松辽盆地营城组火山碎屑岩:相·结构·应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着松辽盆地营城组深层火山油气藏勘探的成功实践,火山岩(包括火山碎屑岩)作为储层的研究日益得到极大的关注。火山碎屑岩是火山熔岩与沉积岩之间的过渡岩性,其相-结构研究对于储层地质特征(包括物性特征)具有重要意义。松辽盆地东南缘出露的火山岩露头,提供了盆地火山碎屑岩相-结构研究的良好剖面。与徐家围子断陷营城组火山碎屑岩的比较性研究,以及为由此建立的火山碎屑岩相结构模式为盆地火山碎屑岩储层研究提供了研究平台。
     本文以松辽盆地南缘露头区出露的火山熔岩和火山碎屑岩为研究对象,通过火山岩样品年代学研究,建立了营城组1-10Ma尺度的年代地层格架。利用地球化学分析,对比了火山碎屑岩地层,为划分火山旋回和火山喷发期次提供了元素地球化学的证据;对于同一冷凝单元内部的“热基浪相-热碎屑流相-空落相”给出了以K2O为代表的主量元素含量变化规律。结合年代学和元素地球化学,讨论了营城组形成的盆地构造背景,认为松辽盆地营城期为造山期后的伸展盆地。通过对破火山口岩性序列重建和火山口发育过程恢复,形成两种火山口发育模式,即①酸性岩浆活动形成的“蒸气爆发-蒸气岩浆爆发”火山口模式和②中基性岩浆活动形成的“爆炸-喷溢”-“爆炸-溢流”-“岩浆侵出”火山口模式。结合运用粒度分析、筛分分析和碎屑组成等方法,研究了营城组原发火山碎屑岩堆积和再搬运火山碎屑堆积,建立了原发火山碎屑堆积相结构模式(包括热基浪堆积、热碎屑流堆积、空落堆积)和再搬运火山碎屑堆积相结构模式(包括河流-冲积平原和三角洲-湖泊上的热碎屑流堆积、热基浪堆积、火山泥石流堆积以及熔积岩沉积)。根据火山碎屑岩相结构模式,分析了徐家围子断陷火山熔岩-火山碎屑岩储层与岩性和岩相的关系,得出同一冷凝单元内,热碎屑流相的储集性能好于热基浪相和空落相。近火山口-火山斜坡堆积的火山碎屑岩储层物性好于火山斜坡-过渡环境中的火山碎屑堆积。具体的研究成果和认识有7个方面:
     1.确定了营城组火山旋回时限,建立了营城组年代地层格架
     确定的松辽盆地营城组沉积时限与火山旋回时限为,营一段沉积时限为120-134Ma,火山旋回时限为2.34-7.0Ma;营二段沉积时限为115-120Ma,火山旋回时限为1.25Ma;营三段沉积时限为110.7-115Ma,火山旋回时限为1.0-1.3Ma。由此建立了松辽盆地营城组1-10Ma尺度的年代地层格架。
     2.实现了元素地球化学的火山碎屑岩地层对比,确定了松辽盆地营城组时期为造山后伸展构造背景
     建立了营城组火山碎屑岩剖面主量元素氧化物Na2O、K2O、Al2O3和SiO2含量曲线,实现了火山碎屑岩地层的对比,给出了同一冷凝单元内“热基浪-热碎屑流-空落”以K2O为代表的主量元素含量规律。确定了营城组时期盆地构造背景为造山期后的裂谷伸展环境。
     3.建立了火山口相结构模式
     建立的火山口发育模式有两类,①“蒸气爆发-蒸气岩浆爆发”火山口模式,火山口由酸性岩浆活动形成,堆积岩性为蒸气爆发的集块、角砾岩-蒸气岩浆爆发的角砾熔岩和凝灰夹熔岩-侵出和侵入作用形成的珍珠岩和隐爆角砾岩。②“爆炸-喷溢”-“爆炸-溢流”-“岩浆侵出”火山口模式,火山口由中基性岩浆活动形成,堆积岩性为集块/角砾岩与熔岩互层。
     4.建立了火山斜坡相结构模式
     建立了“热基浪-热碎屑流-空落”结构的冷凝单元模式。热基浪具2相结构,下部为爆发角砾岩堆积;中上部为玻屑/晶屑/岩屑凝灰岩堆积;热碎屑流具3相结构,下部为角砾岩堆积,中部为熔结凝灰岩,上部为玻屑凝灰岩;空落具2相结构,底部为弹射坠落的火山角砾岩,顶部为喷射降落的含角砾凝灰岩、岩屑/玻屑凝灰岩。
     5.建立了再搬运相结构模式
     建立的再搬运火山碎屑岩相结构模式有两类,①在河流-冲积平原和三角洲-湖泊上的热碎屑流、热基浪相模式,相序与斜坡堆积相似,但火山碎屑具再搬运特征。②火山泥石流堆积相模式,包括同喷发期垮塌成因模式和喷发期后剥蚀成因模式。
     6.确定了有利储层的火山碎屑岩相
     在徐家围子断陷,同一冷凝单元内热碎屑流相的储集性能好于热基浪相、空落相和热碎屑流与空落的混合相。受空落物质影响,含有细粒空落物质降低岩相的储层物性。
     7.确定了有利储层的火山碎屑岩性
     在徐家围子断陷,确定的有利储层的岩性为热碎屑流相堆积的流纹质岩屑晶屑凝灰岩,热基浪相堆积的含角砾岩屑晶屑凝灰岩,空落相堆积的流纹质角砾凝灰岩。
With the successful practices in volcanic oil and gas reservoir exploration of Yingcheng formationin Songliao basin, the volcanic reservoir rock (including pyroclastic rock) has drown more attention.Pyroclastic rock is a transitional rock developed between lava and sedimentary rocks, and the faciesand archateture of pyroclastic rock is an important part in the reservoir study. There are a large numberof volcanic outcrops in the south-eastern margin of Songliao basin, providing profiles for studying thevolcanic clastic rock facies and archateture.Volcaniclastic rock facies models are built up basedon the study of the outcrops, and these models provide a platform for analysis the volcanicclastic rockreservoir.
     Based on geochronology study of those main studying objects, which are pyroclasticrocks and lava rocks in the south eastern margin of songliao basin, the chronostratigraphic frameworkof Yingcheng formation with a 1-10Ma scale is built up.Using of geochemical analysis correlates ofthe two pyroclastic rocks outcroped sections,and provides proofs for dividing of volcanic eruptioncycles and stages. The changing laws of the major elements as represented by K2O, is given in a"base surge-pyroclastic flow-airfall"cooling unit. The tectonic setting of the basin in Yingcheng stagewas a rifting-extension basin related to post-orogenic geological processes discussed in isotopicgeochronology and geochemistry. Two models of the crater developing process are given, byreconstructing the lithologic sequences and the development process of the craters, which are①"vapour explosion-vapour magma explosion"crater model of acidic magmation, and②"explosion-effusion"-"explosion-effluence"-"magma extrusion"crater model ofintermediate-basic magmation.
     The original erupting and re-worked sediments are studies through the outcrop studycombining with grian size analysis, sieve analysi and detrital component analysis, and the pyroclastic deposits models of facies and architecture (including base surge, pyroclastics flow and airfallsediments) and re-worked sediments models of facies and architecture (including base surge,pyroclastics flow and airfall on fluvial plain and delta-lacustrine, lahar and peperite sediments). Therelationship between lithology-facies and lava-volcaniclastic rock reservoir is discused in Xujiaweizifault depression after those facies and architecture models mentioned above. The conclusion is obtainedthat the reservoir performance of pyroclastic flow is better than base surge and airfall, and pyroclasticsediments on the crater and nearby volcano slope are better than those on the volcano slope -transitional environment. There are 7 main achievements as fellows:
     1.Determined the volcanic cycle geochronology of Yingcheng formation, and built upchronostratigraphic framework of Yingcheng formation
     The sedimengtary geochronology of Yingcheng formation is 110.7-134Ma. Elevenvolcanic/sedimentary cycles in three members of Yingcheng formation. Ages are as following:120-134Ma (Member 1),115-120Ma (Member 2) and 110.7-115(Member 3). Based on thesegeochronology, the chronostratigraphic framework in 1-10Ma scale of Yingcheng formation isestablished.
     2.Attained pyroclastic rock strata correlation by element geochemistry,determined thetectonic setting in the stage of Yingcheng formation as rifting-extension related to post-orogenicgeological processes
     The content curves of Na2O, K2O, Al2O3and SiO2of Yingcheng pyroclastic rocks are received,and strata correlation of pyroclastic rocks is attained. A regularity of K2O content of pyroclastic rocksin the cooling unit with"base surge- pyroclastic flow-airfall"is taken. The tectonic setting in the stageof Yingcheng formation was rifting-extension related to post-orogenic geological processes.
     3.Established the crater model of facies and architecture
     There are two types of crater facie and architecture models.①is"vapour explosion-vapourmagma explosion"crater model caused by the acidic magmation, and accumulation of lithologyincluding volcanic agglomerate and breccia( production of vapour explosion), agglomerate lava andtuff interbeded with lava (production of vapour lava explosion), and Pearlite and breccia withcryptoexplosive structure (production of intrusion and extrusion);②is"explosion-effusion"-"explosion-effluence"-"magma extrusion"crater model caused by the intermediate-basic magmation,and accumulation of lithology is of alternate layers of agglomerate/ breccia and lava.
     4.Established the volcano slopes model of facies and architecture
     Established the cooling unit model of archetacture with " base surge-pyroclastic flow -airfall".Base surge model has a two- facies archetacture, the lower is composed of explosion breccia , themiddle-upper is composed of vitric,crystal and debris tuffs. Pyroclastic flow has a three- facies archetactur, the lower is composed of coarse fragment deposition of breccia/ breccia-bearing, themiddle is composed of ignimbrite.and the upper is composed of vitric tuffs in which pumice is enriched.Airfall has a two-facies archetacture. In the bottom there are catapult airfall deposits composed ofbreccia, breccia lava, breccia-bearing tuff. In the top there are ejection airfall deposits ofbreccia-bearing tuff, crystal,debris, vitric tuff.
     5.Established re-worked pyroclastics model of facies and architecture
     There are two types of re-worked architecture models.①is pyroclastic flow and base surge onfluvial plain and delta–lake, and lithofacies sequence is similar to that on volcanic slopes, however thepyroclastics are re-worked in a certain part.②is lahar deposit including the genetic model of collapsedaccumulation at the same time with the eruption and the genetic model of erosion- accumulation afterthe eruption.
     6.Determined the pyroclastic rock facies of the favorable reservoir
     With in a cooling unit,reservoir propertiy of the pyroclastic flow is better than base surge, airfalland mixture of base surge and airfall in Xujiaweizi fault depression. But reservoir performance hasbeen reduced with addtion of fine airfall material.
     7.Determined the pyroclastic Lithology of the favorable reservoir
     The pyroclastics rocks of the favorable reservoirs includs rhyolitic lithic crystal tuff in pyroclasticflow, lithic crystal tuff with breccias in base surge sediments and rhyolitic breccia tuff in airfallsediments in Xujiaweizi fault depression.
引文
[1] Blong RJ. Volcanic hazards. A sourcebook on the effects of eruptions [M]. Orlando; AcademicPress. 1984.
    [2] Bull SW. Distinguishing base‐surge deposits and volcaniclastic fluviatile sediments: an ancientexample from the Lower Devonian Snowy River Volcanics, south‐eastern Australia[J].Sedimentology, 2000,47(1): 87-98.
    [3] Bursik MI, Woods AW. The dynamics and thermodynamics of large ash flows[J]. Bulletin ofVolcanology, 1996,58(2): 175-193.
    [4] Busby-Spera CJ. Depositional features of rhyolitic and andesitic volcaniclastic rocks of theMineral King submarine caldera complex, Sierra Nevada, California.[J]. Volcanol Geotherm Res,,1986,27: 43-76.
    [5] Cas RAF. Volcanic successions, modern and ancient: A geological approach to processes, products,and successions[M]. Allen & Unwin London, 1987.
    [6] Cowie PA, Scholz CH. Physical explanation for the displacement-length relationship of faultsusing a post-yield fracture mechanics model[J]. Journal of Structural Geology, 1992,14(10):1133-1148.
    [7] Cowie PA, Shipton ZK. Fault tip displacement gradients and process zone dimensions[J]. Journalof Structural Geology, 1998,20(8): 983-997.
    [8] Dade WB, Huppert HE. Emplacement of the Taupo ignimbrite by a dilute turbulent flow[J].Nature, 1996,381(6582): 509-512.
    [9] Einsele G. Sedimentary basins: evolution, facies, and sediment budget[M]. Springer Verlag, 2000.
    [10] Feng ZQ. Volcanic rocks as prolific gas reservoir : a case study f rom the Qingshen gas field in theSongliao basin , NE China[J]. Marine and Pet roleum Geology, 2008,25: 416-432.
    [11] Fisher R. Pyroclastic Rocks [M]. Berlin; Springer. 1984: 978-973.
    [12] Fisher RV. Proposed classification of volcaniclastic sediments and rocks[J]. Geological Society ofAmerica Bulletin, 1961,72(9): 1409-1414.
    [13] Fisher RV. Rocks composed of volcanic fragments and their classification[J]. Earth-ScienceReviews, 1966,1(4): 287-298.
    [14] Gen alio lu-Ku cu G, Atilla C, Cas RAF, et al. Base surge deposits, eruption history, anddepositional processes of a wet phreatomagmatic volcano in Central Anatolia (Cora Maar)[J].Journal of volcanology and geothermal research, 2007,159(1): 198-209.
    [15] Gifkins C, Herrmann W, Large RR. Altered volcanic rocks: a guide to description andinterpretation[D]: Centre for Ore Deposit Research, University of Tasmania, 2005.
    [16] Gifkins CC, Allen RL, McPhie J. Apparent welding textures in altered pumice-rich rocks[J].Journal of volcanology and geothermal research, 2005,142(1): 29-47.
    [17] Glicken H. Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano,Washington[D]. Santa Barbara, California: University of California, 1986.
    [18] Heiken G, Wohletz K. Volcanic ash[M]. University Presses of California, Chicago, Harvard &MIT, 1985.
    [19] Kataoka KS, Manville V, Nakajo T, et al. Impacts of explosive volcanism on distal alluvialsedimentation: Examples from the Pliocene–Holocene volcaniclastic successions of Japan[J].Sedimentary Geology, 2009,220(3): 306-317.
    [20] Kuenzi WD, Horst OH, McGehee RV. Effect of volcanic activity on fluvial-deltaic sedimentationon a modern arc-trench gap, southwestern Guatemala[J]. Bull geol Soc Amer Pt, 1979,90:827-838.
    [21] Lirer L, Vinci A, Alberico I, et al. Occurrence of inter-eruption debris flow and hyperconcentratedflood-flow deposits on Vesuvio volcano, Italy[J]. Sedimentary Geology, 2001,139(2): 151-167.
    [22] Lube G, Cronin SJ, Platz T, et al. Flow and deposition of pyroclastic granular flows: A typeexample from the 1975 Ngauruhoe eruption, New Zealand[J]. Journal of volcanology andgeothermal research, 2007,161(3): 165-186.
    [23] Macdonald G. Volcanoes [M]. Prentice-Hall, Englewood Cliffs, NJ. 1972.
    [24] Magnavita LP, Da Silva HTF. Rift border system: the interplay between tectonics andsedimentation in the Rec ncavo Basin, northeastern Brazil[J]. AAPG Bulletin-AmericanAssociation of Petroleum Geologists, 1995,79(11): 1590-1607.
    [25] Manville V, Németh K, Kano K. Source to sink: A review of three decades of progress in theunderstanding of volcaniclastic processes, deposits, and hazards[J]. Sedimentary Geology,2009,220(3): 136-161.
    [26] Maruyama S, Send T. Orogeny and relative plate motions: example of the Japanese islands[J].Tectonophysics, 1986,127(3-4): 305-329.
    [27] Mathisen ME, Vondra CF. The fluvial and pyroclastic deposits of the Cagayan Basin, NorthernLuzon, Philippines - an example of non-marine volcaniclastic sedimentation in an inter-arcbasin[J]. Sedimentology, 1983,30: 369-392.
    [28] Michol K, Russell J, Andrews G. Welded block and ash flow deposits from Mount Meager, BritishColumbia, Canada[J]. Journal of volcanology and geothermal research, 2008,169(3): 121-144.
    [29] Neall V. Lahars as major geological hazards[J]. Bulletin of Engineering Geology and theEnvironment, 1976,13(1): 233-240.
    [30] Németh K, White CM. Intra-vent peperites related to the phreatomagmatic 71 Gulch Volcano,western Snake River Plain volcanic field, Idaho (USA)[J]. Journal of volcanology and geothermalresearch, 2009,183(1-2): 30-41.
    [31] Paredes JM, Foix N, Colombo Pi ol F, et al. Volcanic and climatic controls on fluvial style in ahigh-energy system: The Lower Cretaceous Matasiete Formation, Golfo San Jorge basin,Argentina[J]. Sedimentary Geology, 2007,202(1): 96-123.
    [32] Pujun W, Xiao'an X, Frank M, et al. The Cretaceous Songliao basin: Volcanogenic succession,sedimentary sequence and tectonic evolution, NE China[J]. Acta Geologica Sinica‐EnglishEdition, 2007,81(6): 1002-1011.
    [33] Ross PS, White JDL. Debris jets in continental phreatomagmatic volcanoes: A field study of theirsubterranean deposits in the Coombs Hills vent complex, Antarctica[J]. Journal of volcanologyand geothermal research, 2006,149(1): 62-84.
    [34] Schiffman P, Watters RJ, Thompson N, et al. Hyaloclastites and the slope stability of Hawaiianvolcanoes: Insights from the Hawaiian Scientific Drilling Project's 3-km drill core[J]. Journal ofvolcanology and geothermal research, 2006,151(1): 217-228.
    [35] Schmincke HU. Volcanism[M]. Springer Verlag, 2004.
    [36] Scott KM, et al. Origins, behavior, and sedimentology of lahars and lahar-runout flows in theToutle-Cowlitz system [M]. U.S. geol. Survey Prof. Paper. 1988: 1-74.
    [37] Segschneider B, Landis C, Manville V, et al. Environmental response to a large, explosive rhyoliteeruption: sedimentology of post-1.8 ka pumice-rich Taupo volcaniclastics in the Hawke's Bayregion, New Zealand[J]. Sedimentary Geology, 2002,150(3-4): 275-299.
    [38] Smith GA. The influence of explosive volcanism on fluvial sedimentation: the DeschutesFormation (Neogene) in central Oregon[J]. sedim Petrol, 1987,57: 613-629.
    [39] Smith GA, Campbell NP, Deacon MW, et al. Eruptive style and location of volcanic centers in theMiocene Washington Cascade Range: Reconstruction from the sedimentary record[J]. Geology,1988,16: 337-340.
    [40] Sparks RSJ. Grain size variations in ignimbrites and implications for the transport of pyroclasticflows[J]. Sedimentology, 1976,23(147-188).
    [41] Sparks RSJ, Wilson L, Hulme G. Theoretical modeling of the generation movement andemplacement of pyroclastic flows by column collapse[J]. geophys Res, 1978,83: 1727-1739.
    [42] Straub S, Schmincke H. Evaluating the tephra input into Pacific Ocean sediments: distribution inspace and time[J]. Geologische Rundschau, 1998,87(3): 461-476.
    [43] Suzuki-Kamata K. The ground layer of Ata pyroclastic flow deposits, southwesternJapan--evidence for the capture of lithic fragments[J]. Bull Volcanol 1988,50: 119-129
    [44] Thomaz Filho A, Mizusaki AMP, Antonioli L. Magmatism and petroleum exploration in theBrazilian Paleozoic basins[J]. Marine and Petroleum Geology, 2008,25(2): 143-151.
    [45] Tilling RI. Volcanic hazards[M]. Amer Geophysical Union, 1989.
    [46] Van Houten FB. Late Cenozoic volcaniclastic Andean foredeep, Columbia. Bull[J]. geol SocAmer, 1976,87: 481-495.
    [47] Walton AW. Volcanic sediment apron in the Tascotal Formation, Trans-Pecos Texas[J]. sedimentPetrol, 1979,49: 303-314.
    [48] Wilson C, Houghton B, Kamp P, et al. An exceptionally widespread ignimbrite with implicationsfor pyroclastic flow emplacement[J]. Nature, 1995,378(6557): 605-607.
    [49] Wilson C, Walker G. The Taupo eruption, New Zealand I. General aspects[J]. PhilosophicalTransactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1985:199-228.
    [50] Yagi M, Ohguch T, Akiba F, et al. The Fukuyama volcanic rocks: Submarine composite volcanoin the Late Miocene to Early Pliocene Akita–Yamagata back-arc basin, northeast Honshu, Japan[J].Sedimentary Geology, 2009,220(3): 243-255.
    [51] Zanchetta G, Sulpizio R, Di Vito M. The role of volcanic activity and climate in alluvial fangrowth at volcanic areas: an example from southern Campania (Italy)[J]. Sedimentary Geology,2004,168(3): 249-280.
    [52]白志达,孙善平,徐德斌等.火山碎屑岩的一种重要类型——熔积岩[J].地学前缘,2004,(03): 134.
    [53]白志达,徐德斌,孙善平.河北西北部熔积岩特征及其地质意义[J].岩石矿物学杂志,2006,(06): 487-492.
    [54]边伟华,陈玉魁,唐华风等.火山岩相的岩屑识别——以松辽盆地南部东岭探区为例[J].吉林大学学报:地球科学版, 2007,37(006): 1104-1109.
    [55]蔡东梅,孙立东,齐景顺等.徐家围子断陷火山岩储层特征及演化规律[J].石油学报,2010,31(003): 400-407.
    [56]蔡周荣,夏斌,郭峰等.松辽盆地北部徐家围子断陷营城组火山岩受控机制分析[J].石油学报, 2010,31(006): 941-945.
    [57]曹跃,邵贵增.松辽盆地南部火成岩分布预测及成藏条件浅析[J].特种油气藏, 2003,10(1):90-94.
    [58]陈发景,汪新文.盆地构造分析与油气勘探[J].勘探家:石油与天然气, 1996,1(1): 25-28.
    [59]陈欢庆,胡永乐,冉启全等.火山岩气藏储层岩相特征及其对储层物性的影响——以徐深气田徐东地区白垩系营城组一段火山岩为例[J].岩石矿物学杂志, 2011,30(001): 60-70.
    [60]陈瑞年,谢家莹.浙闽中生代火山岩区空落凝灰岩若干特征[J].资源调查与环境, 1987,4.
    [61]陈文涛,陈发景.松辽盆地晚侏罗世火山岩分布与油气[J].中国石油勘探, 2001,6(002):23-26.
    [62]程日辉,刘万洙,王璞珺等.松辽盆地东缘下白垩统营城组二段火山碎屑沉积的过程、相和结构[J].吉林大学学报(地球科学版), 2007,(06): 1166-1175.
    [63]程裕淇.中国区域地质概论[M].北京:地质出版社, 1994.
    [64]迟元林,王璞珺,单玄龙.中国陆相含油气盆地深层地层研究——以松辽盆地为例[M].长春:吉林科学技术出版社. 2000.
    [65]迟元林,云金表,蒙启安等.松辽盆地深部结构及成盆动力学与油气聚集[M].北京:石油工业出版社, 2002.
    [66]崔天日,金东淳,金於今等.图们江流域火山泥石流分布及其特征: proceedings of the火山作用与地球层圈演化——全国第四次火山学术研讨会,中国广西北海, 2005[C].
    [67]单玄龙,王瑛珺,陈树民.松辽盆地北部上侏罗统-下白垩统地层对比及其大地构造意义[J].长春科技大学学报, 1999,29: 8-12.
    [68]单玄龙,衣健,李建忠等.松辽盆地三台地区营城组珍珠岩地球化学特征及地质意义[J].岩石学报, 2010,1:93-98.
    [69]冯增昭.沉积岩石学(下) [M].北京:石油工业出版社. 1993.
    [70]冯志强.松辽盆地庆深大型气田的勘探前景[J].天然气工业, 2006,26(6): 1-5.
    [71]冯志强,王玉华,雷茂盛等.松辽盆地深层火山岩气藏勘探技术与进展[J].天然气工业,2007,27(8):9-13.
    [72]冯子辉,廖广志,方伟等.松辽盆地北部西斜坡区稠油成因与油源关系[J].石油勘探与开发,2003,30(004): 25-28.
    [73]冯子辉,邵红梅,童英.松辽盆地庆深气田深层火山岩储层储集性控制因素研究[J].地质学报, 2008,82(6): 760-768.
    [74]付广,胡明,韩莹.断裂对断陷盆地火山岩天然气的成藏与控制作用——以松辽盆地徐家围子断陷为例[J].吉林大学学报(地球科学版), 2012,(01): 1-8.
    [75]高名修.华北块断构造区的现代引张应力场[J].地震地质, 1979,1(2): 1-12.
    [76]高瑞祺.松辽盆地天然气成因类型与气源岩地球化学特征[J].矿物岩石地球化学通报,1989,(3):220-221.
    [77]高瑞祺.松辽盆地油气田形成条件与分布规律[M].北京:石油工业出版社, 1997.
    [78]高有峰,刘万洙,纪学雁等.松辽盆地营城组火山岩成岩作用类型,特征及其对储层物性的影响[J].吉林大学学报:地球科学版, 2007,37(006): 1251-1258.
    [79]郭占谦.火山活动与沉积盆地的形成和演化[J].地球科学:中国地质大学学报, 1998,23(001):59-64.
    [80]侯启军.大庆探区油气勘探新进展与下步勘探方向[J].中国石油勘探, 2004,(04): 1-5+1.
    [81]侯启军.松辽盆地南部火山岩储层主控因素[J].石油学报, 2011,32(5): 749-756.
    [82]侯启军,赵志魁,王立武.火山岩气藏:松辽盆地南部大型火山岩气藏勘探理论与实践[M].科学出版社, 2009.
    [83]胡明毅,马艳荣,刘仙晴等.松辽北部汪深1区块火山岩相和储层特征研究[J].岩性油气藏, 2009,21(003): 1-6.
    [84]黄清华,谭伟.松辽盆地白垩纪地层序列与年代地层[J].大庆石油地质与开发, 1999,18(6):15-17.
    [85]黄玉龙,王璞琚,冯志强等.松辽盆地改造残留的古火山机构与现代火山机构的类比分析[J].吉林大学学报:地球科学版, 2007,37(1): 65-72.
    [86]黄玉龙,王璞珺,邵锐.火山碎屑岩的储层物性——以松辽盆地营城组为例[J].吉林大学学报:地球科学版, 2010,40(002): 227-236.
    [87]吉林省地质矿产局.吉林省区域地质志[M].北京:地质出版社, 1988.
    [88]吉林省地质矿产局.全国地层多重划分对比研究:吉林省岩石地层[M].北京:中国地质大学出版社, 1997.
    [89]贾军涛,王璞珺,邵锐等.松辽盆地东南缘营城组地层序列的划分与区域对比[J].吉林大学学报:地球科学版, 2007,37(6): 1110-1123.
    [90]姜传金,冯肖宇,詹怡捷等.松辽盆地北部徐家围子断陷火山岩气藏勘探新技术[J].大庆石油地质与开发, 2007,26(4): 133-137.
    [91]金伯禄,张希友.长白山火山地质研究[M].东北朝鲜民族教育出版社, 1994.
    [92]李花淑,崔天日.图们江流域中更新世火山泥石流分布及其特征[J].吉林地质, 2005,(03):75-79.
    [93]李金龙,王璞珺,郑常青等.松辽盆地东南隆起区营城组柱状节理流纹岩特征和成因[J].吉林大学学报(地球科学版), 2007,37(6): 1131-1137.
    [94]李喆,王璞珺,纪学雁等.松辽盆地东南隆起区营城组火山岩相和储层的空间展布特征[J].吉林大学学报(地球科学版), 2007,(06): 1224-1231.
    [95]辽宁省地质矿产局.辽宁省区域地质志[M].北京:地质出版社, 1989.
    [96]林强,葛文春,曹林等.大兴安岭中生代双峰式火山岩的地球化学特征[J].地球化学,2003,32(003): 208-222.
    [97]刘宝珺.沉积岩石学[M].北京;地质出版社. 1980: 174-187.
    [98]刘光鼎.松辽盆地火山岩岩性·岩相·储层·气藏·勘探(序一)[M].北京;科学出版社.2008.
    [99]刘和甫.中国沉积盆地演化与旋回动力学环境[J].地球科学:中国地质大学学报,1996,21(004): 345-356.
    [100]刘嘉麒,张雯华,郭正府.南极南设得兰群岛中-新生代火山作用与地质环境[J].极地研究,2002,(01): 1-11.
    [101]刘万洙,邵锐,白雪峰等.松辽盆地东南隆起区营城组一段熔浆胶结复成分砾岩特征及其成因分析[J].吉林大学学报:地球科学版, 2007,37(006): 1124-1130.
    [102]刘为付,孙立新.松辽盆地莺山断陷火山岩地震反射特征及分布规律[J].石油实验地质,2000,22(3): 256-259.
    [103]刘文灿,孙善平.大别山北麓碣侏罗世金刚台组火山岩地质及岩相构造特征[J].现代地质,1997,11(2): 237-243.
    [104]刘祥.当代火山喷发碎屑堆积物的研究进展及其主要类型[J].世界地质, 1996,(01): 1-6.
    [105]刘祥,地质,向天元.中国东北地区新生代火山火山碎屑堆积物资源与灾害[M].长春:吉林大学出版社, 1997.
    [106]刘祥,隋维国,王锡魁.长白山火山1000年前火山泥流堆积及其灾害[J].长春科技大学学报, 2000,(01): 15-18.
    [107]路孝平,吴福元,赵成弼等.通化地区印支期花岗岩锆石U-Pb年龄及其与大别-苏鲁超高压带碰撞造山作用之间的关系[J].科学通报, 2003,48(8): 843-849.
    [108]吕儒仁.对泥石流形成演变的一种认识:自然条件组合论[J].灾害学, 1988,(4):19-24.
    [109]蒙启安.松辽盆地徐家围子地区晚中生代火山岩岩相及储层意义[D]:博士学位论文[D],2006.
    [110]蒙启安,江涛.松辽盆地中生界火山岩储层特征及对气藏的控制作用[J].石油与天然气地质, 2002,23(3): 285-288.
    [111]聂保锋,刘永顺,彭年.长白山天池火山泥石流分布特征及其形成模式研究[J].首都师范大学学报(自然科学版), 2009,(01): 70-75.
    [112]潘建国,郝芳,张虎权等.花岗岩和火山岩油气藏的形成及其勘探潜力[J].天然气地球科学, 2007,18(3): 380-385.
    [113]邱家骧.火山岩造岩矿物特征[J].地质与勘探, 1979,(4):20-33.
    [114]邱家骧.火山岩相及其主要特征[J].地质科技情报, 1984,(2):45-52.
    [115]邱家骧.岩浆岩岩石学[M].北京;地质出版社. 1985.
    [116]邱家骧,陶奎元,赵俊磊.火山岩[M].北京:地质出版社, 1996.
    [117]任纪舜.中囯大地构造及其演化: 1: 400万中囯大地构造图简要说明[M].北京:科学出版社, 1980.
    [118]任延广.松辽盆地徐家围子断陷地质特征与天然气聚集规律[D]:吉林大学, 2004.
    [119]任延广,朱德丰,万传彪等.松辽盆地徐家围子断陷天然气聚集规律与下步勘探方向[J].大庆石油地质与开发, 2004,23(005): 26-29.
    [120]邵济安,唐克东.吉林省延边开山屯地区蛇绿混杂岩[J].岩石学报, 1995,11: 212-220.
    [121]邵英梅,冯子辉.徐家围子断陷营城组火山岩岩石学及地球化学特征[J].大庆石油地质与开发, 2007,26(4): 27-30.
    [122]舒萍,丁日新,纪学雁等.松辽盆地庆深气田储层火山岩锆石地质年代学研究[J].岩石矿物学杂志, 2007,26(3): 239-247.
    [123]宋立忠,赵泽辉,焦贵浩等.松辽盆地早白垩世火山岩地球化学特征及其构造意义[J].岩石学报, 2010,(4):1182-1194.
    [124]宋维海,蒙启安.松辽盆地中生代火山岩油气藏特征[J].石油与天然气地质, 2003,24(1):12-17.
    [125]孙善平.关于火山碎屑岩分类和命名的意见: proceedings of the中国地质学会二十一届年会论文选集(岩石矿物、地球化学部分),1962[C].
    [126]孙善平,李家振,朱勤文等.国内外火山碎屑岩的分类命名历史及现状[J].地球科学,1987,(06): 571-577.
    [127]孙善平,刘永顺,钟蓉等.火山碎屑岩分类评述及火山沉积学研究展望[J].岩石矿物学杂志, 2001,(03): 313-317+328.
    [128]唐华风.松辽盆地滨北地区构造样式与构造圈闭预测[D]:吉林大学, 2004.
    [129]唐华风,庞彦明,边伟华等.松辽盆地白垩系营城组火山机构储层定量分析[J].石油学报,2008,29(6): 841-845.
    [130]陶奎元.火山岩相构造学[M].南京:江苏科学技术出版社. 1994.
    [131]王传成,侯贵廷,李江海等.大庆徐家围子断陷火山岩储集性控制因素分析[J].北京大学学报(自然科学版), 2008,(06): 909-914.
    [132]王德滋.松辽盆地火山岩岩性·岩相·储层·气藏·勘探(序二)[M].北京;科学出版社.2008.
    [133]王国栋.松辽盆地上白垩统旋回地层与坳陷盆地的沉积演化[D]:吉林大学, 2010.
    [134]王虎,郑常青,王璞珺等.松辽盆地东南隆起区下白垩统营城组三段火山岩岩性、岩相序列[J].吉林大学学报(地球科学版), 2007,(06): 1217-1223.
    [135]王骏,王东坡,刘立等.裂谷盆地形成的动力学机制及其含油气性[J].长春地质学院学报,1997,(01): 52-58.
    [136]王璞珺, Werner S, Frank M等.陆相盆地中的海侵层序特征:中欧盆地三叠系与松辽盆地白垩系对比研究[J].矿物岩石, 2002,(02): 47-53.
    [137]王璞珺,迟元林,刘万洙等.松辽盆地火山岩相:类型,特征和储层意义[J].吉林大学学报:地球科学版, 2003,33(4): 449-456.
    [138]王璞珺,冯志强,刘万珠等.松辽盆地火山岩岩性·岩相·储层·气藏·勘探[M].北京;科学出版社. 2008: 1-308.
    [139]王璞珺,高有峰,任延广等.松辽盆地青山口组橄榄组安岩:~(40)Ar/~(39)Ar年龄、地球化学及其成盆、成烃和成藏意义[J].岩石学报, 2009,(05): 1178-1190.
    [140]王璞珺,吴河勇,庞颜明等.松辽盆地火山岩相:相序、相模式与储层物性的定量关系[J].吉林大学学报(地球科学版), 2006,(05): 805-812.
    [148]王璞珺,郑常青,舒萍等.松辽盆地深层火山岩岩性分类方案[J].大庆石油地质与开发,2007,(04): 17-22.
    [141]王淑英.桦甸苏密沟组孢粉组合及时代讨论[J].吉林地质, 1988,(03): 76-79+84.
    [142]王淑英.吉林省营城组孢粉组合[J].地层学杂志, 1989,(01): 34-39.
    [143]王玉净,樊志勇.内蒙古西拉木伦河北部蛇绿岩带中二叠纪放射虫的发现及其地质意义[J].古生物学报, 1997,(01): 60-71.
    [144]吴颜雄,王璞珺,曲立才等.营城组一段及下段岩性岩相和储层物性的精细刻画——基于标准剖面营一D1井全取心钻孔资料[J].吉林大学学报:地球科学版, 2007,37(006):1192-1202.
    [145]肖毓祥,李军,陈再学等.深埋藏气孔状流纹质熔结火山碎屑岩储层特征与成因分析——以准噶尔盆地西北缘夏72井区火山岩油藏为例[J].石油天然气学报, 2008,30(5): 22-26.
    [146]谢家莹.火山—侵入岩相类型[J].火山地质与矿产, 1996,(21): 97-99.
    [147]谢家莹,陶奎元.试论凝灰熔岩相特征,相模式及其成因[J].火山地质与矿产,1995,16(003): 1-6.
    [148]谢家莹,陶奎元,黄光昭.中国东南大陆中生代火山岩带的火山岩相类型[J].火山地质与矿产, 1994,15(4): 45-51.
    [149]谢晓安,周卓明.松辽盆地深层天然气勘探实践与勘探领域[J].石油与天然气地质,2008,29(1): 113-119.
    [150]鄢全树,石学法.南海盆海山火山碎屑岩的发现及其地质意义[J].岩石学报,2009,(012):3327-3334.
    [151]闫全人,高山林.松辽盆地火山岩的同位素年代,地球化学特征及意义[J].地球化学,2002,31(2): 169-179.
    [152]杨春志,沈德安.吉林省松辽盆地东缘中生代含煤地层层序划分与对比[J].吉林地质,1986,4(3): 50-59.
    [153]杨辉,张研,邹才能等.松辽盆地北部徐家围子断陷火山岩分布及天然气富集规律[J].地球物理学报, 2006,49(4): 1136-1143.
    [154]叶慧文,张兴洲.牡丹江地区蓝片岩中脉状青铝内石^ 40Ar—^ 39Ar年龄及其地质意义[J].长春地质学院学报, 1994,24(004): 369-372.
    [155]曾允孚,地质学,夏文杰等.沉积岩石学[M].地质出版社, 1986.
    [156]张川波,赵东甫,张秀英等.松辽盆地东缘晚期中生代一个新的重要含煤层位[J].长春地质学院学报, 1991,21(3):241-251.
    [157]张坤,程秀芹.松辽盆地南部火山岩及其在成藏过程中的作用[J].大庆石油地质与开发,2002,21(003): 16-17.
    [158]张利萍,潘仁芳,张晓华等.松辽盆地汪家屯地区营城组含气火成岩的地球物理响应[J].中国石油勘探, 2008,(3):146-151.
    [159]张明坤.中国石油地质志(吉林油田部分) [M].北京:石油工业出版社. 1993.
    [160]张兴洲.黑龙江岩系-古佳木斯地块加里东缝合带的证据[J].长春地质学院学报, 1992, (22):94-101.
    [161]张秀容,杨亚娟,向景红.松辽盆地南部深层火山岩识别及成藏条件分析[J].勘探地球物理进展, 2006,29(3): 211-215.
    [162]张野,郎东升,耿长喜等.大庆探区复杂油气水层录井综合识别与评价新技术[J].中国石油勘探, 2005,9(4): 43-48.
    [163]章凤奇,陈汉林,董传万等.松辽盆地北部火山岩锆石SHRIMP测年与营城组时代探讨[J].地层学杂志, 2008,32(001): 15-20.
    [164]章凤奇,程晓敢,陈汉林等.松辽盆地东南缘晚中生代火山事件的锆石年代学与地球化学制约[J].岩石学报, 2009,25(1): 39-54.
    [165]赵春荆,何国琦,段瑞焱.俄远东、中国东北的构造特点及岩石圈深部的不均一性[J].辽宁地质, 1995,(04): 241-256.
    [166]赵春荊.吉黑东部构造格架及地壳演化[M].沈阳:辽宁大学出版社, 1996.
    [167]赵海玲,邓晋福,陈发景等.中国东北地区中生代火山岩岩石学特征与盆地形成[J].现代地质, 1998,(01): 57-63.
    [168]赵海玲,狄永军,郭美娟等.辽河断陷盆地坨32井区中生代火山岩储层特征及成因[J].特种油气藏, 2004,11(6): 33-36.
    [169]赵海玲,刘厚祥.松辽盆地东南缘中生代火山岩及其盆地形成的构…[J].地球科学:中国地质大学学报, 1996,21(4): 421-427.
    [170]郑常青,王璞珺,刘杰等.松辽盆地白垩系火山岩类型与鉴别特征[J].大庆石油地质与开发, 2007,26(4): 9-16.
    [171]中国地层编委会.中国地层典:白垩系[M].地质出版社, 2000.
    [172]中国地层典编委会.中国地层典:三叠系[M].北京:地质出版社, 2000.
    [173]周尚安,马文奇,邹掌珠.羊草沟盆地含煤地层及赋煤特征[J].吉林地质, 1985,4(2): 1-11.
    [174]周新民,陈图华.南京附近新生代玄武岩火山锥及其喷发特征[J].南京大学学报(自然科学版), 1980,2: 82-103.
    [176]朱德丰,任延广,吴河勇等.松辽盆地北部隐伏二叠系和侏罗系的初步研究[J].地质科学,2007,42(4): 690-708.
    [176]朱勤文,路凤香,谢意红等.大陆边缘扩张型活动带火山岩组合──松辽盆地周边中生代火山岩研究[J].岩石学报, 1997,13(4): 551-562.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700