湿容量在烧结混合料制粒工艺中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球经济发展的低迷形势以及国内高增速经济发展的放缓等因素的影响下,中国粗钢产量已经趋近弧顶饱和阶段。为提高企业竞争力,国内钢铁企业对生产质量、工艺技术的关注会越来越高。作为最大物料处理量和最高能耗的冶金工艺过程,高炉炼铁生产环节通过提高工艺操作水平,改善入炉炉料性质等措施达到较好的技术经济效益,仍然具有较强的可行性。在中国目前的高炉炉料结构条件下,烧结矿质量的优劣对高炉生产指标有着决定性的作用。
     混合料的制粒效果决定着烧结料层的透气性和烧结均匀性,从而对烧结矿的产量、质量产生显著的影响。湿容量作为物料的吸水特性参数,其测试数据反映了物料吸水过程的一些重要性质,并与混合料制粒的最佳含水量有直接关系。研究湿容量在优化烧结混合料制粒工艺中的应用具有重要的理论意义与实践价值。本文研究了不同配料条件下加水量对制粒效果的影响,建立了制粒最佳配水量的预测关系式,并分析了原料性质与制粒效果的关系。得出以下结论:
     ①在一定范围内,随混合料含水量的增加制粒的烧结生料层透气性变好,超过某一适宜含水量后料层透气性急剧恶化。即是说在较宽含水量范围内,含水量对混合料透气性指数JPU的影响呈倒“V”型;制粒后3-7mm含量及相应的制粒效率η随含水量的变化有相似的规律。
     ②混合料从较低含水量变化到较大含水量的过程中,制粒颗粒中细粉颗粒被逐渐消耗掉,大颗粒含量增多,制粒颗粒群的粒度组成呈长大、均匀、集中化。在本文研究的9组配料方案下混合料的制粒适宜含水量在6.5~7.3%之间,对应的制粒混合料>3mm粒级含量大于均87.16%,0.7~3mm粒级的含量在6.0~12.70%之间,<0.7mm的颗粒含量小于0.2%。
     ③随含水量的增大,制粒颗粒的分形维数呈线性减小趋势,反映了制粒颗粒群向均匀、集中化、粒径粗大化发展的趋势;粘附成球指数GIO随含水量的增加迅速达到极大值,各组混合料细粉粘附成球性都比较好;料层堆密度也随含水量的增加大多呈V型变化规律,在适宜含水量下制粒料堆密度在1.47~1.65g/cm3之间;混合料平均粒度随含水量的增多而单调递增。
     ④混合料湿容量与适宜含水量呈线性关系,相关系数R2>0.86,表明湿容量与适宜含水量有比较显著的相关性。结合物料的分形维数、吸水特性等性质,制粒适宜含水量的预测表达式为: -129.36 38.72 (%) 2.04 2(%) 0.96 (%) 0.34-0.14 - 3.80 2 3(%)
     相关系数R2>0.99,该式表明除原料化学成分外,物料的吸水特性对最佳含水量也有明显的影响。
     ⑤混合料的物理、化学性质与最佳料层透气性指数JPU的关系式为: 197.30 52.58 2 3(%) 1.04 ( )50.37 4.82 (%)23.92 (%)Al O M c k DfLO
     相关系数R2大于0.97。混合料的颗粒级配(Df)、化学成分、吸水特性决定了制粒的最佳透气性。
Under the influence, such as the downturn of the global economic development and the slowdown of Chinese high growth of economic development, crude steel production in china will soon reach the saturation stage. To improve the competitiveness, domestic steel plants will pay more and more attention on the production quality and technical progress. As the biggest mass treatment of material and the highest energy consumption procedure, iron making process, especially the blast furnace process (BF) still has a great promotion potential in economic and technical benefit, via methods like improving operation level and the properties of charging burden into BF. Under the current BF burden structure in China, the quality of sinter ore plays a key role in the quality of BF production.
     Granulating effect of sinter raw materials determine the permeability of the sintering green bed and the homogenization of sinter reaction, thus has a great impact on efficiency, yield and quality of sintering process. As a typical hydrophilic feature between water and powders, moisture capacity shows an obvious impact on granulation process, whose testing curve reflects some important features during water absorption process, which determined the optimal moisture content of granules. It can make a significant meaning in theoretical study and practical application by doing some research on the effect of moisture capacity on improving granulation results of sinter mixture.
     The effect of moisture content on granulation results were studied under different ingredients. A predictive formula of the best moisture content in granulation was found. Relationship between raw material properties and granulation output was also discussed. Several conclusions were shown as follow:
     ①within a certain range of moisture content, permeability of the green bed of granules will be improved by increasing moisture content of the blends. But when moisture content is greater than a threshold value, the permeability behaves dramatically worse. It means that there is an inverted type of“V”relationship between moisture content and permeability index JPU, at a broad range of moisture content. Similar phenomena were also got for mass fraction of 3-7mm after granulation and granulating efficiency.
     ②When increase moisture content in mixture during granulation process, size composition in the granules group of mixture grows up even and centralized, due to that fine particles in mixture were gradually consumed, while the fraction of big particles increased. Optimal moisture content in this paper ranges from 6.5% to 7.3%, with a mass fraction bigger than 87.16% for size >3mm , a weight percent between 6.0% to 12.70% for size of 0.7mm~3mm and a little content of adhesion particles(<0.2%).
     ③Fractal dimension of granules decrease linearly as the increase of moisture content. This means that the granule particle group turns out to be grown up, centralized and uniform. The adherent pelletizing index-GIO will reach a maximal value quickly by increasing water content, it seems that all mixtures in this paper show good result of GIO. Relationship between moisture content and bulk density of granules is a V type curve, the lowest bulk density for different mixtures ranges from 1.47~1.65g/cm3; Average particle size of granules increases as moisture content increases.
     ④A linear relation between moisture content and moisture capacity was found, the correlation coefficient is bigger than 0.86, which show a significant correlation between them. Combined fractal dimension and properties of water absorption, a prediction expression for optimal moisture content is shown: The correlation coefficient R2 is bigger than 0.99, which indicated that besides chemical component, water absorption also has an influence on optimal moisture content.
     ⑤Relationship between physical chemical properties and the best permeability index JPU of green granules bed can be illustrated by: 197.30 52.58 2 3(%) 1.04 ( )50.37 4.82 (%)23.92 (%)
     Its correlation coefficient R2 is greater than 0.97. The best permeability of green bed would be determined by the feature of particle size distribution (Df), chemical composition and water-absorbing properties.
引文
[1]司晓悦.我国铁矿石进口的战略与对策[J],东北大学学报(社会科学版),2003,5(5):355-357.
    [2]张典波,万海明,郑江.世界铁矿石资源情况及中国铁矿石供需态势[J],中国冶金,2004,79 (6): 26-29.
    [3]焦玉书.国外铁矿发展的新态势[J],矿业工程,2003 (1): 22-28.
    [4]陈其慎.中国铁矿石供需形势分析[D].中国地质大学(北京):中国地质大学(北京),2007
    [5]吴振操.中国铁矿石供给安全分析[D].湖南大学:湖南大学,2007.
    [6]王骏,杨波,余子鹏.中国铁矿石供需战略分析[J].经济学家,2005,(4).
    [7]王悦祥.烧结矿和球团矿的生产[M].北京:冶金工业出版社,2006:1-36.
    [8] Maruzen. Iron and Steel Handbook II [M], Tokyo: Iron and SteelInstitute of Japan, 1979: 123.
    [9]傅菊英,姜涛,朱德庆.烧结球团学[M].长沙:中南工业大学出版社, 1996:178-181.
    [10]王筱留.钢铁冶金学(炼铁部分)[M].北京.冶金工业出版社.2005.
    [11]廖国瑞.烧结原料混匀和制粒技术的研究[J].钢铁研究,1994(2):40~44.
    [12]陶文,王沧.唐钢二炼铁厂2#SM650mm厚料层烧结工艺改造及生产实践[J].河北理工学院学报,2000,22:48-52.
    [13]李振国,张玉柱,常久柱等.进口矿对唐钢烧结矿性能的影响[J].烧结球团,2001,26(1):25-27.
    [14] PR.Dawson.世界铁矿石烧结法发展现状[J].烧结球团,1994,(4):30~35.
    [15] PR.Dawson. Recent Developments in Iron Ore Sintering New Development for Sintering [J]. Ironmaking & Steelmaking, 1993, No.2:135-136.
    [16] Rumpf. Agglomeration [M]. Pennsylvania: Interscience, 1962.
    [17]李炳岳,高斌.对邢钢改善圆筒混合机制粒途径的探讨[J].河北冶金, 2006,3(153):20~23.
    [18]潘建,朱德庆,李建.铁精矿的及原料特性其对成球性能的影响[J].中国科技论文在线. http://www.paper.edu.cn/. 2006.
    [19] Newitt, D. M., J. M. Conway-Jones. A Contribution to the Theory and Practice of Granulation [J]. Transactions of the Institution of Chemical Engineers, 1958, 36:422-440.
    [20] Mason, G., W. C. Clark. Liquid bridges between spheres [J]. Chemical Engineering Science, 1965, 20 (10):859-866.
    [21] Tigerschoid, M., P. A. Ilmoni. Proc. AIME Blast furnace Coke Oven Raw Materials, 1950:9-18.
    [22] Capes, C. E., P. V. Danckwerts. Granule formation by the agglomeration of damp powders,Part I: The mechanism of granule growth [J]. Transactions of the Institution of Chemical Engineers, 1965, 43:T116-T124.
    [23] Kapur, P C. Kinetic of green pelletization [J]. Transactions of the American Institute of Mining Engineers, 1964, 229:348-355.
    [24] W.J.Wildeboer, J.D. Litster, I.T. Cameron. Modelling nucleation in wet granulation [J]. Chemical Engineering Science, 2005, 60(14):3751-3761.
    [25] Kapur, P. C, Runkana. V. Balling and granulation kinetics revisited [J]. Int. J. mineral. Processing, 2003, 72(1-4):417-427.
    [26] Steven A. Cryer. Modeling agglomeration process in fluid-bed granulation [J]. AICHE Journal, 1999, 45(10):2069-2078.
    [27] Venkataramana Runkana, P. Somasundaran, P. C. Kapur. A population balance model for flocculation of colloidal suspensions by polymer bridging [J]. Chemical Engineering Science, 2006, 61(1):182-191.
    [28] Venkataramana Runkana, P. C. Kapur, S. S. Gupta. Modeling of granulation by a two-stage auto-layering mechanism in continuous industrial drums [J]. Chemical Engineering Science, 2002, 57(7):1685-1693.
    [29] P. C. Kapur. Particle population balance in granulation of iron ore by an auto-layering model [A]. Mineral processing, 1995:703-717.
    [30] H. S. Tan, A. D. Salman, M. J. Hounslow. Kinetics of fluidized bed melt granulationⅡ:Modeling the net rate of growth [J]. Chemical Engineering Science, 2006, 61(12):3930-3941.
    [31] Maeda, Takayuki, Chieko Fukumoto. Effect of adding moisture and wettability on granulation of iron ore [J]. ISIJ International, 2005, 45 (4):477~484.
    [32] Bergstrand, Robin, Jasbir Khosa. The Effect of Marra Mamba Ore Addition on the Granulation Characteristics of Pisolite Based and Hematite Based Sinter Blends [J]. ISIJ International, 2005, 45 (4):492-499.
    [33] Iveson, S. M., S. Holt, S. Biggs. Advancing contact angle of iron ores as a function of their hematite and goethite content: implications for pelletising and sintering [J]. International Journal of Mineral Processing, 2004, 74:1-4.
    [34] Iveson, S. M., S. Holt, S Rapmond, C. E. Loo, S. Biggs. The effect of solid-liquid contact angle on the granulation of porous materials: a case study on iron ore granulation[C]. Miami: Advanced Technologies for Particle Processing 1998:127-132.
    [35]张英杰.改善烧结料层透气性途径的探讨[J].南方金属, 2004, 6:40~42.
    [36] Jasbir Khosa,James Manuel.Predicting granulating behaviour of iron ores based on sizedistribution and composition[J].ISIJ International.2007,47(7):965~972.
    [37]吕学伟,白晨光,邱贵宝等.测量铁矿粉湿容量及测算烧结混合料配水量的方法. (发明专利)申请号: 200910104357.3.
    [38] Lv, Xuewei, Bai, Chenguang, Xie, Hao, Zhou, chuangqiang. Determination of the moisturecapacity of iron ore for sintering [J]. Journal of iron and steel research international.2009, Vol.supplment 1. 235-238.
    [39]吕学伟,白晨光,邱贵宝等.测量铁矿粉湿容量的装置. (实用新型专利)授权号:ZL200920128074.8.
    [40]李博.影响烧结混匀制粒因素的探讨[J].江苏冶金,2001,(2):50~53.
    [41]肖高华.强化制粒及混合料预热新技术的运用[J].重庆工业高等专科学校学报,2002,17.
    [42]吴力华,陈雪峰.攀钢烧结混合料制粒因素的研究与优化[J].烧结球团, 2006, 31(1):19-22.
    [43]何群,杜炽,武小琪.改善烧结混合料制粒效果的工业试验[J].攀钢技术:1~6.
    [44]黎成家,文剑平.烧结混合机最佳工艺参数选择的研究[J].烧结球团, 1992, 17(4):13-17.
    [45] Sarah Forrest, John Bridgwater, Paul R. Mort. Flow patterns in granulating systems [J]. Powder Technology,2003,(130):91~96.
    [46]何云华,白云华.圆筒混料机内物料运动状态的研究[J].烧结球团,2007,32(1):1~4.
    [47]高为民,孙德政,圆筒混料机制粒工艺参数的研究[J].烧结球团,1994,(4):1~4.
    [48]杜炽,何群,石军.强化攀钢烧结混合料制粒的试验研究[J].烧结球团,1998,23(1) 36~42.
    [49]高为民,王树同,周取定.改善烧结圆筒混合机制粒工艺参数的研究[J].钢铁,1995,4.
    [50]陆品桢.国内外水分测量技术及水分计发展概况[J].分析仪器,1990,(01):12-18.
    [51] P.A.Cancilla, P.Barrette, F.Rosenblum. On-line moisture determination of ore concentrates 'a review of traditional methods and introduction of a novel solution'[J].Minerals Engineering 16 (2003) 151–163.
    [52]杨河清,程冰,叶正文,吕金桥.多种物料水分在线自动检测技术的开发[J].烧结球团(Sintering and Pelletizing),2009-6,34(03):41-43.
    [53]姜济民.混合料水分检测方法及评价[J].烧结球团,1990,(04):26-30.
    [54]刘金刚,吕庆,刘浏,王新华.烧结混合料水含量测量方法综述[J].中国冶金.
    [55]严国强.红外线测水原理及混含料水份的自动控制系统[J].烧结球团,1989,(05):26-30.
    [56]张驹,凤琦玲,高巍.在线水分检测系统在马钢港务原料总厂的应用[J].安徽冶金,2008,(01):33-34.
    [57]陶振兴,褚建强,邢画春.混匀矿水分检测管理系统[J].信息化技术与控制,2008,18(05):05-07.
    [58]李香玲.唐钢烧结混合料水分的在线测量与控制[J].河北冶金,2008,(4):38-40.
    [59]左春英,丁言镁.微波测湿原理及其应用[J].微波学报(Journal of Microwaves)),2005-4,21(增刊):153-156.
    [60]徐少磊,孙文光.微波检测实验-微波相位与含湿物质含水量变化关系的研究[J].物理与工程,2010,20(01):43-45.
    [61]黄铭,彭金辉,杨晶晶.微波快速测量高炉喷吹煤粉水分的新方法[J].云南冶金,2007-4,36(02):91-94.
    [62]常健生,吴凤贞,石要武,孟祥杰.应用微型计算机快速高精确度测量物质中水分[J].计量学报,1988-1,9(01):39-44.
    [63]戴恒震,孙宝元.用电容式传感器进行变压器绝缘纸板微水分在线测量[J].大连理工大学学报,2001-11,41(06):707-710.
    [64]傅守澄,蔡汝卓,涂卫.烧结混合料的制粒效果及分析.烧结球团, 1992(04): p. 7-12.
    [65] Marija, Norusis. SPSS 16.0 Statistical Procedures Companion2008: Prentice Hall Press. 648.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700