辽东湾斑海豹MHC-DQB基因的遗传多样性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东湾斑海豹(Phoca largha)是惟一一种能在我国海域繁殖的鳍足类动物,在《国家重点保护野生动物名录》中被列为国家Ⅱ级保护动物,其分布区域位于世界上8个繁殖区的最南端,已经与其他繁殖区域的斑海豹产生一定程度的隔离。辽东湾斑海豹数量已不足千头,环境污染、栖息地的破坏和猎捕等加剧了其自然种群数量的下降,种群状况已岌岌可危。虽然对辽东湾斑海豹开展了一定的研究和保护工作,但主要集中在形态结构、习性、分布特征以及人工饲养和繁殖上,大多数保护活动仍然是在缺乏保护遗传学研究的情况下进行的。因此,通过以往的研究不能准确全面的获得其保护遗传学信息。
     主要组织相容性复合体(major histocompatibility complex, MHC)是具高度多样性的核基因,在阐明种群间的变异和适应机制方面更具优越性。通过MHC基因的变异分析,可有效评估种群遗传多样性水平。本文以辽东湾25份斑海豹样本为研究对象,分析了MHC-DQB第二外显子的基因多态性,探讨和评价了其种群遗传多样性水平,及在抵抗疾病和适应环境变化方面的能力和潜在威胁。
     从25份斑海豹样本的270多个克隆中,得到141bp的片段。在这些序列中发现21个变异位点,定义了12个等位基因。氨基酸变异率为25.5%。等位基因之间的遗传距离范围是0.0071~0.1064,平均值为0.0577,不同等位基因之间的碱基差异是1~15bp,平均差异数为8bp,表现出较丰富的遗传多样性。在56条序列中发现13种可疑序列,怀疑是非特异性扩增造成的微卫星序列。
     对核苷酸替代的类型及位点进行分析,发现非同义替换率明显高于同义替换率(平均dN/ds=2.07),由此造成的氨基酸替换集中在肽结合位点PBR附近,表明斑海豹的DQB基因受到强烈的正选择或平衡选择作用。大部分替换的氨基酸和被替换的氨基酸理化性质不同,这种理化性质的改变,可能与它们识别和提呈不同的抗原有关。
     构建的系统发育树及TCS网络图显示,鳍足类MHC基因表现出跨物种进化现象,ds值分析也支持这一结论。斑海豹DQB等位基因分布不平衡,稀有等位基因不成比例,暗示辽东湾斑海豹可能经历过遗传瓶颈效应。
     11个样本出现多于两条等位基因的情况,推测存在基因重复现象。DQB第二外显子包含两个富含GC的区域(即GCi和GCii),含类似X的序列,显示出一种纯粹的重组信号。根据系统发育树、中接网络图、TCS网络图和种群遗传结构分析对斑海豹的位点进行讨论,认为斑海豹的59个等位基因可能来自DQB的两个位点和DRB的一个位点。通过计算各个位点的单倍型多样性、核苷酸多样性和平均核苷酸歧义度等遗传多样性参数,并与其他鳍足类的遗传距离、每个个体所含等位基因数、碱基及氨基酸变异等参数进行比较,发现各个位点的遗传多样性水平较高。通过Tajima'D检验和Fu'Fs检验,以及对非同义替换率与同义替换率进行比较,结果显示,DQB受到正选择的作用。这在一定程度上支持了达尔文的自然选择学说。
     基因重复和每个位点的基因多样性共同作用,使斑海豹MHC表现出丰富的多态性,可以最大限度的适应多变的病原体环境。但是,等位基因分布不平衡,如果稀有等位基因在遗传漂变的作用下在斑海豹种群中消失,将会导致斑海豹多样性的进一步丧失,从而丧失对多样化病原体的抵抗能力。因此,在保护斑海豹生存环境的同时,还必须尽可能多地保护物种的遗传多样性,才能真正达到保护物种的目的。
The largha seal Phoca largha distributing in Liaodong Bay is the only pinniped that breeds in coastal areas of China. It has been listed in Order II under the Wild Animal Protection Law in China. Liaodong Bay is the southern-most end of the eight breeding areas of the largha seals, where the population has few or no genetic exchanges with the ones from the other breeding areas. During to the pollution of coastal waters, loss of habitats, and poaching, the population in Liaodong Bay is estimated to be less than 1000 individuals. The previous studies mainly focus on its morphology, habits, distribution and artificial feeding and breeding, but the conservation is still undertaking without the information on genetic researches.
     The major histocompatibility complex (MHC) is one of the nuclear genes with high degree of diversity, and is significantly useful to clarify the mechanisms of mutation and adaption among populations. The level of genetic diversity can be effectively assessed by the mutation analysis of MHC gene. Therefore, the gene polymorphism of the second exon of MHC-DQB loci obtaining from twenty-five specimens, and the abilities and potential threats in resisting diseases and adapting environment change within this population, was studied.
     141bp nucleotide sequences were extracted from more than 270 clones of the twenty-five largha seals. From the sequences, twenty-one variable sites were found and twelve alleles were defined. The variability was 25.5% at the amino acid level. The nucleotide diversity was from 0.0071 to 0.1064 (average 0.0577), and the base difference was from lbp to 15bp (average 8bp). All these results showed a relatively high level of genetic diversity in this population. Fifty-six questionable sequences with thirteen different length were found, considered to be microsatellite loci caused by non-specific amplification.
     High rate of non-synonymous vs synonymous (dN/ds=2.07) substitution especially in the peptide-binding region (PBR) suggested strong positive selection or balancing selection for maintaining high MHC diversity at the DQB loci. Most physical and chemical properties of the new amino acids translated after nucleotide substitutions were different from those of the original ones, which was interpreted as being relative with identifying and presenting different antigens.
     Phylogenetic dendrogram and TCS network indicated trans-species evolution in the pinniped MHC gene, which was also supported by the ds-value analysis. The imbalanced distribution of DQB alleles and the disproportion of the rare alleles suggested the genetic bottleneck effect in the history.
     Eleven individuals holding more than two alleles suggested duplication of DQB gene. The second exon of DQB contained two GC-rich regions (GCi and GCii) and one X-like sequence, showing a pure signal of gene recombination. Based on the analyses from the phylogenetic dendrogram, median-joining network, TCS network, and genetic structure analysis, it concluded that the fifty-nine alleles of the largha seals may be from two DQB loci and one DRB locus. High level of genetic diversity in every locus was proposed from the parameters of haplotype diversity, nucleotide diversity and average number of nucleotide differences, as well as from comparisons with other pinniped's parameters, viz. pairwise distance, number of alleles in each individual, mutations of the nucleotide and amino acid. The results of Fu'Fs and Tajima'D test, and the comparison between rates of non-synonymous and synonymous substitutions, showed positive selection on DQB, which supported Darwin's theory of natural selection to some extent.
     Gene duplication and genetic diversity per locus work together to make the MHC of the largha seal showing polymorphism, which could adapt sufficiently to the changeable pathogen environments. However, the imbalanced distribution of alleles and the possibility of losing rare alleles in genetic drift would further lead to the loss of the diversity among the populations of the largha seal and the abilities to resist different pathogens in the future. Therefore, the conservation of largha seals should not only focus on their living environments, but also their genetic diversity.
引文
[1]Grant V. The evolution process:A critical study of evolutionary theory. New York:Columbia University Press,1991.
    [2]Haig SH. Molecular contributions to conservation. Ecology,1998,79(2):413~ 425.
    [3]张瑞兰,胡秀敏,组织相容性抗原(HLA)复合体.生物学通报,2001,36(6):12~13.
    [4]Ploegh H, Watts C. Antigen recognition. Current Opinion Immunoogy,1998,10: 57~58.
    [5]O'Brien SJ, Yuhki N. Comparative genome organization of the major histocompatibility complex:lessons from the Felidae. Immunology Review,1994, 167:133~144.
    [6]Watkins DI, Hodi FS, Letvin NL. A primate species with limited major histocompatibility complex class I polymorphism. Proceeding of the National Academy of Sciences of the USA,1988,85:7714.
    [7]Narinder K, Mehra and Gurvinder Kaur. Gene map of the human leukocyte antigen (HLA) region. Expert Reviews in Molecular Medicine,2003,5.
    [8]Janeway CH, Travers P, Hunt S, et al. Immunobiology:The immune system in health and disease. New York:Current Biology Limited,2001:64~88.
    [9]Hughes A, Nei M. Nucleotide substitution at major histocompatibility complex class Ⅱ loci:evidence for overdominant selection. Proceedings of the National Academy of Sciences of the USA,1989,86:958~962.
    [10]Kosuke H, Shin N, Hideyoshi Y, et al. Sequence variation of the DQB allele in the cetacean MHC. Mammal Study,2003,28:89~96.
    [11]Marsh SGE, Parham P, Barber LD.The HLA factsbook. Academic, San Diego, CA,2002.
    [12]杨光,陈旭衍,任文华,等.MHC及其在种群遗传学和保护遗传学中的应用.遗传,2002,24(6):712~714.
    [13]史燕,吴孝兵,晏鹏,等.主要织相容性复合体(MHC)基因的研究概况, 生命科学研究,2003,7(2):1 04~1 09.
    [14]赵德容,刘春祥.哺乳类MHC多态性的形成.国外医学:遗传学分册,1995,18(6):330~332.
    [15]Doherty PC, Zinkernagel.RM. Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature,1975,256:50~52.
    [16]Clarke BC, Kirby DRS. Maintenance of histocompatibility polymorphisms. Nature,1966,211:999~1000.
    [17]Takahata N, Nei M. Allelic genealogy under overdominant and frequency-dependent selection and polymorphism of major histocompatibility complex loci. Genetics,1990,124:967~978.
    [18]Langefors A, Lohm J, Grahn M, et al. Association between major histocompatibility.complex class IIB alleles and resistance to Aeromonas salmonicida in Atlantic salmon. Proceedings of the Royal Society of London, Series B:Biological Sciences,2001,268:479~485.
    [19]Hoelzel AR, Stephens JC, O'Brien SJ. Molecular genetic diversity and evolution at the MHC DQB locus in four species of pinnipeds. Molecular Biology and Evolution,1999,16(5):611.
    [20]Van Der Walt JM, Nel LH, Hoelzel AR. Characterization of major histocompatibility complex DRB diversity in the endemic South African antelope Damaliscus pygargus:a comparison in two subspecies with different demographic histories. Molecular Ecology,2001,10:1679~1688.
    [21]Hedrick PW, Miller PS. Rare alleles, MHC and captive breeding In:Loeschke. Conservation Genetics,1994:187~204.
    [22]张蓓.朱鹮线粒体DNA及MHC Ⅱ类B基因的多态性研究.浙江大学,硕士学位论文,2005.
    [23]王者茂,王丕烈.斑海豹.海洋出版社,1990:95.
    [24]David JR, Kim EW Shelden, Withrow DE. Spotted seals, Phoca largha, in Alaska. Marine Fisheries,1997,59(1):1~17.
    [25]王丕烈.渤海斑海豹的分布调查.水产科学,1988,7(4):7~11.
    [26]陈万青,郑长禄,张起信.海洋哺乳动物.青岛海洋大学出版社,1992:127~128.
    [27]韩家波.中国海域斑海豹种群资源和分子遗传特征研究.中国科学院研究生院,博士学位论文,2009.
    [28]王丕烈,韩家波,马志强.黄渤海斑海豹种群现状调查.野生动物杂志,2008,29(1):29~31.
    [29]董金海,沈峰.辽东湾斑海豹历史种群的估计.海洋科学,1991,15(3):26-30.
    [30]Avise JC, Arnold J, Ball RM, et al. Intraspecific phylogeography:the mitochondrial DNA bridge between population genetics and systematics. Annual Review of Ecology and Evolution,1987,18:489~522.
    [31]韩家波,赫崇波,王强,等.辽东湾斑海豹线粒体ND4、tRNAg、 ND4L和ND3基因序列分析.水产科学,2006,25(10):500-504.
    [32]O'Corry-Crowe GM, Westlake RL. Molecular Investigations of spotted seals (Phoca larhga) and harbor seals (P.vitulina), and their relationships in areas of sympatry. In Molecular Genetics of Marine Mammals. The Society of Marine Mammalogy, Special Publication 3,1997:291~304.
    [33]李响.基于线粒体DNA探究辽东湾斑海豹的遗传多样性.山东大学,硕士学位论文,2007.
    [34]王强.利用线粒体DNA序列分析辽东湾斑海豹的种群遗传结构.辽宁师范大学,硕士学位论文,2006.
    [35]Mizuno AW, Onuma M, Takahashi M, et al. Population genetic structure of the spotted seal Phoca largha along the coast of Hokkaido, based on mitochondrial DNA sequences. Zoological Science,2003,20:783~788.
    [36]Jiang F Zhong, James T Harvey, John T Boothby. Characterization of a harbor seal class I major histocompatability complex cDNA clone. Immunogenetics, 1998,48:422~424.
    [37]Robert W Slade, Craig Moritz, Anita Heideman. Multiple Nuclear-Gene Phylogenies:Application to Pinnipeds and Comparison with a Mitochondrial DNA Gene Phylogeny. Molecular Biology and Evolution,1994,11(3):341~ 356.
    [38]潘星华,傅继梁MHC DQA基因的分子进化研究:Ⅰ:等位基因多态性保持机制及GC含量对基因结构的影响.遗传学报,1997,24(3):196-205.
    [39]潘星华,傅继梁.MHC DQA基因的分子进化研究:Ⅱ:基于核苷酸替换和SCU偏移的系统发育分析.遗传学报,1997,24(5):394-402.
    [40]Yang G, Yan J, Zhou K, et al. Sequence variation and gene duplication at MHC DQB loci of baiji (Lipotes vexillifer), a Chinese river dolphin. Journal of Heredity,2005,96(4):310~317.
    [41]Wang ZM, Wang PL. Spotted seal Phoca largha. Ocean Press, Beijing,2002.
    [42]Hall TA. BioEdit:a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series,1999, 41:95~98.
    [43]Thompson J D, Gibson T J, Plewniak F, et al. The ClustalX Windows Interface: Flexible Strategies for Multiple Sequence Alignment Aided by Quality Analysis Tools. Nucleic Acids Research,1997,25:4876~4882.
    [44]Kumar S, Tamura K, Nei M. MEGA3.1:integrated software for molecular evolutionary genetics analysis. and sequence alignment. Briefings in Bioinformatics,2004,5:150~163.
    [45]Jukes T, Cantor CR. Evolution of protein molecules. In Mamalian Poretein Metabolism. Academic Press, New York,1969:21~132.
    [46]Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and non-synonymous nucleotide substitutions. Molecular Biology and Evolution, 1986,3:418~426.
    [47]Saitou N, Nei M. The neighbor-joining method:a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution,1987,4:406~425.
    [48]Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution,1999,16:37~48.
    [49]Clement M, Derington J, Posada D. TCS:Estimating Gene Geneologies Version 1.13. Brigham,2001.
    [50]Klein J, Bontrop RE, Dawkins RL, et al. Nomenclature for the major histocompatibility complexes of different species:a proposal. Immunogenetics, 1990,31:217~219.
    [51]Takeshi fujita, Masaharu Kiyama. Identification of DNA polymorphism by Asymmetric-PCR SSCP. Biotechniques,1995,19:532~534.
    [52]Sommer S, Schwab D, Ganrhorn JU. MHC diversity of endemic Malagasy rodents in relation to geographic range and social system. Behavioral Ecology and Sociobiology,2002,51:214~221.
    [53]Joelle GB, Christiane D, Galmiel G, et al. Allelic diversity at the Mhc-DQA locus of woodmouse populations (Apodemus sylvaticus) present in the islands and mainland of the northern Mediterranean. Global Ecology and Biogeography, 2005,14:115~122.
    [54]刘莹莹.渤海和北部黄海海域江豚MHC-DQB第二外元遗传多态性分析.山东大学,硕士学位论文,2009.
    [55]Baker CS, Vant MD, Dalebout ML, et al. Diversity and duplication of DQB and DRB-like genes of the MHC in baleen whales (suborder:Mysticeti). Immunogenetics,2006,58:283~296.
    [56]Yan J,.Yang G, Zhou KY, et al. Sequence variation at exon 2 of the major histocompatibility complex DQB1-like locus in the Baiji, Acta zoological sinica, 2003,49(4):501~507. [In Chinese with English summary]
    [57]李华.中国猪种SLA-DQB基因外显子2的遗传多样性及进化机制研究.四川大学,博士学位论文,2002.
    [58]Maho Akamatsu. A highly repeated sequence in the domestic pig:a gender-neutral probe. Nucleic Acids Research,1989,17(23):10~20.
    [59]Abbari K, Bernardi G.CpG doublets, CpG islands and Alu repeat elements in long human DNA sequences from different isochores families. Gene,1998, 224(1~2):123~128.
    [60]Galtier N, Piganeau G, Mouchiroud D, et al. GC-content evolution in mammalian genomes:the biased gene conversion hypothesis. Genetics,2001,159(2):907~ 911.
    [61]陈祥贵,胡军,杨潇.人类蛋白编码基因局部GC水平相关性分析.遗传,2008,30(9):1169~1174.
    [62]Huynen MA, Konings DA, Hogeweg P. Equal G and C contents in histone genes indicates selection pressures on mRNA secondary structure. Molecular Evolution, 1992,34:280~291.
    [63]石秀凡,黄京飞,柳树群,等.人类基因同义密码子偏好的特征以及与基因GC含量的关系.生物化学与生物物理进展,2002,29(3):411~414.
    [64]Urrutia AO, Hurst LD. Codon usage bias covaries with expression breadth and the rate of synonymous evolution in humans, but this is not evidence for selection. Genetics,2001,159(3):1191~1199.
    [65]Sueoka N, Kawanishi Y. DNA G+C content of the third codon position and codon usage biases of human genes. Gene,2000,261 (1):53~62.
    [66]Epstein RJ, Lin K, Tan TW. A functional significance for codon third bases. Gene,2000,245(2):291~298.
    [67]Rodriguez-Trelles F, Tarrio R, Ayala FJ. Convergent neofunctionalization by positive Darwinian selection after ancient recurrent duplications of the xanthine dehydrogenase gene. Proceedings of the National Academy of Sciences,2003, 100(23):13413~13417.
    [68]Nei M. Gene duplication and nucleotide substitution in evolution. Nature,1969, 221:40~42.
    [69]Ohno S. Evolution by Gene Duplication. New York, Springer-Verlag.1970.
    [70]Fraser CM, Norris SJ, Weinstock GM, et al. Complete genome sequence of treponema pallidum, the syphilis spirochete. Science,1998,281(17):375~388.
    [71]彭贵子,陈玲玲,田大成.基因重复的研究进展.遗传,2006,28(7):886~891.
    [72]Hughes AL, Nei M. Pattern of nucleotide substitution at major histocompatibility complex class I loci reveals over dominant selection. Nature,1988,335:167~ 170.
    [73]吴东东,张亚平.人类群体中的达尔文正选择.科学通报,2008,53(7): 737-746.
    [74]van Valen L. A new evolutionary law. Evolutionary Theory,1973,1:1~30.
    [75]Zhang J, Webb D M. Rapid evolution of primate antiviral enzyme APOBEC3G. Human Molecular Genetics,2004,13:1785~1791.
    [76]Sabeti P C, Walsh E, Schaffner S F, et al. The case for selection at CCR5-△32. PLoS Biology,2005,3:378.
    [77]莫墩洲.中国水域中华白海豚的遗传多样性研究.中山大学,硕士学位论文,2006.
    [78]Austin L, Hughes, et al. Nucleotide substitution at major histocompatibility complex class Ⅱ loci:evidence for overdominant selection. Proceedings of the National Academy of Sciences,1989,86:958~962.
    [79]Klein J. Origin of major histocompatibility complexes polymorphism:the trans-species hypothesis. Human Immunology,1987,19:155~162.
    [80]Klein J, Sato A, Nagl S, et al. Molecular trans-species polymorphism. Annual Review of Ecology and Systematics,1998,29:1~21.
    [81]Yeager M, kumar S, Hughes AL. Sequence convergence in the peptide-binding region of primate and rodent MHC class I b molecules. Molecular Biology and Evolution,1997,14:1035~1041.
    [82]孙鹏.江豚MHC-DQB座位第二外元序列变异分析.南京师范大学,硕士学.位论文,2006.
    [83]Aguilar A, Roemer G, Debenllam S, et al. High MHC diversity Maintained by balancing selection in an otherwise genetically nonomorphic mammal. Proceedings of the National Academy of Sciences of the United States of America,2004,101:3490~3494.
    [84]Reed DH, Frankham R. How closely correlated are molecular and quantitative measures of genetic variation? A meta-analysis. Evolution.2001,55:1095~ 1103.
    [85]Hoelzel AR, Campagna C, Arnbom T. Genetic and morphometric differentiation between island and mainland southern elephant seal populations. Proceedings of the Royal Society B,2001,268:325~332.
    [86]Luikart G L, Allendorf F W, Cornuet J M, et al. Distortion of allele frequency distribution provides a test for recent population bottlenecks. Journal of Heredity, 1998,89:238~247.
    [87]Excoffier L, Laval G, Schneider S. Arlequin version 3:an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online,2005,1:47~50.
    [88]Excoffier L, Smouse P, Quattro J. Analysis of molecular variance inferred from metric distances among DNA haplotypes:application to human mitochondrial DNA restriction data..Genetics,1992,131,479~491.
    [89]Wright S. Evolution and Genetics of Populations, Vol. IV, Variability within and among natural populations. University of Chicago Press, Chicago, IL,1978.
    [90]Rozas J, Sanche-DelBarrio JC, Messeguer X, et al. DnaSP, DNA polymorphism analyses by the coalescent and other methods. Bioinformatics,2003,19:2496~ 2497.
    [91]武大林,丁红,张泓.Taq DNA聚合酶导致HLA-DRB、DQB DNA分型错误一例.中国输血杂志,2001,14(5):291-292.
    [92]Kimura M. Evolutionary rate at the molecular level. Nature,1968,217:624~ 626.
    [93]林栲,李海鹏.DNA水平上检测正选择的方法.遗传,2009,31(9):1~8.
    [94]周琦,王文.DNA水平自然选择作用的检测.动物学研究,2004,25(1):73~80.
    [95]Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics,1989,123:585~595.
    [96]Bamshad M, Wooding S. Signature of natural selection in the human genome. Nature Reviews Genetics,2003,4:99~111.
    [97]Fu YX, Li WH. Statistical tests of neutrality of mutations. Genetics,1993,133: 693~709
    [98]Fu YX. New statistical tests of neutrality for DNA samples from a population. Genetics,1996,143:557~570.
    [99]Ewens W J. The sampling theory of selectively neutral alleles. Theoretical Population Biology,1972,3:87~112.
    [100]Cole RK. Studies on the genetic resistance to Marek's diease. Avian Diseases, 1968,12:9~28.
    [101]Murray BW, Malik S, White BN. Sequence variation at the major histocompatibility complex locus DQB in beluga whales(Delphinapterus leucas). Molecular Biology and Evolution,1995,12:582~593.
    [102]Gyllensten UB, Lashkari D, Erlich HA. Allelic diversification at the class II DQB locus of the mammalian major histocompatibility complex. Proceedings of the National Academy of Sciences of the USA,1990,87:1835-1839.
    [103]Kanai T H, Tanioka Y, Tanigawa M, et al. Allelic diversity at class II DRB1 and DQB loci of the pig MHC (SLA). Immumogenetics,1999,50(5~6):295~ 300.
    [104]Brown JH, Jardetzhy TS, Gorga JC, et al. Three-dimensional structure of the human class II histocompatibility antigen HLA-DR1. Nature,1993,332:845~ 850.
    [105]朱亮.大熊猫主要组织相容性复合体Ⅱ类基因研究.浙江大学,博士学位论文,2006.
    [106]赫崇波,高祥刚,孙凡越,等.辽东湾斑海豹遗传多样性的AFLP分析.生物技术通报,2008(增刊):347~351.
    [107]Theresa M Burg, Andrew W Trites, Michael J Smith. Mitochondrial and microsatellite DNA analysis of harbour seal population structure in the northeast Pacific Ocean. Canaddian Journal of Zoology,1999,77(6):930~943.
    [108]Frankham R, Ballou JD, Briscoe DA. Introduction to conservation genetics. Cambridge:Cambridge University Press,2002.
    [109]张婷.MHC及其在动物遗传与育种方面的应用.贵州畜牧兽医,2008,32(3):29~31.
    [110]Mainguy J, Worley K, Cote S D, et al. Low MHC DRB class Ⅱ diversity in the mountain goat:past bottlenecks and possible role of pathogens and parasites. Conservation Genetics,2007,8:885~8911.
    [111]李波.梅花鹿(Cervus nippon)MHC-DRB基因多态性及其与产茸性能关系的研究,2003.
    [112]陶翠花.威海仿刺参野生种群遗传多样性分析.山东大学,硕士学位论文,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700