赤点石斑鱼种群遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
赤点石斑鱼是我国重要的经济鱼类和养殖的重要种类,由于过度捕捞和生境变化,资源量严重衰竭,加之其独特的生殖习性,其种质资源现状及其可持续利用前景令人堪忧。本研究以我国东海、南海的赤点石斑鱼野生群体为研究对象,采用多种分子标记技术对其群体遗传多样性和遗传结构进行了研究,以阐述其种质资源现状,为赤点石斑鱼遗传育种和渔业管理提供理论依据。
     本研究共采集了我国东海和南海的赤点石斑鱼7个地理群体共88个个体,采用了线粒体DNA控制区、AFLP和微卫星三种分子标记研究赤点石斑鱼的群体遗传结构和群体遗传多样性。
     1.对赤点石斑鱼控制区部分序列进行分析。赤点石斑鱼群体的单倍型多态很高,采用中性检验和核苷酸不配对分布分析了赤点石斑鱼的群体历史动态,分子方差分析和Fst的结果显示赤点石斑鱼在分布区内存在显著的种群遗传结构。
     2.利用13对选择性引物对赤点石斑鱼群体遗传变异进行了AFLP分析,13对引物在7个群体中扩增出941个条带,7个群体的多态位点比例为18.40%~47.70%,Nei遗传多样性指数为0.0447~0.1429,Shannon多样性指数为0.0665~0.2141;分子方差分析和Fst的结果群体间遗传差异显著;检测到多条种群间特异性条带,可以作为种群鉴别的标志。
     3.利用赤点石斑鱼的近缘种微卫星序列筛选建立了适合赤点石斑鱼的微卫星体系,研究了赤点石斑鱼群体在7个微卫星位点上的变异情况,在7个基因位点上共检测到45个等位基因,每个引物扩增出4~11个等位基因,平均每个引物获得6.4个等位基因,7个群体的观测杂合度(Ho)在0.2190~0.5079之间,预期杂合度(He)在0.3683~0.6689之间;7个群体间的遗传距离在0.0665~0.7093之间,两两群体间的Fst值在0.0048~0.2558之间,大部分群体间遗传差异显著。
     线粒体DAN控制区、AFLP和微卫星结果表明赤点石斑鱼不同地理群体间存在不同程度分化,可划分为两个独立地理种群,三亚和湛江群体为一地理种群,其余群体为一个地理种群;与其他鱼类的多样性指数的比较分析显示赤点石斑鱼遗传多样性水平较低。
The red spotted grouper Epinephelus akaara is of commercial importance and an attractive target fish for aquaculture. Presently, the red spotted grouper resources have been depleted to be in severe danger partly due to overfishing and its special particularities of reproduction. Population genetics of the red spotted grouper collected from East China Sea and South China Sea were studied by different DNA marker technologies. The results of this study will lay a theoretic foundation not only for the protection of the rare resources but also for the genetic breeding studies.
     In this study, in order to estimate the genetic structure and genetic diversity of E. akaara, 88 individuals sampled from 7 locations throughout the distribution range of E. akaara in China were analyzed by mtDNA, AFLP and SSR.
     1. Mitochondrial DNA variation was analyzed using sequence data from control region. Nucleotide diversity was high in E. akaara; The demographic history of E. akaara was examined using neutrality tests and mismatch distribution analyses, Molecular variance analyses and pairwise Fst revealed significant genetic structure among seven populations.
     2. 13 AFLP primers were used to investigate the genetic variation in E. akaara. A total of 941 loc were detected from 7 populations; the proportion of polymorphic loci, the Nei genetic diversity and Shannon genetic diversity index of 7 populations were 18.40%~47.70%, 0.0447~0.1429, 0.0665~0.2141, respectively. Molecular variance analyses and pairwise Fst showed significant genetic differentiation among seven populations. Some population specific bands were detected, these specific markers could be used for population identification.
     3. The genetic variations of 7 populations of E. akaara were assessed at 7 SSR loci. A total of 45 alleles were detected in the loci investigated, and the number of alleles at each polymorphic locus was in the range from 2 to 11, with an average value of 6.4. The Ho and He values of 7 populations were 0.2190~0.5079, 0.3683~0.6689, respectively. The genetic distance and pairwise Fst among populations varied from 0.0665 to 0.7093, 0.0048~0.2558, respectively. The pairwise Fst values showed most pairwises were statistically significant.
     Based on mtDNA, AFLP and SSR results, significant genetic differentiations among all populations were revealed, and 7 populations could be divided into two geographic populations. E. akaara compared to those in other teleosts assayed with the same techniques showed low genetic diversity.
引文
《福建鱼类志》编写组.福建鱼类志.福州:福建科学出版社,1985:10-23
    余先觉,周暾,李渝成,等.中国淡水鱼类染色体.北京:科学出版社,1989:1–171
    Wendy Bickmore & Jeffrey Craig.(房德兴等译).染色体带:基因组的图形.北京:科学出版社,2000:20-22
    薄治礼,周婉霞.石斑鱼增殖放流研究.浙江海洋学院学报(自然科学版),2002,4:321-326
    薄治礼,周婉霞,俞存根,等.浙江近海石斑鱼资源动态监测及管理意见.浙江海洋学院学报,1995,14(3):155-161
    薄治礼,周婉霞.浙江省沈家门沿岸水域石斑鱼幼鱼标志放流与重捕试验.水产学报,1999,3:304-307
    蔡友义,洪心,张亚生,张杰,张其永,戴庆年.赤点石斑鱼雄性性腺及性转变的研究.福建水产,1988, 3:24-30
    陈福华,陈毕生,杨莺莺,骆清池.赤点石斑鱼增生性肾脏病的血液病理观察.热带海洋,1997, 3:49-53
    陈金平,董崇智,孙大江,等.微卫星标记对黑龙江流域大麻哈鱼遗传多样性的研究.水生生物学报,2004,28(6):607-612
    陈清华,肖调义,刘臻.AFLP技术在水产动物研究中的应用.大连水产学院学报,2005,20(1):69-72.
    陈省平,包振民,潘洁,等.4种养殖扇贝的群体遗传多样性及特异性AFLP标记研究.海洋学报,2005,27(2):160-164.
    陈信忠,苏亚玲,龚艳清,黄丽莎,俞秀霞,苏永全.逆转录聚合酶链式反应(RT-PCR)检测5种养殖石斑鱼的神经坏死病毒.中国水产科学,2004,3:202-207
    陈学豪,林利民,洪惠馨.赤点石斑鱼人工配合饵料中蛋白质最适含量的研究.台湾海峡,1995, 4:407-412
    崔建洲,申雪燕,杨官品,等.红鳍东方鲀与假睛东方鲀的微卫星DNA多态性分析.高技术通讯,2005,15(12):90-96
    戴庆年,张其永,蔡友义,张杰.福建沿岸海域赤点石斑鱼年龄和生长的研究.海洋与湖沼,1988,3:215-224
    邓思平,刘楚吾.赤点石斑鱼4种同工酶的组织分布及基因位点分析.浙江海洋学院学报(自然科学版),2004,23(2):103-106
    高文.鱼类染色体研究进展.宁德师专学报(自然科学版),2005, 1:15-18
    洪万树,张其永,公茂军,林伟雄,上官步敏.外源激素诱导赤点石斑鱼雄性化.台湾海峡,1994a,4:374-380
    洪万树,张其永.赤点石斑鱼繁殖生物学和种苗培育研究概况.海洋科学,1994b,5:17-19
    贾芬,冯德庆,刘建,林刚,郑永标,郑松勇.赤点石斑鱼人工配合饲料的研究.水产科学,1994,5:12-14
    贾继增.分子标记种质资源鉴定和分子标记育种.中国农业科学,1996, 4:1-9
    解新明,云锦凤.植物遗传多样性及其检测方法.中国草地,2000, 6:51-59
    李广丽,刘晓春,林浩然.17α-甲基睾酮对赤点石斑鱼性逆转的影响.水产学报,2006,2:146-150
    李广丽,刘晓春,林浩然.芳香化酶抑制剂letrozole对赤点石斑鱼(Epinephelus akaara)性逆转的作用.生理学报,2005, 4:473-479
    李广丽,刘晓春,张勇,贝锦新,林浩然.赤点石斑鱼两种芳香化酶cDNA的克隆及其表达的组织特异性.动物学报,2004, 5:791-799
    李加儿,周宏团,许波涛,于彦文.赤点石斑鱼生长特性的初步研究.海洋科学,1988,4:369-374
    李尚伟,文建军,刘世贵,龙章富.石斑鱼性反转相关基因ECaM的克隆及表达特征分析.生物化学与生物物理进展,2005, 2:147-153
    李尚伟,文建军,庞岚,刘世贵.性逆转石斑鱼性腺差异表达基因的克隆和筛选.中国生物化学与分子生物学报,2004, 2:189-194
    李太平,李均祥,邓昭华.动物线粒体DNA的研究进展.青海畜牧兽医杂志,2003, 4:32-34
    梁利群,常玉梅,董崇智,等.微卫星DNA标记对乌苏里江哲罗鱼遗传多样性的分析.水产学报,2004,28(3):242-244
    林永生,张小玲.赤点石斑鱼的配合饲料研究.福建水产,1996, 4:65-66
    刘必谦,董闻琦,王亚军,等.岱衢族大黄鱼种质的AFLP分析.水生物学学报,2005,29(4):413-416.
    刘付永忠,王云新,黄国光,刘晓春,林浩然.自然产卵的赤点石斑鱼胚胎及仔鱼形态发育研究.中山大学学报(自然科学版),2001, 1:81-84
    楼宝,史海东,柴学军.不同生物饵料对赤点石斑鱼稚幼鱼生长和存活率的影响.上海水产大学学报,2004, 3:270-273
    马克平,钱迎倩,王晨.生物多样性研究的现状与发展趋势.科技导报,1995, 1:27-30
    马克平,钱迎倩.《生物多样性公约》的起草过程与主要内容.生物多样性,1994, 1:54-57
    马荣和,李加儿,周宏团,丁彦文,郑建民,邹婉虹.赤点石斑鱼人工育苗的初步研究.海洋渔业,1987, 4:158-160
    马荣和,丁彦文,李加儿,周宏团.赤点石斑鱼仔、稚、幼鱼的发育.动物学杂志,1990, 2:2-6
    毛国民,辛俭,史海东.饵料对赤点石斑鱼亲鱼产卵效果的影响.浙江海洋学院学报(自然科学版),2004, 4:295-301
    钱迎倩.生物多样性的保护和永续利用.广西科学院学报,1994, 1:4-7
    邱芳,伏健民,金德敏,王斌.遗传多样性的分子检测.生物多样性,1998, 2:143-150
    施立明.遗传多样性极其保护.生物科学信息,1990, 4:159-164
    舒琥,刘晓春,林浩然.LHRH-A缓释剂促进雄性赤点石斑鱼性类固醇激素分泌和精巢发育与排精的研究.水产学报,2005, 4:433-439
    舒琥,刘晓春,林浩然.LHRH-A缓释剂对雌性赤点石斑鱼卵巢发育、性类固醇激素分泌及脑垂体GTH细胞超微结构的影响.动物学研究,2005, 4:422-428
    舒琥,刘晓春,张勇,林浩然.赤点石斑鱼精子发生和形成的超微结构研究.中山大学学报(自然科学版),2005, 4:103-106
    王涵生,方琼珊,郑乐云.赤点石斑鱼仔稚幼鱼的形态发育和生长.上海水产大学学报,2001, 4:307-312
    王涵生,方琼珊,郑乐云.盐度对赤点石斑鱼受精卵发育的影响及仔鱼活力的判断.水产学报,2002, 4:344-350
    王涵生.赤点石斑鱼早期仔鱼轮虫日摄食量的研究.水产学报,1996, 4:365-369
    王伟,尤锋,高天翔,等.山东近海牙鲆(Paralichtys olivaceus)自然和养殖群体10个微卫星基因座位的遗传多态性分析.海洋与湖沼,2004,35(6):530-536
    王伟继,高焕,孔杰,等.利用AFLP技术分析中国明对虾的韩国南海种群和养殖群体的遗传差异.高技术通讯,2005, 15(9):81-86
    王云新,王宏东,张海发,刘付永忠.斜带石斑鱼与赤点石斑鱼的核型研究.湛江海洋大学学报,2004, 3:4-8
    王志勇,柯才焕,王艺磊,等.从AFLP指纹和标记基因序列看我国养殖的四种鲍的亲缘关系.高技术通讯,2005, 15(12):93-98
    王志勇,王艺磊,林利民,等.福建官井洋大黄鱼AFLP指纹多态性的研究.中国水产科学,2002, 9(3):198-202
    王志勇,王艺磊,林利民,等.利用AFLP指纹技术研究中国沿海真鲷群体的遗传变和趋.水产学报,2001, 25(4):289-293
    夏德全,王文君.动物线粒体DNA研究及在鱼类种群遗传结构研究中的应用.水产学报,1998, 4:364-370
    辛俭,毛国民,史海东,於海滨.赤点石斑鱼Epinephelus akaara(Temminck et Schlegel)鱼怪病(Ichthyoxeniosis)的防治研究.现代渔业信息,2004, 10:25-26
    辛俭,陈卫平,毛国民,於海滨,史海东.不同饲养环境对赤点石斑鱼亲鱼产卵效果影响的试验.浙江海洋学院学报(自然科学版),2005, 4:308-317
    许波涛,李加儿,周宏团.赤点石斑鱼的胚胎和仔鱼形态发育.水产学报,1985, 4:365-374
    杨锐,刘必谦,骆其君,等.利用AFLP技术研究条斑紫菜的遗传变异.海洋学报,2005, 27(1):159-162.
    杨少闻,刘楚吾.5种常见石斑鱼的线粒体DNA酶切物理图谱.中国水产科学,2006,13(3):344-351
    尹绍武,黄海,张本,陈国华.石斑鱼遗传多样性的研究进展.水产科学,2005,24(8):46-49
    岳志芹,王伟继,孔杰,等.用AFLP方法分析中国对虾抗病选育群体的遗传变异.水产学报,2005, 29(1):13-19.
    张雯,刘晓,张国范.利用AFLP技术研究海湾扇贝不同养殖群体的遗传结构及其分化.高技术通讯,2005, 15(4):84-88.
    张国范,常亚青,赵艳.海洋动物线粒体DNA研究进展.海洋科学,1997, 1:25-28
    张俊彬,黄良民.紫红笛鲷遗传多样性的AFLP分析.热带海洋学报,2004,23(5):50-55
    张其永,洪万树.福建沿海赤点石斑鱼资源状况的分析.福建水产,1992, 4:1-8
    张其永,洪心,蔡友义,等.赤点石斑鱼雌性性腺的周期发育.台湾海峡,1988,7(2):195-202
    张全启,徐晓斐,齐洁,等.牙鲆野生群体与养殖群体的遗传多样性分析.中国海洋大学学报,2004, 34(5):816-820
    张亚平,施立明.动物线粒体DNA多态性的研究概况.动物学研究,1992,13(3):289-298
    Ann, R.L., Brown, W.M., Wilson, A.C., 1984. Polymorphic sites and the mechanism of evolution in human mitochondrial DNA. Genetics 106, 479-499.
    Aquadro, C.F., Greenberg, B.D., 1983. Human mitochondrial DNA variation and evolution: Analysis of nucleotide sequences from seven individuals. Genetics 103, 287-312.
    Avery O.T., MacLeod C.M., and McCarty M. Studies on the chemical nature of the substance inducing transformation of pneumococcal types: Induction of transformation by a desoxyribonucleic acid fraction isolated from pneumococcus type III. The Journal of Experimental Medicine, 1944, 79:137-158
    Avise, J.C., 2000. Phylogeography: the history and formation of species. Harvard Univ. Press, Cambridge, MA, USA.
    Bandelt, H.J., Forster, P., Sykes, B.C., Richards, M.B., 1995. Mitochondrial portraits of human populations using median networks. Genetics 141, 743–753.
    Bandelt, H.J., Macaulay, V., Richards, M., 2000. Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Mol. Phylogenet. Evol. 16, 8-28.
    Beacham T.D., Lapointe M., Candy J.R., et al. DNA in action: Rapid application of DNA variation to sockeye salmon fisheries management. Conservation Genetics,2004,5:411-416
    Beadle G.W. and TatumE.L. Genetic control of biochemical reactions in Neurospora. Proceedings of the National Academy of Sciences USA, 1941, 27:499-506
    Bentzen P., Taggart C.T., Ruzzant D.E., et al. Microsatelltie polymorphism and the populations structure of Atlantic cod (Gadus morphua). Canidian Journal of Fisheries and AquaticScience,1996,53:2706-2721
    Botstein D.R., White R. L., Skolnick M., et al. Construction of a genetic linkage map in man using restriction fragment length polymorphism. The American Journal of Human Genetics, 1980, 32:314-331
    Bowen, B.W., Grant, W.S., 1997. Phylogeography of the sardines (Sardinops spp.): assessing biogeographic models and population histories in temperate upwelling zones. Evolution 51 (5), 1601-1610.
    Brown W.M. The mitochondrial genome of animals. In: MacIntyre, R.J. (Ed.), Molecular Evolutionary Genetics. Plenum, 1985, New York, 95-130
    Chapman R.W., Sedberry G.R., Koenig C.C. et al. Stock Identification of Gag, Mycteroperca microlepis, along the Southeast coast of the United States, Marine Biotechnology, 1999, 1:137–146
    Coimbra, M.R.M., Kobayashi, K., Koretsugu, S., et al. A genetic linkage map of the Japanese flounder Paralichthys olivaceus. Aquaculture, 2003, 220:203-218.
    Cold, J.R, Richchson, L.R. Mitochondrial DNA variation in an red grouper (Epinephelus morio) and greater amberjack (Seriola dumerili ) from the gulf Mexico. ICES Journal of Marine Science, 1993, 50(1):53-62.
    Cowen, R.K., Lwiza, K.M.M., Sponaugle, S., et al. Connectivity of marine populations: Open or closed? Science, 2000, 287, 857-859.
    DeWoody J.A., Avise J.C. Microsatellite variation in marine, freshwater and anadromous fishes compared with other animals. Journal of Fish Biology, 2000, 56:461-473
    Dynesius, M., Jansson, R., 2000. Evolutionary consequences of changes in species’geographical distributions driven by Milankovitch climate oscillations. Proc. Natl. Acad. Sci. USA 97, 9115-9120.
    Excoffier, L., 2004. Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol. Ecol. 13, 853-864.
    Excoffier, L., Smouse, P.E., Quattro, J.M., 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics 131, 479-491.
    Fu, Y.X., 1997. Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147, 915-925.
    Garcia de Leon F.J., Chikhi L., Bonhomme F. Microsatellite polymorphism and population subdivision in natural population of European sea bass Dicentrarchus labrax (Linnaeus,1758). Molecular Ecology, 1997, 6:51-52
    Grodzicker J., Williams J., Sharps P., et al. Physical mapping of temperature-sensitive mutations of antivirus. Cold Spring Harbor Symposium on Quantitative Biology, 1974, 39:493
    Grunwald, C., Stabile, J., Waldman, R., Gross, R., Wirgin, I., 2002. Population genetics of shortnose sturgeon Acipenser brevirostrum based on the mitochondrial DNA control regionsequences. Mol. Ecol. 11, 1885-1898.
    Harris H, Hopkinson D A. Handbook of Enzyme Electrophoresis in Human Genetics. Oxford: NorthHolland Publishing Co, 1976.
    Harris H. Enzyme polymorphism in man. Proc. Royal Sco B., 1966, 164:298-310
    Hecker K.H., Taylor P.D., Gjerde D.T. Mutation detection by denaturing DNA chromatography using fluorescently labeled polymerase chain reaction products. Analytical Biochemistry, 1999, 272:156-164
    Hedrick, P.W., Miller, P.S. Conservation genetics: techniques and fundamentals. Ecological Applications, 1992, 2:30-46.
    Hershey A.D. and Chase M. Independent functions of viral protein and nucleic acid in growth of bacteriophage. The Journal of General Physiology, 1952, 36:39-56
    Hewitt, G.M., 2000. The genetic legacy of the Quaternary ice ages. Nature 405, 907-913. Hillis D.M., Moritz C., Mable B.K. Molecular Systematics, 2nd ed. Sinauer Associates, Sunderland, 1996, 655
    Hubby J. L., Lewontin R C. A molecular app roach to the study of genetic heterozygosity in natural populations: I. The number of alleles at different loci in Drosophila pseudoobscura. Genetics, 1966, 54:577-594
    Imbrie, J., Boyle, E.A., Clemens, S.C., Duffy, A., Howard, W.R., Kukla, G., Kutzbach, J., Martinson, D.G., McIntyre, A., Mix, A.C., Molfino, B., Morley, J.J., Peterson, L.C., Pisias, N.G., Prell, W.L., Raymo, M.E., Shackleton, N.J., Toggweiler, J.R., 1992. On the structure and origin of major glaciation cycles, 1. Linear responses to Milankovitch forcing. Paleoceanography 7, 701-738.
    Innocentiis S.D., Sola L., Cataudella S. et al. Allozyme and microsatellite loci provide discordant estimates of populations differentiation in the endangered dusky grouper (Epinephelus.marginatus) within the Mediterranean Sea. Molecular Ecology, 2001, 10:2163-2175
    Kennett, J.P., Ingram, B.L., 1995. A 20,000-year record of ocean circulation and climate change from the Santa Barbara basin. Nature 377, 510-514.
    Knapik E.W., Goodman A., Atkinson O.S., et al. A reference cross DNA panel for zebrafish (Danio rerio) anchored with simple sequence length polymorphisms. Development, 1996,123:451-460
    Kotilainen, A.T., Shackleton, N.J., 1995. Rapid climate variability in the North Pacific Ocean during the past 95,000 years. Nature 377, 323-326.
    Kumar, S., Tamura, K., Jakobsen, I.B., Nei, M., 2001. MEGA2: Molecular Evolutionary Genetics Analyses software. Bioinformatics 17, 1244-1245.
    Lambeck, K., Esat, T.M., Potter, E.K., 2002. Links between climate and sea levels for the past three million years. Nature 419, 199-206.
    Lecomte, F., Grant, W.S., Dodson, J.J., Rodriguez-sanchez, R., Bowen, B.W., 2004. Living withuncertainty: genetic imprints of climate shrifts in East Pacific anchovy (Engraulis mordax) and sardine (Sardinops sagax). Mol. Ecol. 13, 2169-2182.
    Lee, W.J., Conroy, J., Howell, W.H., Kocher, T.D., 1995. Structure and evolution of teleost mitochondrial control regions. J. Mol. Evol. 41 (1), 54-66.
    Litt M., Luty J.A. A hypervariable microsatellite revealed by in vitro amplification of dinucleotide repeat within the cardiac muscle actin gene. The American Journal of Human Genetics, 1989, 44:397–401
    Liu J.X, Gao T.X, Zhuang Z.M, Jin X.S, Yokogawa K, Zhang Y.P, 2006.Late Pleistocene divergence and subsequent population expansion of two closely related fish species, Japanese anchovy (Engraulis japonicus) and Australian anchovy (Engraulis australis). Molecular Phylogenetics and Evolution
    Liu Z.J., Cordes J.F. DNA marker technologies and their applications in aquaculture genetics. Aquaculture, 2004, 238:1-37
    Liu Z.J., Karsi A., Dunham R.A. Development of polymorphic EST markers suitable for genetic linkage mapping of catfish Marine Biotechnology, 1999, 1:437-447
    Liu, Y., Chen, S., Li, B., et al. Analysis of genetic variation in selected stocks of hatchery flounder, Paralichthys olivaceus, using AFLP markers. Biochemical Systematics and Ecology, 2005, 33:993-1005.
    Markert C. L., and Mu11er F. Multiple forms of enzymes: tissue, ontogenetic, and species specific patterns. Proceedings of the National Academy of Sciences USA, 1959, 45:753-763
    May B., Johnson K.R. Composite linkage map of salmonid fishes (Salvelinus salmo, and Oncorhynchus). In: O’Brien, S.J. (Ed.), Genetic Maps: Locus Maps of Complex Genomes. Cold Spring Harbor, 1993, 4:309-317
    Mickett, K., Morton, C., Feng, J., et al. Assessing genetic diversity of domestic populations of channel catfish (Ictalurus punctatus) in Alabama using AFLP markers. Aquaculture, 2003, 228:91–105.
    Moon T.S., Choi H.S., Park S.R. Effects of rearing densities and feeding frequencies on the growth of red-spotted grouper (Epinephelus akaara) in net cages and land based tanks. Bull. Natl. Fish. Res. Dev. Inst.,1997, 53:65-71
    Morris A.V., Roberts C.M., Hawkins J.P. The threatened status of groupers (Epinephelinae). Biodiversity and Conservation, 2000, 7:919-942
    Murphy R.W., Sites J.W., Buth D.G., Haufler C.H. Proteins I: Isozyme electrophoresis. In: Hillis D.M., Moritz C., Mable B.K. (Eds.), Molecular Systematics, 2nd ed. Sinauer Associates, Sunderland, MA, 1996,51– 132
    Nei, M., 1987. Molecular evolutionary genetics. Columbia University Press, New York.
    Neilson J.L. Gan C.A.,Wright J.M., et al. Biogeographic distribution of mitochondrial and nuclear markers for southern steelhead. Molecular Marine Biology and Biotechnology, 1994, 3:281-293
    Nugroho E., Takagi M., Sugama K., et al. Detection of GT microsatellite loci and their polymorphism for grouper of the genus Epinephelus. Fisheries Science, 1998, 64:836-837
    O'connell J., Benett J.M., O′Sullivan C., et al. The Fas counterattack:a molecular mechanism of tumor immune privilege . Molecular Medicine, 1997, 3:294
    Okumura S., Okamoto K., Oomori R., Nakazono A. Spawning behavior and artificial fertilization in captive reared red spotted grouper, Epinephelus akaara. Aquaculture, 2002,34:165-173
    Palumbi, S.R. Population genetics, demographic connectivity, and the design of marine reserves. Ecological Applications, 2003, 13(1) Supplement, 146-158.
    Park P., Moran P. Developments in molecular genetic techniques, <>. Chapman&Hall (England, London), 1995, 1-28
    Pasdar M., Philipp D.P., Whitt G.S. Linkage relationships of nine enzyme loci in sunfishes (Lepomis Centrarchidae). Genetics,1984,107 :435-446
    Pasteur N., Pasteur G., Bonhomme F., Catalan J., et al. Practical isozyme genetics. Ellis Horwood Limited. Chichester , 1988, 61-150
    Ray, N., Currat, M., Excoffier, L., 2003. Intra-deme molecular diversity in spatially expanding populations. Mol. Biol. Evol. 20, 76-86.
    Rhoes K.L., Lewis R.L., Chapman R.W., et al. Genetic structure camouflage groupers, Epinephelus ployphekadion, in the western central Pacific. Marine biology, 2003, 142(4):771-776
    RiveraM. J., Glenn C.G., and George K.R. Isolation and Characterization of nine microsatellite loci from the Hawaiian Grouper Epinephelus Quernus (Serranidae) for population genetic analyses. Marine Biotechnology, 2003, 5:126–129
    Rogers, A.R., Harpending, H., 1992. Population growth makes waves in the distribution of pairwise genetic differences. Mol. Biol. Evol. 9, 552-569.
    Ryman N., Utter F. Population Genetics and Fishery Management University of Washington Press, Seattle, 1987,420
    Saiki R.K, Scharf S., Falloona F., et al. Enzymatic amplification of beta-blobin genomic sequences and restriction analysis for diagnosys of sickle cell anaemia. Science, 1985, 230:1350-1354
    Saitou, N., Nei, M., 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406-425.
    Satyendra K. U., Su Y. Q., Wang J., et al.Identification and characterization of microsatellite markers for yellow grouper Epinephelus awoara and bluelined hind Cephalopholis Formosa. High Technology Letters,2005,11(3):329-332
    Schaal B. A., Leverich W. J., Rogstad S. H. Comparison of methods for assessing genetic variation in plant conservation biology. I Falk, D. A. & K. E. Holsinger (eds.). Genetics and Conservation of Rare Plants. New York:Oxford University Press, 1991, 123-134
    Schneider, S., Excoffier, L., 1999. Estimation of past demographic parameters from thedistribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152, 1079-1089.
    Schneider, S., Roessli, D., Excoffier, L., 2000. ARLEQUIN, version 2.0: a software for population genetic data analysis. Geneva: University of Geneva.
    Slatkin, M., Hudson, R.H., 1991. Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics 129, 555-562.
    Smithies O. Zone electrophoresis in starch gels: group variations in the serum proteins of normal human adults. Biochemical Journal, 1955, 61:629-641
    Southern E.M. Detection of specific sequences among DNA fragments separated by gel electrophoresis. Journal of Molecular Biology, 1976, 98:503– 517
    Swearer, S.E., Caselle, J.E., Lea, D.W., Warner, R.R. Larval retention and recruitment in an island population of a coral-reef fish. Nature, 1999, 402, 799-802.
    Tajima, F., 1989a. Statistical-method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.
    Tajima, F., 1989b. The effect of change in population size on population DNA polymorphism. Genetics 123, 597-601.
    Vigilant, L., Pennington, R., Harpending, H., Kocher, T.D., Wilson, A.C., 1989. Mitochondrial DNA sequences in single hairs from a southern African population. Proc. Natl. Acad. Sci. USA 86, 9350-9354.
    Vos P., Hogers R.M., Bleeker M., et al. AFLP:a new technique for DNA fingerprinting. Nucleic Acids Research, 1995, 23(21):4407-4414
    Wang, Z.Y., Tsoi, K.H., Chu, K.H. Applications of AFLP technology in genetic and phylogenetic analysis of penaeid shrimp. Biochemical Systematics and Ecology. 2004, 32(4): 399-407.
    Weir, B.S., Cockerham, C.C., 1984. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358-1370.
    Welsh J., McClelland M., Fingerprinting genomes using PCR with arbitrary primers, Nucleic Acids Research, 1990, 18:7213-7218
    Wennevik V., Skaala O., Titov S.F., et al. Microsatellite variation in populations of Atlantic salmon from north Europe. Environmental Biology of Fishes, 2004, 69:143-152
    Williams J.G.., Kubelik A.R., Licak K.J., et al. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers, Nucleic Acids Research, 1990, 18(22): 6531-6535.
    Wright S. The genetical structure of populations. Annals of Eugenics, 1951, 15:323
    Xu Z.H., Primavera J.H., Pena L. D., et al. Genetic diversity of wild and cultured black tiger shrimp Penaeus monodon in the Philippines using microsatellites. Aquaculture, 2001, 199:13-40
    Yue, G.H., Li, Y., Lim, L.C., et al. Monitoring the genetic diversity of three Asian arowana (Scleropages formosus) captive stocks using AFLP and microsatellites. Aquaculture, 2004, 237:89-102.
    ZatcoffM. S., Ball A.O. and Chapmam R.W. Characterization of polymorphic microsatellite loci from black grouper, Mycteroperca bonaci (Teleostei: Serranidae),Molecular Ecology Notes, 2002, 2:217–219

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700