, A Yin, T M Harrsion, eds. Cambrige University Press, new York, 3~17.
    Hughes N C, Jell P A. 1999. Biostratigraphy and biogeography pf Himalayan Cambrian trilobites. In: Himalaya and Tibet: mountain roots to mountain tops. Macfarlane A, Sorkhabi R B. eds. Geol. Soc. Am. Spec. Pap., 328:109-116.
    Ilton E S, Veblen D R. 1993.Origin and modle of copper enrichment in biotite from rocks associated with porphyry copper deposits: a transminssion electron microscopy investidation. Econ.Geol. 88:885~900.
    IltonE S, Veblen D R. 1988. Copper inclusion in sheet-silicates from porphyry Copper deposits. Nature, 334:516-518.
    Jorham T E, Isacks B L, Allmendinger R W, et al., 1983. Andean tectonic related to geometry of subducted Nazca plate. Geol.Soc. America. Bull., 94:341-361.
    Kapp P, Murphy M A, Yin A, et al., 1999. Cenozonic shortening along the banggong-Nujiang suture zone, central Tibet. In: 14th Himalaya-Karakorum-Tibet workshop, Abstract volume, Kloster Ettal, Germany.
    Kay R W J. 1978. Aleutian magnesium andesites melts from subducted Pacific oceanic crust. Jour. Volcan. Geotherm. Res., 4:117-132.
    Kay S M, Mpodozis C, Coira B. 1999. Neogene magmatism, tectonism, and mineral deposits of central Andes (220 to 330 S Latitude). Geology and Ore Deposits of the Central Andes. Skinner B J(ed.). Society of Economic Geologists Special Publication 7, 27-59.
    Kay S M, Ramos V A, Marquez M. 1993. Evidence in Cerro Pampa volcanic rocks for slab-melting prior to ridge-trench collision in southern South America. Journal of Geology. 101:703~714.
    
    Keleman B P. 1995. Genesis of high Mg# andesites and the continental crust: Contrib. Mineral. Petrol., 120:1-19.
    Kepezhinskas P, Mcdermott F, Defant M J, et al., 1997. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka arc petrogenesis. Geochim. Cosmochim. Acta, 61: 577-600.
    Kerrich R, Goldfarb R, Groves D, Garwin S. 2000. The characteristics, origins, and geodynamic settings of supergiant gold metallogenic provinces: Sicence in China, 43:1-68.
    Kesles S E, Jones L M, Walker R L. 1975. Intrusive rocks associated with porphyry copper mineralization in island areas. Econ. Geol., 70:515-526.
    Kirkham R V. 1998. Tectonic and structural features of arc deposits: Metallogeny of Volcanic Arcs, British Columbia Geological Survey, B1-45.
    Lang I M, Naeser C W, Mickee J M. 1984. Mineralization and ages of plutonic and volcanic rocks within the Idaho porphyry belt near Lincoln, Montana. The Geological Society of America. 97th meeting, 16, Abstract with Programs. New York: The Geological Society of America, 568.
    Le Fort P. 1996. Evolution of the Himalaya. In: The Tectonics of Asia. Yin A, Harrsion T M (eds.). Cambridge University Press, New York, 95-106.
    Lowell J D, Guilbert J M. 1970. Lateral and vertical alteration-mineralization zoning in porphyry ore deposits. Econ. Geol., 65:373-408.
    Lowenstern J B, Mahood G A, Rivers M L,et al., 1991. Evidence for extreme partitioning of Copper into a magmatic vapor phase. Science, 252: 1405—1409.
    
    Lowenstern J B. 1994. Dissolved Volatile Concentrations in an ore-forming magma. Geology, V22:893~896.
    Macdonald G D, Arnold L C. 1994. Geological and geochemical zoning of the Grasberg igneous complex, Irian, Jaya, Indonesia. Journal of Geochemical Exploration, 50: 145-178.
    Maheo G, Guillot S, Blichert-Tofa J, et al., 1998. A slab breakoff model for the Neogene thermal evolution of Southern Karakorum and South Tibet: Earth Planet. Sci. lett, 195:45-58.
    Mahoney J J, Frei R, Tejada M L g, et al., 1998. Tracing the Indian ocean mantle domain through time: Isotopic results from old west Indian, east Tethyan and south Pacific seafloor. J. Petrol., 39:1285-1306.
    Maksaev V, Zentilli M. 1999. Fission track thermochronology of the Domeyko cordillera, northern Chile: Implications for Andean tectonics and porphyry copper metallogenesis. Mining Geology and Exploration. 8: 65-89.
    
    Martin R. 1999. Adakitic magmas: Modern analogues of Archean granitoids. Lithos, 46:411-429.
    Matte P, Mattauer M, Olivet J M, et al., 1997. Contintal subduction beneath Tibet and the Himalaya orogen: a review. Terra nova, 9:264-270.
    Mavrogenes J A, Bodnar R J, Anderson A J,et al., 1995. Assessment of the uncertainties and limitations of quantitative elemental analysis of individual fluid inclusion using synchrotron X-ray fluorescence(SXRF). Geochimica et Cosmochimica Acta, 59: 3987-3995
    McInnes B I A, Cameron E M, 1994.Carbonated, alkaline hydridizing melts from a sub-arc environment: mantle wedge samples from the Tabar-Lihir-tanga-Feni arc, Papua New Guinea. Earth. Planet. Sci. Lett., 122:125-141.
    Meldrum S J, Aquino R S, Gonzales R I, et al., 1994. The Batu Hijau porphyry copper-gold deposit, Sumbawa Island, Indonesia. Journal of Geochemical Exploration, 50: 203-220.
    Metrich N, Rutherfood M J. 1992. Experimental study of chlorine behaviou in hydrous silicmelts. Geochim. Cosmochim At-Ca, 56:607—616.
    Miller C, Schuster R, Klotzli U, et al., 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrol., 40:1399-1424.
    
    Mitchell AH G, 1973. Metallogenic belts and angle of dip of Benioff zones. Nature, 245: 49-52.
    Mithell A H G, Garson M S. 1972. Relationship of porphyry copper and circum-pacific deposits to paleo-Benioff zones. Inst. Min. Metall. Trans., 81:810-825.
    Mo X X, Deng J F, Zhao Z D, et al., 2003. Volcanic records of India-Asia collision and post-collision processes. Proc EGSAGU-EUG Joint Assembly(Nice), 263.
    Moore J G, et al., 1959. U. S. Geol. Surv. Prof., 424-c, 87-90.
    Mungall J E. 2002. Roasting the mantle: slab melting and the genesis of major Au and Au-rich Cu deposits . Geology, 30:915-918.
    Murphy J B, Nance R D. 1991. Supercontinent model for the contrasting character of Late Proterozoic organic belts. Geology, 19:469-472.
    Nash J T. 1976. Fluid inclusion petrology data from porphyry copper deposits and application to exploration. U.S. Geol. Survey Prof. Paper 907-D. 16.
    Ni Pei, Rao Bing, Ding Junying, Zhang Songlin. 2003. Studies on the synthetic fluid inclusions and their application to Laser Raman spectrum analysis field. Acta Petrologica Sinica 19(2):3319-326.
    Ohmoto H. Rye R O. 1979. Isotopes of sulfur and carbon. Barnes H L (ed.). Geochemistry of hydrothermal ore deosits. New York: Wiley, 509-567.
    Olson S F, 1989.The stratigraphic and structural setting of the Potrerillos porphyry copper district, northern Chile. Revista Geologica de Chile. 16(1): 3-29.
    Oyarzun R, Marquez A, Lillo J, et al., 2001. Giant versus small porphyry copper deposits of Cenozoic age in northern Chile: adakitic versus normal calc-alkaline magmatism. Mineralium Deposita, 36: 794-798.
    Pagnant U, Spencer D A, First record of ecologites from the Himalayan belt, Kaghan valley, Northern Pakistan, Eur. J Mineral. 1991,3:613-618.
    Pan Y, Kidd W S F. 1992. Nyainqentanghla shear zone: A late Miocnce extensional detachment in the sauthem Tibetan Plateau.Geology, 20:775-778.
    Patriat P, Achache J. 1984. India-Eurasian collision chronology has implications for crustal shortening and driving mechanism of plates. Nature, 311:615-621.
    Perello J, Cox D, Garamjav D, et al., 2001. Oyu Tolgoi, Mongolia: Siluro-Devonian porphyry Cu-Au-(Mo) and high-sulfidation Cu mineralization with a Cretaceous chalcocite blanket. Econ. Geol, 96: 1407-1428.
    Perello J. 1994. Geology, porphyry Cu-Au, and epithermal Cu-Au-Ag mineralization of the Tombuliato district, North Sulawesi, Indonesia. Jour. Geochem. Explor., 50: 221-256.
    Petford N, Atherton M. 1996. Na-rich partial melts from newly underplated basaltic crust: the Cordillera Blanca batholith, Peru. Jour. Petrol., 37:1491-1521.
    Petrunov R, Dragov P, Neykov H. 1990. Polyelemental (with As, Sn, V, Bi, Ag, Te, Ge, Se, etc.) mineralizations in the Asarel porphyry copper deposit (Bulgaria). Geologica Balcanica. 20 (4): 48.
    Pierce J A, Mei H. 1988. Volcanic rocks of the 1985 Tibet Geotraverse. Lhasa to Golmud. Phil. Trans. Roy. Soc. Lond.,A327:203~213.
    Popov V S, Kudryavtsev Y K, Altukhov Y N, et al., 1988. The geological setting of the porphyry-copper and porphyry-molybdenum mineralization of the Altay-Sayan fold region. International Geology Review. 30(4): 453-458.
    Portacio J S. 1974. Notes on hydrothermal alteration in Philippine porphyry copper deposits. 4th Symposium on Mineral Resource Development, Sec. 1 Dec. 6-7. Manila, Philippine.
    
    Powell C M, Conaghan P G. 1973. Plate tectonics and the Himalayas. Earth Planet. Sci. Lett., 20:1-12.
    Rapp R P, Shimizu N, Norman M D, et al., 1999. Reaction between slab-derived melts and perodotite in the mantle wedge: Experimental constraints at 3.8 GPa. Chemical Geology, 160:335-356.
    Reynoids T J, Beane R E. 1985. Evolution of hydrothermal fluid characteristics at the Santa Rita, New Mexico, porphyry copper deposit. Econ. Geol., 80: 1328-1347.
    Richards J P, Boyce A J, Pringle M S. 2001. Geologic evolution of the Escondida area, northern Chile: a model for spatial and temporal location of porphyry Cu mineralization. Economic Geology, 96:271-306.
    Roedder E. 1984. Fliud inclusion. Reviews in Mineralogy. Mineralogical Society of America. 12: 644.
    Rowley D B. 1996. Age of collision between India and Asia: A review of the stratigraphic data. Earth Planet. Sci. Lett., 145:1-13.
    Rush P M, Seegers H J. 1990. Ok Tedi copper-gold deposits. Hughes F E(ed.). Geology of the Mineral Deposits of Australia and Papua New Guinea. Australia: Australian Institute of Mining and Metallurgy, 1747-1754.
    Sajona F G, Maury R C. 1998. Association of adakite with gold and copper mineralization in the Philippines. CR ACAD SCI II A, 326: 27-34.
    Schaer U, Xu R H, Allere C J. 1984. U-Pb geochronology of the Gangdese (Transhimalaya) plutonism in the Lhasa-Xizang region, Tibet. Earth Planet. Sci. Lett., 69 :311-320.
    Searle M P, Cooper D J W, Rex A J. 1991 .Collision tectonics of the Ladakh-Znaskar Himalaya. Phil. Trans. R. Soc. Lond. A326:117-150.
    Sheets R W, Nesbitt B E, Muehlenbachs K, 1996. Meteoric water component in magmatic fluids from porphyry copper mineralization, Babine Lake area, British Columbia. Geology, 24:1091-1094.
    Sheppard S M F, Nielson R L, Taylor H P J. 1969. Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol., 64: 755-777.
    Sheppard S M F. 1971. Hydrogen and oxygen isotope ratios in minerals from porphyry copper deposits. Econ. Geol., 66: 515-542.
    Sillitoe R H, 1972. A plate tectonic modle for the origin of porphyry copper deposits. Econ. Geol., 67:184-197.
    Sillitoe R H, Gappe I M Jr. 1984. Phillipine porphyry copper deposits:geological setting and characteristics.CCOP Technical Publication 14.Bangkok, United Nations Escap, Tailand.
    Sillitoe R H. 1998. Major regional factors favouring large size, high hypogene grade, elevated gold content and supergene oxidation and enrichment of porphyry copper deposits. Porter T M(ed.). Porphyry and Hydrothermal Copper and Gold Deposits—a global perspective. Perth, Adelaide: Australian Mineral Foundation/PGC Publishing, 49-60.
    Silliton R H, Thompson J F H. 1998. Intrusion-related vein gold deposits: type, tectonic-magmatic settings and difficulties of distinction from orogenic gold deposits: Resource Geology, 48: 237-252.
    Skewes M A, Stern C R. 1995. Genesis of the giant late Miocene to Pliocene copper deposits of central Chile in the context of Andean magmatic and tectonic evolution. International Geology Review. 37(10):893-909.
    Skjerlie K P, Patino DAT. 2002. the fluid-absent partial melting of a zoisite-bearing quartz eclogite from 1.0 to 3, 2 GPa: implications for melting in thickened continental crust and for subduction-zone processes. Journal of Petrology, 43:291-314.
    Solomon M. 1990. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs. Geology (Boulder). 18(7):630-633.
    Stefanini B, Williams-Jones A E. 1996. Hydrothermal evolution in the Calabona porphyry Copper System (Sardinia, Italy).The path to an uneconomic deposit. Econ. Geol., 91:774—791.
    Stern C R, Kilian R. 1996. Role of the subducted slab, mantle wedge and continental crust in the generation of adakites from the Andean Austral Volcanic Zone. Contrib. Miner. Petrol., 123: 263-281.
    Taylor H P Jr., 1974. The application of oxygen and hydrogen isotope studies to problems of hydrothermal alteration and ore deposition. Econ Geol., 60: 834-883
    Thieblemont D, Stein G, Lescuyer J L. 1997. Epithermal and porphyry deposits: the adakite connection. CR ACAD SCI II A, 325: 103-109.
    Titley S R, Beane R E. 1989. Porphyry copper deposits. part I, Geologic setting, petrology and tectogenesis. Econ. Geol. 75th. Anniv.I:214-235.
    Titley S R, Fleming A W, Neale T I. 1978. Tectonic evolution of the porphyry copper system at Yandera, Papua New Guinea. Econ. Geol., 73:810-828.
    
    Tooker E W. 1990. Gold in the Bingham District, Utah. U.S. Geological Survey Bulletin, 1857E, 1-16.
    Turner S, Hawkesworth C, Liu J.-Q, et al., 1993. Timing of Tibetan uplift constrained by analysis of volcanic rocks. Nature, 364: 50-54.
    Ulrich T, Giinther D, Heinrich C A. 1999. Gold concentrations of magmatic brines and the matal budget of porphyry copper depoits. Nature, 399:676-679.
    Ulrich T, Heinirich C A. 2001. Geology and alteration geochemistry of the porphyry Cu-Au deposit at Bajo de la Alumbrera Argentina. Econ Geol., 96:1719-1742.
    
    Var'yash L N, Rekharskiy V I. 1981. Behaiour of Cu(I) in Chloritde solution. Geochem Int. 7:1003-1008.
    Vityk M Q, Bordnar R J. 1998. Statistical microthermometry of synthetic fluid inclusions in quartz during decompression reequilibration. Contributions to Mineralogy and petrology, 132:149-162.
    Volfinger M, Robert J L, Vielzeuf D,et al., 1985. Structural control of the chlorine content of OH-bearing silicates(mivas and amphiboles). Geochemi Cosmochim Acta.49: 37-40.
    
    Voo R, Spakman W, Bijwarrd H. 1999. Tethyan subducted slabs under India. Earth Planet. Sci. Lett., 171:7-20.
    Willett S D, Beaumont C. 1994. Subduction of Asian lithospheric mantle beneath Tibet inferred from models of continental collision. Nature, 369:642-645.
    Williams H, Turner S, Kelley S,et al., 2001. Age and composition of dikes in Southern Tibet: new constraints on the timing of east-west extension as It's relationship to post-collisional volcanism. Geology, 29(p):339-342.
    Williams S A, Forrester J D. 1995.Characteristics of porphyry copper deposits. Arizona Geological Society Digest. 20:21-34.
    Wilson J W J, Kelser S E, Cloke P L,et al., 1980. Fluids inclusion geochemistry of the Granisle and Bell porphyry copper deposit, Bristish Columbia. Econ Geol.75:45-61.
    Wones D R, Eugster H P. 1965. Stability of biotite: experimental, theory and application. Am. Mineral. 50:1228-1272.
    Xu R H, Schaer U, Allere C J. 1985. Magmatism and metamorphism in the Lhasa block(Tibet): a geochronological study. J. Geol., 93:41-57.
    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen: Annu. Rev. Earth Planet. Sci. 28:211-280.
    Yin A, Harrison T M, Ryerson F J. 1994. Tertiary structural evolution of the Gangdes thrust system, southeastern Tibet. J. Geophys. Res., 99:175-201.
    
    YIN J, XU J, LIU C, et al., 1988. The Tibetan plateau: regional stratigraphic context and previous work. Phil. Trans. Roy. Soc. Lond., A327:5~52.
    Yin J, Xu J, Liu C, et al., 1988. The Tibetan plateau: regional stratigraphic context and previous work. Phil. Trans. Roy. Soc. Lond., A327:5~52.
    Yin A, Harrison T M. 2000. Geologic evolution of the Himalayan-Tibetan orogen: Annu. Rev. Earth Planet. Sci. 28:211-280.
    
    Zartman R E, Doe B R. 1981. Plumbotectonic-the model. Tectonophysics. 75:135-162.
    Zheng Y F, 1991.Sulphur isotopic fractionation between sulphate and sulphide in hydrothermal ore deposits: disequilibrium vs equilibrium processes. Teera Nova, 3:510-516.
    
    Zotov A V, Kudrin A V, Lein K A,et al., 1995. Experimental studies of the solubility and complexing of selected ore elements(Au, Ag, Cu, Mo, As, Sb, Hg) in aqueoue solutions. Shmuloich K I, Yardley B W D, Gonchar G G(eds), Fliuds in te crust, Equilibrium and transport properties. Chapman And Hall, London, 95-132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700