去甲斑蝥素诱导肿瘤细胞凋亡的机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文对去甲斑蝥素体外抗肿瘤活性进行了较为系统的研究,主要阐述了去甲斑蝥素在三种肿瘤细胞:人黑色素瘤A375-S2细胞,人宫颈癌HeLa细胞,小鼠纤维瘤L929细胞中诱导细胞死亡的机制。
     实验结果表明去甲斑蝥素对A375-S2、L929和HeLa细胞均具有明显的细胞毒活性,抑制细胞生长呈明显的时间和剂量依赖性。形态学方法、核荧光染色、DNA片段化分析、及LDH活力分析实验证实了去甲斑蝥素诱导A375-S2、L929和HeLa细胞死亡通过诱导细胞凋亡的机制。
     去甲斑蝥素诱导A375-S2细胞凋亡的信号转导途径中多种基因、蛋白酶以及各种激酶参与了凋亡的调控。Bcl-2/Bax或Bcl-x_L/Bax的蛋白表达比率在给药后明显降低,促进了细胞色素c的释放,进而激活了caLspase-9,caspase-9的激活引发了caspase的级联反应,导致下游的caspase-3的激活,caspase-3切开ICAD和CAD的复合物,释放的CAD切断DNA致使核基质崩塌导致细胞凋亡。同时,去甲斑蝥素诱发了p38和JNK激酶的激活,蛋白激酶C在去甲斑蝥素激活MAPK过程中起重要的调节作用。
     去甲斑蝥素作用L929细胞后,caspase家族抑制剂不抑制去甲斑蝥素诱导L929细胞的死亡,而促进L929细胞对去甲斑蝥素的敏感性,但caspase-3抑制剂可时间、剂量依赖性的抑制去甲斑蝥素对L929细胞的作用。去甲斑蝥素作用24h后PARP蛋白发生降解,即激活成有活性的片断,同时ICAD也发生了降解。60μmol/L去甲斑蝥素作用细胞12h时Bax与Bel-2的表达比率开始升高,在24,36h时非常明显,而Bcl-2家族另一抗凋亡蛋白Bcl-x_L表达在36h表达降低,同时PKC抑制剂staurosporine可抑制去甲斑蝥素诱导的Bcl-x_L表达的降低,而对Bax和Bcl-2蛋白表达影响较弱;MAPK家族中ERK和JNK蛋白的激活参与了去甲斑蝥素对L929细胞的作用,而p38蛋白的激活较弱;60μmol/L去甲斑蝥素处理L929细胞,随着作用时间的增加,p53蛋白的磷酸化增加,P13-K的抑制剂wortmannin在12h时有效抑制了p53的激活,提示P13-K参与了去甲斑蝥素对L929细胞中p53激活的调控。
     在去甲斑蝥素诱导HeLa细胞凋亡的过程中,激活了caspase-8,caspase-8的激活引发了caspase的级联反应,导致下游的caspase-3的激活,caspase-3裂解ICAD和CAD的复合物,释放的CAD切断DNA致使核基质崩塌导致细胞凋亡。去甲斑蝥素
This dissertation reports that norcantharidin (NCTD) induced cell death through different mechanisms in A375-S2, HeLa, and L929 cells.
    The studies demonstrate that NCTD inhibited the proliferation of human melanoma A375-S2, mouse fibrosarcoma L929 and human cervical HeLa cells in a dose- and time-dependent manner. MTT assay, photomicroscopical observation and DNA agarose gel electrophoresis showed that NCTD induced cell apoptosis in A375-S2, L929 and HeLa cells.
    In NCTD-treated A375-S2 cells, cysteine aspartic specific proteases: caspase-3 and -9 were activated, and the expression of ICAD and PARP was decreased in a time-dependent manner. NCTD increased the expression of the apoptosis inducer, Bax, decreased the expression of the anti-apoptotic protein, Bcl-xL and Bcl-2, promoted the release of cytochrome c, and activated down-stream caspase-9 in mitochondrial apoptotic pathway. The change of Bcl-2/Bax or Bcl-xL/Bax expression was reversed by caspase-3 inhibitor, and caspase-3 inhibitor had no significant effect on the release of cytochrom c. These observations indicated that appropriate dose of NCTD activated the mitochondrial apoptotic pathway that involved the Bcl-2 family including Bcl-2, Bcl-xL and Bax. At the same time, the participation of caspase-9 and caspase-3 was required in this apoptotic pathway. The activity of caspase-8 increased at 28 h and suggested that caspase-8 was involved in the later stage of apoptosis. The inhibitory effect of NCTD on A375-S2 cells was partially reversed by the inhibitors of MAPK inhibitors and PKC inhibitors. The expression of JNK phosphorylation and p38 phosphorylation was increased after treatment with NCTD and the inhibitor of JNK and p38 had significant inhibitory effects on the protein up-regulation of phosphorylated JNK and p38 expression. Simultaneously, PKC family-inhibitor, staurosporine, blocked the up-regulation of phosphorylated JNK and phosphorylated p38 and had little effect on the ERK expression. Taken together, NCTD induced A375-S2 cell apoptosis by activating JNK and p38 pathways, increasing the ratio of Bax/Bcl-xL or Bax/Bcl-2 protein expression, and promoting the release of cytochrome c
引文
[1] 彭黎明,王曾礼.细胞凋亡的基础与临床.北京:人民卫生出版社 2000,1—285.
    [2] 姜泊.细胞凋亡的基础与临床.北京:人民卫生出版社 1999,1—25.
    [3] 郑德先.细胞凋亡的研究进展.中华病理学杂志 1996,25:50-53.
    [4] 张志文.细胞程序性死亡与细胞凋亡可互换使用吗.生理科学进展 1996,27:297—302.
    [5] 苏长青,龚西渝.细胞凋亡的形态特点及生物学意义.临床与实验病理学杂志 1996,12:346-348.
    [6] Majno G, Joris I. Apoptosis, oncosis, and necrosis, An overview of cell death. Am J Pathol 1995,146 : 3-15.
    [7] 彭黎明.吞噬细胞对凋亡细胞的识别与吞噬.中华病理学杂志 1999,28:304-306.
    [8] Nagata S. Apoptotic DNA fragmentation. Exp Cell Res 2000, 10:12-18.
    [9] Cohen GM. Caspase: the executioners ofapoptosis. Biochem J 1997, 326:1-16.
    [10] Villa P, Kaufmann SH, Eamshaw WC. Caspase and caspase inhibitors. Trend Biochem Sci 1997, 22:388-393.
    [11] Stennicke HR, Saivesen S. Properties of the caspases. Biochimica et giophysica Acta 1998, 1387:17-31.
    [12] Salvesen GS, Dixit VM. Caspase: intracellular signaling by proteolysis. Cell 1997, 91: 443-446.
    [13] Takahashi A, Earnshaw WC. ICE-related proteases in apoptosis. Curr Opin Gene Dev 1996, 6:50-55.
    [14] Enari M, Sakahira H, Yokoyama H, et al. A caspase-activated Dnase that degrades DNA during apoptois, and inhibitor ICAD. Nature 1998, 391:43-50.
    [15] Yang J, Liu XS, Bhalla K, et al. Prevention of apoptosis by Bcl-2: release of cytochrome c from mitochondria blocked. Science 1997, 275:1129-1132.
    [16] Henartner MO. Death cycle and Swiss army knives. Nature 1998, 391: 441-442.
    [17] Koseki T, Inohara N, Chert s, et al. ARC, an inhibitor of apoptosis expressed in skeletal muscle and heart that interacts selectively with easpase. Pro Natl Acad Sci USA 1998, 95:5156-5160.
    [18] Raft M. Cell suicide for beginners. Nature 1998, 396:119-122.
    [19] Deveraux QL Takahashi R, Salvesen GS, et al. X-liked lAP is a direct inhibitor of cell-death proteases. Nature 1997, 388: 300-304.
    [20] Kroemer G. The proto-oncogene Bcl-2 and its role in regulating apoptosis. Nat Med 1997, 3: 614-619.
    [21] Green DR, Reed JC. Mitochondria and apoptosis. Science 1998, 281: 1309-1311.
    [22] Grooss A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 1999, 13: 1899-1911.
    [23] Joza N. Essential role of the mitoehondrial apoptosis-inducing factor in programmed cell death. Nature 2001, 410: 549-554.
    [24] Harris MH, Thompson CB. The role of the Bcl-2 family in the regulation of outer mitochondrial membrane permeability. Cell Death Differ 2000, 7:1182-1191.
    [25] Shi Y. A structural view of mitochondria-mediated apoptosis. Nat Struct Biol 2001, 8: 394-401.
    [26] Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994, 124: 1-6.
    [27] Yinn XM, Oltval ZN, Korsmeyer SJ. BH1 and BH2 domains of bcl-2 are required for inhibition of apoptosis and heterodimerization with bax. Nature 1994, 369:321-323.
    [28] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelerates programmed cell death. Cell 1993, 74:609-619.
    [29] Sedlak TW, Oltvai ZN, Yang E, et al. Multiple bcl-2 family members demonstrate selective dimerizations with bax. Proc Natl Acad Sci 1995, 92:7834-7838.
    [30] Yang E, Zha J, Jockel J, et al. Bad, a heterodimeric partner for Bci-xL and bcl-2, displaces bax and promotes cell death. Cell 1995, 80:285-291.
    [31] Wang K, Yin XM, Chao DT, et al. BID:a novel BH3 domain-only death agonist. Genes Dev 1996, 10:2859-2869.
    [32] Zha JP, Harada H, Osipov K, et al. BH3 domain of BAD is required for heterodimerization with Bel-xL and pro-apoptotic activity. J Biol Chem 1997, 272:24101-24104.
    [33] Adams JM, Cory S. The bcl-2 protein family: arbiters of cell survival. Science 1998, 281:1322-1326.
    [34] Korsmeyer SJ. Bcl-2 gene family and the regulation of programmed cell death. Cancer Res 1999, 59:1693-1700.
    [35] Haldar S, Basu A, Croee CM. Bcl-2 is the guardian of microtubule integrity. Cancer Res 1997, 57:229-233.
    [36] Vander Heiden MG, Thompson CB. Bel-2 proteins: regulators of apoptosis or of mitoehondrial homeostasis? Nat Cell Biol 1999, 1 : E209-216
    [37] Wei HF, Wei WL, Bredesen DE, et al. Bcl-2 protects against apoptosis in neuronal cell line caused by thapsigargin-indueed depletion of intraeellular calcium stores. J Neurochem 1998; 70:2305-2314
    [38] Reynolds J, Eastman A. Intraeellular calcium stores are not required for Bcl-2-mediated protection from apoptosis. J Biol Chem 1996, 271:27739-27743
    [39] 李莉.Bcl-2与细胞凋亡.国外医学临床生物化学与检验学分册 1999,20:272-274
    [40] Huang G., Ma WY, Maxiner A, et al. p38 Kinase Mediates UV-indueed Phosphorylation of p53 Protein at Serine 389. J Biol Chem 1999, 274: 12229-12235.
    [41] Keller D, Zeng X, Li X, et al. The p38MAPK inhibitor SB203580 alleviates ultraviolet-induced phosphorylation at serine 389 but not serine 15 and activation of p53. Biochem Biophys Res Commun 1999, 261: 464-471.
    [42] Persons DL, Yazlovitskaya EM and Pelling JC. Effect of extracellular signal-regulated kinase on p53 accumulation in response to cisplatin. J Biol Chem 2000; 275: 35778-35785.
    [43] Petraehe I, Choi ME, Otterbein LE, et al. Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. Am J Physiol 1999, 277: L589-L595.
    [44] Yu C, Wang S, Dent P, et al. Sequence-dependent potentiation of paclitaxel-mediated apoptosis in human leukemia cells by inhibitors of the mitogen-activated protein kinase kinase/mitogen-activated protein kinase pathway. Mol Pharmacol 2001, 60: 143-154.
    [45] Suzuki K, Hino M, Kutsuna H, et aL Selective activation of p38 mitogen-aetivated protein kinase cascade in human neutrophils stimulated by IL-lbeta. J Immunol 2001, 167:5940-5947.
    [46] Yang SE, Hsieh MT, Tsai TH, et al. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003; 138:193-201
    [47] Davis RJ. The mitogen-aetivated protein kinase signal transduction pathway. J Biol Chem 1993, 268: 14553-14556.
    [48] MacKcigan JP, Collins TS, Ting JP. MEK inhibition enhances paclitaxel-induced tumor apoptosis. JBiol Chem 2000, 275: 38953-38956.
    [49] Wang XT, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000, 275: 39435-39443.
    [50] ParK JM, Greten FR, Li ZW, et al. Maerophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Sicence 2002, 297:2048-2051.
    [51] 金伯泉.细胞和分子免疫学.北京:科学出版社 2001,557-559.
    [52] Besson A, Yong VW. Involvement of p21~(wafl/cipl) in protein kinase C alpha-induced cell cycle progression, Mol Cell Biol2000, 20: 4580-4590.
    [53] Rocha AB, Mans DRA, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignat gliomas? Oncologist 2002, 7:17-33.
    [54] Vrana JA, Grant S. Synergistic induction of apoptosis in human leukemia cells (U937) exposed to bryostatin-1 and the proteasome inhibitor lactacystin involves dysregulation of the PKC/MAPK cascade. Blood 2001, 97:2105-2114.
    [55] Zhuang S, Hirai S, Mizuno K, et al. Involvement of protein kinase C in the activation of extracellular signal-regulated kinase 1/2 by UVC irradiation. Biochem Biophys Res Commun 1997, 240:273-278.
    [56] Barrett CM, Lewis FL, Roaten JB, et al. Novel extranuclear-target anthracyclines override the antiapoptotic functions of Bcl-2 and target protein kinase C pathways to induce apoptosis. Mol Cancer Then 2002, 1:469-481.
    [57] Ganeshaguru K, Wickeremasinghe RG, Jones DT, et al. Action of the selective protein kinase C inhibitor PKC412 on B-chronic lymphocytic leukemia cells in vitro. Haematologia 2002, 87:167-176.
    [58] Karpinich NO, Tafani M, Rothman RJ, et al. The course of etoposide-induced apoptosis from damage to DNA and p53 activation to mitochondrial release of cytochrome c. J Biol Chem. 2002, 277:16547-16552.
    [59] Somasundaram K. Tumor suppressor p53: regulation and function. Front Biosci 2001, 5: D424-437.
    [60] Nakazawa Y, Kamijo T, Koike K, et al. ARF tumor suppressor induces mitochondria-dependent apoptosis by modulation of mitochondrial Bcl-2 .family proteins. J Biol Chem 2003, 278:27888-28795.
    [61] Chipuk JE, Kuwana T, Bouehier-Hayes L, et al. Direct Activation of Bax by p53 mediates mitoehondrial membrane permeabilization and apoptosis. Science 2004, 303:1010-1014.
    [62] Miyashita T and Reed JC. Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell. 1995, 80: 293-299.
    [63] Lukianova NI, Kulik GL, Chehun VF. Role of the p53 and bei-2 genes in apoptosis and drug resistance of tumors. Vopr Onkol, 2000, 46:121-128.
    [64] Desagher S, Martinou JC. Mitoehondria as the central control point of apoptosis, trends in Cell Biol 2000, 10:369-377.
    [65] Sehendel SL Azmov R, Pawlowskiet K, et al. Ion channel activity of the BH3 only Bcl-2 family member, BID. J biol Chem 1999, 274:21932-21936.
    [66] Shimizu S, Narita M, Tsujimoto Y. Bcl-2 family proteins regulate the release of apoptogenic eytoehrome c by the mitoehondrial channel VDAC..Nature 1999, 3999:483-487.
    [67] 金伯泉.细胞和分子免疫学.北京:科学出版社,2001,705-706
    [68] Nagata S. Apoptosis by death factor. Cell 1997, 88:356-365.
    [69] Arch RH, Gedrich RW, Thompson CB. Tumor necrosis factor receptor-associated factors(TRAFs)-a family of adapter proteins that regulates life and death. Genes Dev 1998,12:2821-2830.
    [70] Wang CY, Mayo MW, Komelok RG, et al. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress easpase-8 activation. Science 1998, 281:1680-1683.
    [71] Walezak H, Miller RE, Ariail K, et al. Tumoricidal activity of tumor necrosis factor-related apoptosis-incucing ligand in vivo. Nat Med 1999, 5:157-163.
    [72] Ashkenazi, A. Death receptors: signaling and modulation. Science 1998, 281:1305-1308.
    [73] Baker, S. Modulation of life and death by the TNF receptor superfamily. Oncogene 1998, 17: 3261-3270.
    [74] Li, H. Cleavage of BID by Caspase 8 mediates the mitochondrial damage in the Fas pathway of apoptosis. Cell 1998, 94:491-501.
    [75] Orlinick, JR., Vaishnaw, AK. Elkon, KB. Structure and function of Fas/Fas ligand, lnt Rev lmmunol 1999, 18: 293-308.
    [76] 金伯泉.细胞和分子免疫学.北京:科学出版社,2001,691-694.
    [77] 董志勇.新世纪肿瘤防治的目.中华肿瘤杂志,2002,24:311-312.
    [78] 马丁,周剑峰.肿瘤基因临床产品研发的国外现状及评论.中华肿瘤杂志,2003,25:1-2.
    [79] Li YM, Casida JE. Catharidin-biding protein: indetification as protein phosphatase 2A. Proc. Natl Acad Sci USA 1992, 89: 11867-11870.
    [80] Taylor BK, Stoops TD, Everett AD. Protein phosphatase inhibitors arrest cycle and reduce branching porphogenesis in fetal rat lung cultures. Am. J Phisiol. Lung Cell Mol Physiol 2000, 278: L1062-L1070.
    [81] Wang GS. Medical uses of mylabris in ancient China and recent studies. J Ethnopharmacol 1989, 26: 147-162.
    [82] 郭建芬,李广元,翁其亮,等.去甲斑蝥素在体外对白血病细胞核酸和蛋白质合成的影响.西安医科大学学报 1994;15:227-229.
    [83] 刘飞,黄树模,王广生.去甲斑蝥素抗癌作用的分子机理研究.南通医学院学报 1991,11:285-289.
    [84] 连慕兰,孙骏奇,徐淑惠,等.去甲斑蝥酸钠盐干扰细胞有丝分裂的机制.解剖学报 1991,22:286-291.
    [85] 连慕兰,徐淑惠,曾长青,等.去甲斑蝥酸钠对CHO、HeLa和小儿包皮细胞的杀伤效应.解剖学报 1991.22:279-285.
    [86] Yi SN, Wass J, Vincent P, et al. Inhibitory effect of norcanthridin on K562 human myeloid leukemia cells in vitro. Leukemia Res 1991, 15: 883-886.
    [87] Li YM, Casida JE. Protein phosphatase 2A and its[~3H] cathaddin/[~3H] endothall thioanhydride binding site. Biochem Pharmacol 1993, 46: 1435-1443.
    [88] Liu XH, Blazsek I, Comisso M, et al. Effects of norcantharidin, a protein phosphatase type-2A inhibitor, an the growth of normal and malignant haemopoietic cells. EJC 1995, 31A: 953-963.
    [89] Hong CY, Huang AC, Lin SK, et al. Norcantharidin-induced post-G2/M apoptosis is dependent on wild-type p53 gene. Biochem Biophy Res Commun 2000, 276: 278-285.
    [90] 刘晓兰,陈家旭,刘燕,等.去甲斑蝥素诱导HL60细胞凋亡的研究.北京中医药大学学报 2000,23:35-38.
    [91] 孙震晓,魏育林,赵天德,等.斑蝥素及去甲斑蝥素诱导人红白血病K562细胞凋亡的细胞 学研究.解剖学报 2000,31:56-60.
    [92] 戎煜,粱福佑,陈莉,等.去甲斑蝥素对人乳腺癌细胞系的凋亡诱导作用及bcl-2基因的表达.癌症 2000,19:1077-1081.
    [93] 孙震晓,赵天德,魏育林,等.去甲斑蝥素诱导人肝癌BEL-7402细胞凋亡的研究.解剖学报 1999,30:65-68.
    [94] 戴书静,王继峰,莫日根,等.去甲斑蝥素增强Bel 7402中IκBα表达和抑制细胞增殖的研究.解剖学报 2001,32:155-158.
    [95] Peng F, Wei YQ, Yang TL, et aL Induction of apoptosis by norcantharidin in human colorectal carcinoma cell lines: involvement of the CD95 receptor/ ligand. Cancer Res Clin Oncol 2002, 128: 223-230.
    [96] Chen YN, Cheng CC, Chen JC, et al. Norcantharidin-induced apoptosis is via the extracellular signal-regulated kinase and c-Jun-NH2-terminal kinase signaling pathways in human hepatoma HepG2 cells. British J Pharmacol 2003, 140: 461-470.
    [97] Liu XH, Bravo CA, Breard J, et al. Norcantharidin directly augments in vitro the cytotoxic potentials of human peripheral blood iymphocytes. Int J Immunother 1991, 7: 37-42.
    [98] Liu XH, Blazsek I, Breard J, et al. Elliptinium, norcantharidin and terachiordecaoxide incombined chemoimmunotherapy prolong the survival of friend-virus-infected mice. Drugs Exp Clin Res 1991, 12: 419-422.
    [99] Yan MS, Xiue B, Wei LX, et al. The preliminary observation on immunosuppressive effect of norcantharidin in mice. Immunopharmacol Immunotoxicol 1993, 15: 79-85.
    [100] 王广生,董成,张贺忠,等.去甲斑蝥素升高白细胞作用的研究.药学通报 1987,22:517-519.
    [101] 易受南,李美芬,孙骏奇,等.去甲斑蝥酸钠增加白细胞机制初探.湖南医学院学报 1988,13:327-330.
    [102] 王广生,仲怀玉,黄谨逵,等.去甲斑蝥素治疗原发性肝癌244例.药学通报 1986,21:90-93.
    [103] 赵悦友,杨洪业,刘桂仙,等.去甲斑蝥素联合化疗治疗中晚期肝癌.中国肿瘤临床与康复 1997,4:75-75.
    [104] 刘安,单德琴.肝复乐与去甲斑蝥素联用治疗中晚期肝癌.内蒙古中医药 1998,17:6-6.
    [105] 杨敏一,梁宝英,余清平,等.去甲斑蝥素治疗原发性肝癌45例1年随访观察.实用内科杂 志 1990,10:25-25.
    [106] 杨敏一,吴真,梁宝英,等.去甲斑蝥素口服及瘤体中心注射治疗原发性肝癌的临床观察.山东医药工业 1992,11:45-47.
    [107] 杨敏一,梁宝英,余清平,等.B超导向瘤体中心注射去甲斑蝥素治疗中晚期肝癌41例.人民军医 1993,406:44-44.
    [1] Singeltary GE, Blach CM. Malignant melanoma. Clinical oncology. Atlanta: American cancer Society Inc, 1991.
    [2] Lasek W, Wankowicz A, Kuc K, et al. Potentiation of antitumor effects of tumor necrosis factor alpha and interferon gamma by macrophage-colony-stimulating factor in a MmB16 melanoma model in mice. Cancer Immunol Immunother 1995, 40: 315-321.
    [3] Sarin A, Hadid E, Henkart PA. Caspase dependence of target cell damage induced by cytotoxic lymphocytes. J lmmunol 1998, 161: 2810-2816.
    [4] Arakaki N, Kazihara T, Ohnishi T, et al. Hepatocyte growth factor activates the apoptosis signaling pathway by increasing caspase-3 activity of Sarcoma 180 cells. Biochem Biophys Res Commun 1998, 245: 211-5.
    [5] Candra E, Matsunaga K, Fujiwara H, et al. Potent apoptotic effects of saponins from liliaceae plants in L1210 cells. J Pharm Pharmacol 2002, 54: 257-62.
    [6] Kim YM, Talanian RV, Billiar TR. et al. Nitric oxide inhibits apoptosis by perventing increase on caspase-3-1ike activity via two distinct mechanisms. J Biol Chem 1997, 272: 31138-31148.
    [7] Jishy V Souvik C, Apurva S, et al. Inhibition of p38 kinase reveals a TNFa-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol 2001, 166: 6570-6577.
    [8] Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-activated protein kinase cascade in human eutrophils stimulated by IL-1 β. J Immunol 2001, 167: 5940-5947.
    [9] Sambrook J, Fritsch EF, ManiatisT. Molecular cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Press, 1989, 880-898.
    [10] Yang SE, Hsieh MT, Tsai TH, et al. Effector mechanism of magnoloi-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    [11] Charrier. L, Jarry A, Toquet C, et al. Growth phase-dependent expression of ICAD-L/DFF45 modulates the pattern of apoptosis in human colonic cancer cells. Cancer Reseach 2002, 62: 2169-2174.
    [12] Yu SW, Wang H, Poitras MF, et al. Mediation of poly(ADP-ribose) polymerase-l-dependent cell death by apoptosis-inducing factor. Science 2002, 297: 259-263.
    [13] Grooss A, McDonnell JM, Korsmeyer SJ. Bcl-2 family members and the mitochondria in apoptosis. Genes Dev 1999, 13: 1899-1911.
    [14] Wang NS, Unkila MT, Reineks EZ, et al. Transient expression of wild-type or mitochondrially targeted Bcl-2 induces apoptosis, whereas transient expression of endoplasmic reticulum-targeted Bcl-2 is protective against Bax-induced cell death. J Biol Chem 2001, 276: 44117-44128.
    [15] Davis RJ. The mitogen-activatcd protein kinasc signal transduction pathway. J Biol Chem 1993, 268: 14553-14556.
    [16] Punn A, Mockridge JW, Farooqui S, et al. Sustained activation of p42/p44 mitogen-activatcd protein kinase during recovery from stimulated ischaemia mediated adaptive cytoprotection in cardiomyocytes. Biochem J 2000, 350: 330-335.
    [17] MacKcigan JP, Collins TS, Ting JP. MEK inhibition enhances paclitaxel-induced tumor apoptosis. J Biol Chem 2000, 275: 38953-38956.
    [18] Wang XT, Martindale JL, Holbrook NJ. Requirement for ERK activation in cisplatin-induced apoptosis. J Biol Chem 2000, 275: 39435-39443.
    [19] Dent P, Grant S. Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway: potential role in promoting cytotoxic drug action. Clin Cancer Res 2001, 7: 775-783.
    [20] Barrett CM, Lewis FL, Roaten JB, et al. Novel extranuclear-target anthracyclines override the antiapoptotic functions of Bcl-2 and target protein kinase C pathways to induce apoptosis. Mol Cancer Ther 2002, 1: 469-481.
    [21] Rocha AB, Marts DRA, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignat gliomas? Oncologist 2002, 7: 17-33.
    [22] Majno G, Joris I. Apoptosis, oncosis, and necrosis: an over of cell death. Am J Pathol 1995, 146: 3-15.
    [23] Klefstrom J, Verschuren EW, Evan G. c-myc augments the apoptotic activity of cytosolic death recepter signaling proteins by engaging the mitochondrall apoptotic pathway. J Biol chem 2002, 277: 43224-43232.
    [24] Nicholas J., Santos A. S., Eric D. et al Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001, 410: 549-554.
    [25] Decker P, Isenberg D and Muller S. Inhibition of caspase-3-mediated poly(ADP-ribose) polymerase(PARP) apoptotic cleavage by human PARP autoantibodies and effect on cells undergoing apoptosis. J Biol Chem 2000, 275: 9043-9046.
    
    [26] Chen DX, Stetler RA, Cao GD, et al. Characterization of the rat DNA fragmentation factor 35/inhibitor of caspase-activated DNase (Short Form). J Biol Chem 2000, 275: 38508-38517.
    
    [27] Ariza ME,Payne CM, Nelson MA, et al. caspase-3 translocates to the nocleus in melanoma cells undergoing apoptosis. Proc AM Assoc Cancer Res 2000,40: 510-519.
    
    [28] Scorrano L, Oakes SA, Opferman JT, et al. BAX and BAK regulation of endoplasmic reticulum Ca2~+: a control point for apoptosis. Science 2003, 300:135-139.
    
    [29] Kirsch DG, Doseff A, Chau BN, et al. Caspase-3-dependent cleavage of Bcl-2 promotes release of cytochrom c. JBiol chem 1999, 274:21155-21161.
    
    [30] Petrache I, Choi ME, Otterbein LE, et al. Mitogen-activated protein kinase pathway mediates hyperoxia-induced apoptosis in cultured macrophage cells. Am J Physiol 1999,277: L589-L595.
    
    [31] Xia ZG, Dikens M, Raingesud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Science 1995,270: 1336-1341.
    
    [32] Jarvis WD, Fornari FA, Tombes RM, et al. Evidence for involvement of mitogen-activated protein kinase, rather than stress-activated protein kinase, in potentiation of 1- β -D-arabinofuranosylcytosine-inducing apoptosis by interruption of protein kinase C signaling. Mol Pharmaco 1998, 54: 844-856.
    
    [33] Dent P, Grant S. Pharmacologic interruption of the mitogen-activated extracellular-regulated kinase/mitogen-activated protein kinase signal transduction pathway: potential role in promoting cytotoxic drug action. Clin Cancer Res 2001, 7: 775-783.
    [1] Lasek W, Wankowicz A, Kuc K. et al. Potentiation of antitumor effects of tumor necrosis factor alpha and interferon gamma by macrophage-colony-stimulating factor in a MmB16 melanoma model in mice. Cancer Immunol Immunother 1995, 40: 315-321.
    [2] Satin A, Hadid E, Henkart PA. Caspase dependence of target cell damage induced by cytotoxic lymphocytes. J Immunol 1998, 161: 2810-2816.
    [3] Arakaki N, Kazihara T, Ohnishi T, et al. Hepatocyte growth factor activates the apoptosis signaling pathway by increasing caspase-3 activity of Sarcoma 180 cells. Biochem Biophys Res Commun 1998, 245: 211-215.
    [4] Candra E, Matsunaga K, Fujiwara H, et al. Potent apoptotie effects of saponins from liliaceae plants in L1210 cells. J Pharm. Pharmacol 2002, 54: 257-262.
    [5] Kim YM, Talanian RV, Billiar TR. et al. Nitric oxid inhibits apoptosis by perventing increase on caspase-3-1ike activity via two distinct mechanisms, J Biol Chem 1997, 272: 31138-31148.
    [6] Jishy V, Souvik C, Apurva S, et al. Inhibition of p38 kinase reveals a TNFa-mediated, caspase-dependent, apoptotic death pathway in a human myelomonocyte cell line. J Immunol 2001, 166: 6570-6577.
    [7] Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-aetivated protein kinase cascade in human eutrophils stimulated by IL-1 β. J Immunol 2001, 167: 5940-5947.
    [8] Sambrook J, Fritsch EF, ManiatisT. Molecular cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Press, 1989, 880-898.
    [9] Yang SE, Hsieh MT, Tsai TH, et al. Effeetor mechanism of magnolol-indueed apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    [10] Hotz MA, Delbino G, Cytosatic and cytotoxic effects of FST on human promyelocytic HL-60 and lymphcytic molt-4 leukemic cells. Cancer Res 1992, 52: 1530-1535.
    [11] Widmann C, Gibson S, Johnson GL. Caspase-dependent cleavage of signaling proteins during apoptosis. J Biol Chem 1997, 273: 7141-7147.
    [12] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74: 609-619.
    [13] Park JM, Greten FR, Li ZW. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 2002, 297:2048-2051.
    
    [14] Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-activated protein kinase cascade in human eutrophils stimulated by IL-1 P . J Immunol 2001, 167: 5940-5947.
    
    [15] Rocha AB, Mans DRA, Regner A, et al. Targeting protein kinase C: new therapeutic opportunities against high-grade malignat gliomas? Oncologist 2002,7:17-33.
    
    [16] Sabbatini P, McCormick F. Phosphoinositide 3-OH kinase (PI3K) and PKB/Akt delay the onset of p53-mediated, transcriptionally dependent apoptosis. J Biol Chem 1999,274:24263-24269.
    
    [17] Caspari T: How to activate p53. Curr Biol 2000; 10: R315-R317.
    
    [18] Miyashita T and Reed JC: Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995, 80: 293-299.
    
    [19] Narita M, Shimizu S, Ito T, et al. Bax interacts with the permeability transition pore to induce permeability transition and cytochrome c release in isolated mitochondria. Proc Natl Acad. Sci USA 1998,95: 14681-14686.
    
    [20] Goossens V, Stange G, Moens K, et al. Regulation of tumor necrosis factor-induced, mitochondria-and reactive oxygen species-dependent cell death by the electron flux through the electron transport chain complex I. Antioxid Redox Signal 1999, 1: 285-295.
    
    [21] Strelow BA, Bernardo K, Adam-Klages S, et al. Overexpression of acid ceramidase protects from tumor necrosis factor-induced cell death. JExpMed. 2000, 192: 601-611.
    
    [22] Tafani M, Schneider TG, Pastorino JG, et al. Cytochrome c -dependent activation of caspase-3 by tumor necrosis factor requires induction of the mitochondrial permeability transition . Am. J Pathol 2000,156:2111-2121.
    
    [23 ] Hsu LC, Park JM, Zhang KZ, et al. The protein kinase PKR is required for macrophage apoptosis after activation of Toll-like receptor 4. Nature 2004,428: 341-345.
    
    [24] Yang SE, Hsieh MT, Tsai TH et al. Effector mechanism of magnolol-induced apoptosis in human lung squamous carcinoma CH27 cells. Br J Pharmacol 2003, 138: 193-201.
    
    [25] Fang L, Li G, Liu G. et al. p53 induction of heparin-binding EGF-like growth factor counteracts growth suppression through activation of MAPK and PI3K/Akt signalling cascades. EMBO J 2001,20: 1931-1939.
    [1] 章孟珍.宫颈癌研究进展.河南医科大学学报 2001,36:117-120.
    [2] 潘启超,胥彬.肿瘤药理学与化学治疗学.河南医科大学出版社,第二版,2000,2-9.
    [3] Lasek W, Wankowicz A, Kuc K, et al. Potentiation of antitumor effects of tumor necrosis factor alpha and interferon gamma by macrophage-colony-stimulating factor in a MmB16 melanoma model in mice. Cancer Immunol Immunother 1995, 40: 315-321.
    [4] Sarin A, Hadid E, Henkart PA. Caspase dependence of target cell damage induced by cytotoxic lymphocytes. J Immunol 1998, 161: 2810-2816.
    [5] Arakaki N, Kazihara T, Ohnishi T, et al. Hepatocyte growth factor activates the apoptosis signaling pathway by increasing caspase-3 activity of Sarcoma 180 cells. Biochem Biophys Res Commun 1998, 245: 211-215.
    [6] Candra E, Matsunaga K, Fujiwara H, et al. Potent apoptotic effects of saponins from liliaceae plants in L1210 cells. J Pharm Pharmacol 2002, 54: 257-262.
    [7] Kim YM, Talanian RV, Billiar TR. et al. Nitric oxide inhibits apoptosis by perventing increase on caspase-3-like activity via two distinct mechanisms. J Biol Chem 1997, 272: 31138-31148.
    [8] 朱立军,陈学清免疫学常用实验方法.北京:人民军医出版社,2000,251-252.
    [9] Charrier L, Jorry A, Toquet C, et al. Growth phase-dependent expression of ICAD-L/DEF45 modulates the pattern of apoptosis in human colonic cancer cells. Cancer Res 2002, 62: 2169-2172.
    [10] Jishy V, Souvik C, Apurva S, et al. Inhibition of p38 kinase reveals a TNFa-mediated, caspase-dependent, apoptotic death pathway in a human myeiomonocyte cell line. J Immunol 2001, 166: 6570-6577.
    [11] Suzuki K, Hino M, Kutsuna H, et al. Selective activation of p38 mitogen-activated protein kinase cascade in human eutrophils stimulated by IL-1 β. J Immunol 2001, 167: 5940-5947.
    [12] Sambrook J, Fritsch EF, ManiatisT. Molecular cloning: A Laboratory Manual 2nd ed. Cold Spring Harbor Laboratory Press, 1989, 880-898.
    [13] Chen DX, Stetler RA, Cao GD, et al. Characterization of the rat DNA fragmentation factor 35/inhibitor of caspase-activated DNase(Short Form). J Biol Chem 2000, 275: 38508-38517.
    [14] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death. Cell 1993, 74: 609-619.
    [15] Xia Z, Dickens M Raingeaud J, et al. Opposing effects of ERK and JNK-p38 MAP kinases on apoptosis. Sicence 1995, 270: 1326-1331.
    [16] Zhu WD, Zou YZ, Aikawa R, Harada K, Kudoh S, Uozumi H, et al. MAPK superfamily plays an important role in Daunomycin-indueed apoptosis of cardiac myocytes. Circulation 1999, 100: 2100-2107.
    [17] Nicholas J, Santos AS, Eric D, et al Essential role of the mitochondrial apoptosis-inducing factor in programmed cell death. Nature 2001, 410: 549-554.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700