基于线粒体控制区序列和核基因微卫星标记的杂色山雀遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
杂色山雀(Parus varius)属雀形目,山雀科,山雀属,是一种分布区域狭窄、雌雄同色同型的小型森林洞巢鸟类。指名亚种P.v.varius在中国大陆的分布范围很狭窄,主要分布于辽宁的中、东、南部山区和毗邻辽东山区的吉林省部分山区。因为这种分布地的局限性,导致国内对杂色山雀的研究很少,而基于多基因标记的遗传多样性研究更是未见报道。遗传多样性是非常重要的生物资源。开展杂色山雀遗传多样性的研究和分析是我们进一步对其物种发展和种群延续进行保护的基础。
     本研究通过使用线粒体DNA控制区序列和核基因微卫星标记对大陆杂色山雀种群的遗传多样性进行了分析,主要得到以下结果:
     1)线粒体DNA控制区:在68个样本中得到长度529 bp的控制区序列,其中有14个变异位点,包括11个单变异位点和3个简约信息位点;核苷酸多样性π、单倍型多样性h和平均核苷酸差异数K分别为0.0017、0.5328、0.8917。结果显示基于线粒体DNA控制区序列的杂色山雀遗传多样性较低。中性检验和错配分布图说明大陆杂色山雀种群没有经历过种群扩张。基于邻接法和最小进化法构建的系统发生树显示大陆杂色山雀种群分化不明显,没有形成与采样地相对应的地理格局,说明大陆杂色山雀属于一个地理种群。
     2)核基因微卫星标记:9个微卫星位点的等位基因为6~16个,平均为11.78个;观测杂合度、期望杂合度和多态信息含量分别为0.651、0.779和0.755。9个核基因微卫星标记所显示的遗传多样性较高。其中4个位点没有偏离Hard-Weinberg平衡,另外5个位点显著偏离了Hard-Weinberg平衡。不论是等位基因频率的图形检查法,还是等位基因频率分布的缺口分析法,都显示出大陆杂色山雀种群近期很可能没有发生过瓶颈效应。
     综上所述,从长期的发展历史来看,中国大陆杂色山雀种群一直处于分布范围狭窄,种群数量有限的状态,其遗传多样性较低;但近期其种群数量稳定,没有经历瓶颈效应等打击,遗传多样性保持较好。
Parus varius (Passeriformes, Paridae, Parus), is a kind of small cavity-nest forest birds and monomorphic with obviously narrow distribution. P.v.varius distributes narrowly in Chinese mainland, such as the middle, eastern, southern mountains of Liaoning province and partial mountains of Jilin province, which is contiguous to eastern mountains of Liaoning province. The limited distribution leads to rarely researches on P.v.varius in China. Furthermore, analysis of genetic diversity based on multi-gene markers has never been reported. Genetic diversity, one kind of important biological resources, is the foundation of protecting species development and continuation of population.
     Here, I report the results of genetic diversity of P.v.varius in Chinese mainland based on the analysis of mitochondrial DNA control region and nuclear microsatellite markers:
     1) 529 bp in length were sequenced in mitochondrial DNA control region of 68 individuals. Fourteen variations in all were detected, including 11 singleton variable sites and 3 parsimony informative sites. Genetic diversity was low based on mt DNA control region of P.v.varius, with 0.0017 for nucleotide diversity (π) and 0.5328 for haplotype diversity (h). I attribute the low genetic diversity of this bird to its narrow distribution and small population in the long-term history. There were no population expansion events or bottleneck effect in P.v.varius as indicated by the results from neutrality test and mismatch distribution. Both of the phylotypes trees revealed that P.v.varius in Chinese mainland belongs to one population without obvious differentiation.
     2) The number of allele was 6~16 with a mean value of 11.78. The average observed heterozyosity, the average expected heterozyosity, and polymorphic information content (PIC) across the nine loci was 0.651, 0.779 and 0.755 respectively. Genetic diversity is high based on nine nuclear microsatellite markers of P.v.varius. The observed genotype frequencies at four loci were consistent with Hardy-Weinberg Equilbrium (HWE) and the remaining five loci were significantly deviated from HWE. The results may be resulted from null allele and genetic drift. Both graphical assessment of allele frequency distributions and allele frequency distribution for gaps showed that there was no bottleneck in the recent history of P.v.varius.
     In conclusion, results from the present work indicate that genetic diversity of mitochondrial DNA control region was lower in P.v.varius than in other related birds, which may be accounted for by its narrow distribution and small population in the history. However, the population remains stable and shows no bottleneck effect in recent decades.
引文
[1]郑光美.中国鸟类分类与分布名录.北京:科学出版社,2005.328-329.
    [2]万冬梅,丁锋,王爽,等.杂色山雀的研究现状.四川动物,2008,27:157-160.
    [3]赵正阶.中国鸟类志(下卷·雀形目).长春:吉林科学出版社,2001.
    [4] Harrap S, Quinn D. Tits, Nuthatches and Creepers. London: A&C Black, 1995.
    [5]范强东,袁燕,孙为连.山东发现杂色山雀.动物学杂志,1990,25(3):54.
    [6]范忠民.辽宁草河口林区鸟类调查初报.沈阳农学院学报,1963,(4):72-82.
    [7]金春日,王爽,万冬梅,等.杂色山雀的繁殖生态.生态学杂志,2007,26(12):1988-1995.
    [8]金春日,王爽,万冬梅,等.杂色山雀的繁殖成功率.动物学杂志,2007,42(3):28-33.
    [9]王爽,金春日,万冬梅,等.人工巢箱招引杂色山雀研究.辽宁林业科技,2007,2:8-11.
    [10]杜杨,霍雅鹏,万冬梅,等.杂色山雀对人工巢箱内苔藓类巢材的选择.动物学杂志,2010,45(4):144-149.
    [11] Yamaguchi N. Cheek-patch coloration varies greatly within a subspecies of the Varied Tit Parus varius. Ibis, 2005, 147(4):836~840.
    [12] Eizou Y. Comparative study on the breeding ecology of Great Tit Parus major and Varied Tit P. varius in Hakone district of Kanagawa Prefecture. Strix, 1996, 14: 11~23.
    [13] Mizuki M, Naoki H. The effects of arthropod abundance and size on the nestling diet of two Parus species. The Ornithol ogical Society of Japan, 2002, 1: 71~80.
    [14] Yamaguchi N. Parus varius. Bird Research News, 2005, 2(12): 4~5.
    [15] Yamaguchi N, Higuchi H. Extremely low nesting success and characteristics of life history traits in an insular population of Parus varius namiyei. Wilson Bull, 2005, 117 (2) : 189~193.
    [16] Higuchi H, Hasegawa H. Clutch size of the Varied Tit Parus varius on Kohzu-shima Island. Tori, 1985, 33: 127~128.
    [17]太田纪子,梶田学,柿泽亮三.mtDNA的细胞色素b片断比较山雀科亚种间鸟类亲缘关系. 1998年度日本鸟学会大会讲演要旨集.日本:1998,36.
    [18] Frank B G, Beth S, Frederick H S. Phylogeny of titmice (Paridae) II. Species relationships based on sequences of the mitochondrial cytb chrome-b gene. The Auk, 2005, 122 (1) : 121~143.
    [19]张宇婷.基于线粒体基因杂色山雀遗传多样性及其种群分化研究:[硕士学位论文].沈阳:辽宁大学,2010.
    [20]霍雅鹏,曹君,张宇婷,等.杂色山雀性别分子鉴定方法的研究.辽宁林业科技,2009,1: 3-7.
    [21]曹君.基于微卫星序列的杂色山雀父权鉴定及婚配制度的研究:[硕士学位论文].沈阳:辽宁大学, 2010.
    [22]田兴军.生物多样性及其保护生物学.北京:化学工业出版社,2005,1-5.
    [23]葛颂,洪德元.遗传多样性及其检测方法,见中国科学院生物多样性委员会主编:生物多样性研究的原理和方法,1994,123-140.
    [24]夏铭.遗传多样性研究进展.生态学杂志,1999,18(3):59-65.
    [25]王成辉.中国红鲤遗产多样性研究:[博士学位论文].上海:上海水产大学,2002.
    [26] Grant A, Bailey J F. Patterns of genetic diversity in extant and extinct cattl populations: Evidence from sequence analysis of mitochondrial coding regions. Ancient Biomolecules, 1998, 2: 235~249.
    [27] Avise J C. Chapter 9: Conservation Genetics. In: Molecular Markers, Natural History and Evolution.New York :Chapman and Hall, 1994.
    [28]岳天祥.生物多样性研究及其问题.生态学报,2001,21(3):462-467.
    [29]武玉珍,王孟本,张峰.褐马鸡圈养种群的mtDNA控制区多态性.生态学报,2010,30 (11): 2958-2964.
    [30]黄族豪,刘廼发,龙进,等.石鸡兰州亚种的mt DNA种群遗传结构分布和遗传多样性.动物学报,2006,52(4):738-745.
    [31] Hammer B, Herlin M. Karyotypes of four bird species of the order Passeriformes. Hereditas, 1975, 80: 177~184.
    [32] Nesse L L, Paulsen G, Syed M, et al. A human major histocompatibility complex(MHC) DNA probe recognizes goat genes. Acta Vet Scand, 1988, 29: 193~198.
    [33] Buvanendran V, Sooriyamoorthy T, Ogunsusi R A, et al. Haemoglobin polymorphism and resistance to helminths in Red Sokoto goats. Trop Anim Health Prod, 1981, 13: 217~221.
    [34] Lush I E, Cowey C B, Knox D. The lactate dehydrogenase isozymes of twelve species of flatfish(Heterosomata). J. Exp. Zoo1, 1977, 71: 105~118.
    [35]郭新红,刘少军,刘巧.鱼类线粒体DNA研究新进展.遗传学报,2004,31(9),983-1000.
    [36]邱芳,伏健民,金德敏,等.遗传多样性的分子检测.生物多样性,1998,6(2):143-150.
    [37] Dhar A K, Poklas M A, Gareia D K, et al. Analysis of genetic diversity in common loon Gavia mimer using RAPD and mitochondrial RFLP techniques. Molecular Ecology, 1997, 6: 581~586.
    [38] Williams J G K, Kubelik A R, Livak K J, et al. DNA polymorphism samplified by arbitrary primers are useful as genetic markers. Nucleic. Acids Res, 1990, 18(22): 6531~6535.
    [39] Nusser J A, Goto R M, Ledig D B, et al. RAPD analysis reveals low genetic variability in the endangered light-footed clapper rail. Molecular Ecology, 1996, 5: 463~472.
    [40] Zabeau M, Vos P. Selective restriction fragment amplieation: a general method for DNA fingerprinting. European Patent Application, 1993.
    [41] Donald C,Dearborn,Angela D, et al. Inter-island movements and population differentiation in a pelagie seabird. Molecular Ecology, 2003, 12: 2835~2843.
    [42] Nakamura Y, Carlson M, Krapcho K, et al. New approach for isolation of VNTR markers. Am J Hum Genet, 1988, 43: 854~859.
    [43] Weber J L, May P E. Abundant class of human DNA polymoprhisms which can be typedusing the polymerase chain reaction. Am J Hum Genet, 1989, 44:388~396.
    [44]国伟,沈佐锐.微卫星DNA标记技术及其在昆虫学上的应用.生物技术,2004,14 (2):60-61.
    [45] Hansson B, Bensch S, Dennis H, et al. Microsatellite diversity predicts recruitment of sibling great reed warblers. Proc. R. Soc. Lond. B, 2001, 268, 1287~1291.
    [46] Jacob H, Tomas J, Albert B, et al. Phylogeography of the Black-tailed godwit Limosa limosa: substructuring revealed by mtDNA control region sequences. J Ornithol, 2009, 150: 45~53.
    [47] Baker C S, Perry A, Bannister J L, et al. Abundant mitochondrial DNA variation and world wide population structure in humpback whales. Proc Natl Acad Sci USA, 1993, 90(17): 8239~8243.
    [48] Hoelzel A R, Ralls K, Dover G A. Elephant seal genetic variation and the use of simulation models to investigated historical population bottlenecks. Heredity, 1993, 84(6):443~449.
    [49] Mindell D P, Sorenson M D, Dimeheff D E. Multiple independent origins of mitochondrial gene order in bidrs. Proc Nail Acad Sci USA, 1998: 10693~10697.
    [50] Wenink P W, Baker A J, Tilnaus M G J. Mitohcondrial control-region sequence in two shorebird species, the turnstone and the dunlin, and their utility in Population genetic studies. Mol Biol Evol, 2002, 11:22~31.
    [51]韩家波.中国海域斑海豹种群资源和分子遗传特征研究:[博士学位论文].北京:中国科学院研究生院,2009.
    [52] Skinner D M, Beattie W G, Blattner F R. The repeat sequence of a hermit crab satellite deoxyribonucleic acids is (-T-A-G-G-) n2(-A-T-C-C-) n. Biochemistry, 1974, 13: 3930~ 3937.
    [53] Miesfeld R, Krystal M, Arnheim N. A member of a new repeated sequence family that is conserved hroughout eukaryotic evolution is found between the human delta and beta globin genes. Nucl Acids Rex, 1981, 9: 5931~5947.
    [54] Hamada H, Pitrino M T, Kakunaga T. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc Natl Acad Sci USA, 1982, 79: 6462~6469.
    [55] Litt M, Luty J A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet, 1989, 44(3): 397~ 401.
    [56] Tautz D. Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic acidres, 1989, 17: 6463~6471.
    [57]张云武,张亚平.微卫星及其应用.动物学研究,2001,22(4):315-320.
    [58] Dib C, Faure S, Fizames C. A comprehensive genetic map of the human genome based on 5264 microsatellites. Nature, 1996, 380: 152~154.
    [59] William F D. A comprehensive genetic map of the mouse genome. Nature, 1996, 380: 149~152.
    [60] Levinoson G, Gutman G A. Slipped-strand mispairing: a major mechanism for DNAsequence evolution. Molec. Biol. Evol, 1987, 4: 203~221.
    [61] Tautz D, Schlotterer C. Simple sequence. Curr. Opin. Genet. Develop, 1994, 4: 832~837.
    [62] Strand M. Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature, 1993, 365: 274~276.
    [63] Fei Tian, Dongxiao Sun, Yuan Zhang. Estabishment of paternity testing system using microsatellite markers in Chinese Holstein. Journal Of Genetics And Genomics, 2008, 35: 279~284.
    [64]张于光,李迪强,饶力群,等.东北虎微卫星DNA遗传标记的筛选及在亲子鉴定中的应用.动物学报,2003,49(1):118-123.
    [65] Xiuyue Zhang, Bisong Yue, Jinchao Feng, et al. Isolation and characterization of nine polymorphic microsatellite loci in the rock carp, Procypris rabaudi(Tchang). Molecular Ecology Resources, 2008, 8: 123~125.
    [66] Watson C W, Beheler A A, Rhodes O E. Development of hypervariable microsatellite loci for use in eastern Phoebes (Sayornis Phoebe) and related Tyrannids. Molecular Ecology Notes. 2002, 2: 117~118.
    [67] Van Kaam J B, Groenen M A, Bovenhuis H. Whole genome scan in chickens for quantitative trait loci affecting carcass traits. Poultry Science, 1999, 78: 1091~1099.
    [68] Haly C M. Micorsatellites for linkage analysis of genetic traits. Trend in Genetics, 1992, 8: 288~293.
    [69] Mank J E. Carlson J E., Brittingham M C A. Century of hybridization: Decreasing genetic distance between American black dueks and mallards. Consevration Genetics, 2004, 5: 395~403.
    [70] Jones K L, Krapu G L, Brandit D A, et al. Population genetic structure in migratory sandhill cranes and the role of pleistocene glaciations. Molecular Eoclogy, 2005, 14 : 2645~2657.
    [71] Lukoschek V, Waycott M, Keogh J S. Relative information content of Polymorphic microsatellites and mitochondrial DNA for inferring dispersal and population genetic strueture in the olive sea snake. Molecular Ecology, 2008, 17: 3062~3077.
    [72] Birky C W, Birky C W, Fuerst P A. An approach to population and evolutionary genetic theory for genes in mitochondrial and chloroplasts, and some results. Genetics, 1983, 103: 513~ 527.
    [73] Estou P A, Angers B. Microsatellites and minisatellites for molecular ecology: Theoretieal and empirical considerations. In: Advances in Molecular Ecology(Ed by Carvalho GR), Amsterdam: IOS Press. 1998, 55~86.
    [74] Kanda N, Allendorf F W. Genetic population structure of bull trout from the flathead river basin as shown by microsatellites and mitochondria DNA markers. Transactions of the American Fisheries Society, 2001, 130: 92~106.
    [75] Natoli A, Peddemors V M, Hoelzel A R. PoPulation strueture and speciation in the genus tursiops based on microsatellite and mitochondrial DNA analysis. Journal of Evolutionary Biology, 2004, 17: 363~375.
    [76] Wan Q H, Wu H, FujiharaT, et al. Which genetic marker for which conservation genetics issue. Electrophoresis, 2004, 25: 2165~2176.
    [77] Taberlet P, Camarra J, Griffin S, et a1. Noninvasive genetic tracking of the endangered pyrenean brown bear population. Molecular Ecology, 1997, 6: 869~876.
    [78] Kvist L, Martens J, Alexander A N, et al. Paternal leakage of mitochondrial DNA in the Great Tit (Parus major). Mol. Biol. Evol, 2003, 20(2): 243~247.
    [79] Kumar S, Tamura K, Nei M. MEGA3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Briefings in Bioinformatics, 2004, 29: 356~379.
    [80] Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 1985, 39: 783~791.
    [81] Rozas J, Sanchez-Delbarrio J C, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics, 2003, 19: 2496~2497.
    [82] Saladin V, Bonfils D, Binz T, et al. Isolation and characterization of 16 microsatellite loci in the Great Tit Parus major. Molecular Ecology, 2003, 3: 520~526.
    [83] Katsura M K. Isolation of polymorphic microsatellite markers in the great tit (Parus major minor). Molecular Ecology Notes, 2003, 3: 314~315.
    [84] Bensch S, Price T, Kohn J. Isolation and characterization of microsatellite loci in a Phylloscopus warbler. Molecular Ecology, 1997, 6: 91~92.
    [85] Hartl D L, Clark A G. Principles of population genetics. Sunderland, MA: Sinauer Associates, 1989.
    [86] Hedrick P W, Whittam T S, Parham P. Heterozygosity at individual amino acid sites: extremely high levels for HLA-A and-B genes. Proc Natl Acad Sci.USA, 1991, 88: 5789 ~5901.
    [87] Nei M. Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics, 1978, 89: 583~590.
    [88] Luikart G L, Allendorf F W, Cornuet J M, et al. Distortion of allele frequency distributions provides a test for recent population bottlenecks. J Hered , 1998, 89: 238 ~247.
    [89] Garza J C, Williamson E. Detection of reduction in population size using data from microsatellite loci. Mol.Ecol., 2001, 10(2): 305~318.
    [90] Slatkin M, Hudson R R. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Geneties, 1991, 129: 555~562.
    [91] Rogers A R, Harpending H. Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol, 1992, 9: 552~569.
    [92]李庆伟,马飞.鸟类分子进化与分子系统学.北京:科学出版社,2007.
    [93] Kvist L, Martens J, Higuchi H, et al. Evolution and genetic structure of the great tit (Parus major) complex. The Royal Society, 2003, 270: 1447~1454.
    [94] Fares K, Joseph A, Kvist L. On the phylogenetics and population differentiation of the Great Tit and Blue Tit in Jordan. J Ornithol, 2007, 148: 525~530.
    [95] Kvist L, Minna R, Anna T. Mitochondrial control region polymorphism reveal high amountof gene flow in Fennoscandian willow tits (Parus montanus borealis). Hereditas, 1998, 128: 133~143.
    [96] Nei M. Molecular Evolutionary Geneties. Newyork: Columbia University Press, 1987.
    [97] Botstein D, White R L, Skolnick M. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32(3): 314~331.
    [98] Takezaki N, Nei M. Genetic distance and reconstruction of phylogenetic trees from microsatellite DNA. Geneties, 1996, 144: 389~399.
    [99]刘铸.大鸨东方亚种遗传多样性的分析:[硕士学位论文].哈尔滨:东北林业大学,2006.
    [100]林芳君.白颈长尾雉遗传学分析及性别偏倚扩散研究:[硕士学位论文].杭州:浙江大学,2010.
    [101] MeiTing W, YuCheng H, ChengTe Y. Isolation and characterization of 12 tetranucleotide repeat microsatellite loci from the green-backed tit (Parus monticolus). Molecular Ecology Notes, 2005, 5: 439~442.
    [102] Katsura M K. Isolation of polymorphic microsatellite markers in the great tit (Parus major minor). Molecular Ecology Notes, 2003, 3: 314~315.
    [103] Nicolás M S, Eva B, Tilman E K,et al. Phylogeography and genetic structure of the canarian common chaffinch (Fringilla coelebs) inferred with mt DNA and microsatellite loci. Molecular Phylogeneties and Evolution, 2009, 53: 556~564.
    [104] Ardren W R. Inheritanee of 12 microsatellite loci in oncorhynehus mykiss. Journal of Heredity, 1999, 90: 529~536.
    [105] Paxron R J. Mtingstrueture and nestmate relatedness in a eonnuunal bee, Andrenajacobi (HyenoPtera, Andrenidae). Molecular Ecology, 1996, 5: 511~519.
    [106] Flagstad O, Syvertsen P O, Stenseth N C, et al. Genetic varibaility in Swayne′s hartebeest, an endanged antelope of ethiopia. Conserv Biol, 2000, 14: 254~264.
    [107] Waits L, Tbaerlet P, Swneson J E, et al. Nuclear DNA microsatellite analysis of genetic diversity and gene flow in the Scandinavian brown bear(Ursus arctos). Mol Evol, 2000, 9: 421~4 31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700