胆碱生物学效价评定及其在肉鸡体内代谢与需要量的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本课题围绕胆碱生物学效价、肉鸡对胆碱的代谢与需要量展开研究,分别探究了常规饲料原料中胆碱的生物利用率、不同饲养阶段肉鸡胆碱和蛋氨酸的最佳添加水平、肉鸡对以氯化胆碱形式补充的胆碱的吸收代谢规律。旨在为生产实践提供更详尽的理论依据的同时,也为动物营养物质需要量的研究提供新的方法和思路。
     试验一不同饲料原料中胆碱生物学效价的评定
     本研究采用斜率比法对玉米、豆粕、菜粕和玉米酒精糟(DDGS)中胆碱的生物学效价(RBV)进行了评估。试验选用1日龄爱拔益加(AA)肉仔鸡132只,随机分为22个处理,其中S1~S6组为标准曲线组,A1~A4组为玉米日粮组,B1~B4组为豆粕日粮组,C1~C4为菜粕日粮组,D1~D4为DDGS日粮组,每个处理6个重复,每个重复1只鸡。基础日粮采用醇提法将玉米、豆粕、菜粕和DDGS中的胆碱洗脱后配制而成。在基础日粮中添加不同剂量的氯化胆碱配制6种梯度的标准日粮;另将4种待测原料分别以10%、20%、40%和100%的比例替换洗脱过的相应原料配制试验日粮。分别以1~21日龄的平均日增重、肝脏脂肪含量和全血胆碱浓度为衡量指标,以比斜率法计算待测原料的相对生物学利用率,试验期21天。结果显示:以平均日增重为指标,玉米、豆粕、菜粕和DDGS中胆碱RBV分别为:63.95%、104.7%、37.98%和72.09%;以全血胆碱浓度为指标,玉米、豆粕和DDGS中胆碱RBV分别为:94.73%、184.11%和134.23%。以日增重和全血胆碱含量为指标衡量饲料原料中胆碱生物学效价是可行的,但由于选择指标的不同,所得数值亦有所差异。4种参试原料中胆碱的相对生物学利用率从高到低依次为:豆粕、DDGS、玉米和菜粕。
     试验二口服不同剂量氯化胆碱在肉鸡体内的代谢动力学研究
     本试验旨在采用药代动力学的研究手段,探索氯化胆碱在肉鸡体内的吸收代谢规律。试验选用12只9周龄的AA肉公鸡,按体重分别单次口服氯化胆碱200和400mg/kg(以胆碱计算),并做空白对照。采取血样,对血样中的胆碱浓度进行离子色谱法的测定,并用药动学处理软件WinNonlin5.2中的非房室模型方法计算药代动力学参数。结果显示,空白对照组内源胆碱的合成水平基本稳定;不同灌喂剂量的氯化胆碱在肉鸡体内药动学过程存在差异,表观分布容积Vz/F和血药表观清除率CLz/F差异极显著(P<0.01);灌喂剂量在200~400mg/kg内,胆碱的药动学行为呈线性关系。肉鸡口服两种剂量的主要药动学参数如下。200mg:t_(max)为8.0h,C_(max)为399.88mg/kg,t_(1/2)为7.60h,AUC_(0-∞)为5979.06mg·h/kg,Vz/F为876.99L/kg,CLz/F为83.27mg/h/kg;400mg:t_(max)为8.0h,C_(max)为445.88mg/kg,t1/2为9.91h,AUC_(0-∞)为10899.78mg/h/kg,Vz/F为318.43L/kg,CLz/F为21.22mg/h/kg。200mg剂量的胆碱更易进入细胞用于物质的生物合成。提示单纯依靠增加氯化胆碱剂量无法实现提高胆碱生物利用率的目的。
     试验三二次正交旋转组合设计优化1~21日龄肉仔鸡胆碱和蛋氨酸需要量的研究
     本试验以低胆碱、低蛋氨酸日粮为基础日粮,通过两因子二次回归正交旋转组合设计,旨在研究1~21日龄肉仔鸡胆碱和蛋氨酸的最佳需要量。试验选用1日龄爱拔益加(AA)肉仔鸡480只,随机分为12个处理,其中1~8组为试验组,9~12组为中心组,每个处理4个重复,每个重复10只鸡,公母各半。分别以胆碱和蛋氨酸为自变量,以反映肉仔鸡生长性能和屠宰性能的各项指标为因变量拟合回归方程,估计1~21日龄肉仔鸡胆碱和蛋氨酸需要量。试验期21d。结果表明:一定水平的胆碱和蛋氨酸可显著改善1~21日龄肉仔鸡的平均日增重、料肉比、屠宰率和腹脂率。当蛋氨酸水平为0.5~0.7%时,随着胆碱水平的降低,肉仔鸡平均日增重逐渐降低;当蛋氨酸水平为0.42~0.5%,胆碱水平为1300~1738mg/kg时,肉仔鸡的料重比达到最低;蛋氨酸水平为0.5~0.7%时,屠宰率随着蛋氨酸水平的升高而下降,蛋氨酸为0.36~0.5%时,随着胆碱水平的升高,屠宰率呈上升趋势;随着胆碱水平的升高,腹脂率逐渐降低;当胆碱水平在1300~1920mg/kg时,腹脂率随蛋氨酸水平的降低而下降。在本试验条件下,当胆碱水平为1434~1631mg/kg,蛋氨酸水平为0.47%时,肉仔鸡可达到最佳生长性能;当胆碱水平为1984mg/kg,蛋氨酸水平为0.49%时,肉仔鸡可达到最佳屠宰性能。
     试验四二次正交旋转组合设计优化21~42日龄肉仔鸡胆碱和蛋氨酸需要量的研究
     本试验以低胆碱、低蛋氨酸日粮为基础日粮,通过二元二次正交旋转组合设计,对21~42日龄肉仔鸡胆碱和蛋氨酸需要量进行研究。试验选用21日龄爱拔益加(AA)肉仔鸡480只,随机分为12个处理,其中1~8组为试验组,9~12组为中心组,每个处理4个重复,每个重复10只鸡,公母各半。分别以胆碱和蛋氨酸为自变量,以反映肉仔鸡生长性能和屠宰性能的各项指标为因变量拟合回归方程,估计21~42日龄肉仔鸡胆碱和蛋氨酸的需要量。试验期21d。结果表明,胆碱和蛋氨酸水平对21~42日龄肉仔鸡的日平均采食量、料重比、腹脂率和肝脏脂肪含量有显著影响。当胆碱水平在860~1120mg/kg,肉仔鸡平均日采食量随着蛋氨酸的添加而升高,蛋氨酸水平增至0.4%后,继续增加对采食量的改善作用不明显;蛋氨酸水平在0.35~0.42%,胆碱水平在860~1120mg/kg时,肉鸡的料重比达到最低值;蛋氨酸水平为0.3~0.47%,随着胆碱的增加肉鸡腹脂率呈下降趋势;当蛋氨酸水平为0.3~0.4%,胆碱水平为1000~1400mg/kg时,肉鸡肝脏脂肪含量随着胆碱的增加和蛋氨酸的降低呈下降趋势。在本试验条件下,当胆碱水平为990~1030mg/kg,蛋氨酸水平为0.4~0.43%时,肉仔鸡可达到最佳生长性能;当胆碱水平为1780~1880mg/kg,蛋氨酸水平为0.37~0.38%时,肉仔鸡可达到最佳屠宰性能。
In order to investigate the choline requirement of broiler, three trials were conducted, including theoptimal choline requirement level of of broiler; the bioavailability of choline in the feedstuffs; and thecholine chloride absorption and metabolism in broiler. It was expected to provide more detailedtheoretical basis for the practial production, as well as to offer a new methods and ideas for the researchof nutrient requirement from multiple perspectives.
     Exp.1Evaluate the Bioavailability of Choline in Various Feedstuffs
     This Study was conducted to evaluate the relative biological value (RBV) of choline in corn, soybeanmeal, canola meal and distillers dried grains with soluble (DDGS). A total of132one-day-old broilerswere divided into22groups (6replicates per group and each replicate had1broiler). Groups S1-S6were standard curve group, Groups A1-A4were corn groups, Group B1-B4were soybean meal groups,Group C1-C4were canola meal groups, and Groups D1-D4were DDGS groups. The basic dietcontained the four feedstuffs above with lowered choline content through being extracted withmethanol/alcohol. All the test diets had the same composition as that of the basic diet except cholinecontent. A choline response curve was generated using crystalline choline chloride added to the basicdiet. The experiment diets were made from the basic diet in which the washed feedstuff was replacedwith the intact one with10%,20%,40%, and100%. In the slope ratio assays to determine cholineavailability, measured by average daily gain (ADG) and choline concentration in blood. The experimentlasted for21d. Using ADG as response criterion, the choline RBV of corn, soybean meal, canola meal,and DDGS were:63.95%,104.7%,37.98%, and72.09%; using choline concentration in blood asresponse criterion, the RBV of corn, soybean meal, and DDGS were:94.73%,184.11%, and canolameal,37.98%,134.23%.It is possible to evaluate the bioavailability of choline in feedstuffs using ADGand choline concentration in blood as criteria. But the values will be different in different criteria. Fromhigh to low, choline RBV of the four feedstuffs were soybean meal, DDGS, corn and canola meal,respectively.
     Exp.2Pharmacokinetic Study of Choline Chloride in Broiler by Oral Administration
     To compare the pharmacokinetics of choline chloride in broiler after oral administration of differentdoses, a study was conducted.12male broilers received0,200,400mg/kg of choline (the form ofcholine chloride) by oral administration, respectively. Every treatment had4duplicates. Every duplicatehad1broiler. We took blood in different time according to the experimental design. The bloodconcentration of the choline was analyzed by ion chromatography. The pharmacokinetics parameterswere calculated by WinNonlin5.2using non-compartment model.The result showed that, endogenoussynthesis of choline was stable. The pharmacokinetics of choline chloride at the two doses was different,which was significant difference on Vz/F and CLz/F (P<0.01). It showed linear pharmacokinetics in broilers, when the dose was200to400mg/kg. The pharmaceutical parameters in broilers after singleadministration of the two doses of choline chloride orally were as follow.200mg: t_(max)C_(max)t1/2AUC_(0-∞)Vz/F and CLz/F were8.0h,399.88mg/kg,7.60h,5979.06mg/h/kg,876.99L/kg,83.27mg/h/kg;400mg: t_(max)C_(max)t1/2AUC_(0-∞)Vz/F and CLz/F were8.0h,445.88mg/kg,9.91h,10899.78mg/h/kg,318.43L/kg,21.22mg/h/kg. The dose of200mg had more possibility to enter to cell, inwhere the choline can be used to biosynthesize. We concluded that it was impossible that to enhancingthe bioavailability of choline only relying on increasing the dose of choline chloride.
     Exp.3Requirement of Choline and Methionine of Broiler Aged1to21Days by QuadraticOrthogonal Rotation Combination Design
     A research on choline and methionine requirements for broilers aged1to21days were carried out. Atotal of480one-day old broilers were divided into12groups (4duplicates per group and each duplicatehad10broilers) in random. A diet with low level of choline and methionine was used as the basic diet inthis experiment, in which the contents of choline and methionine were680mg/kg and0.30%,respectively. To study the influence of different choline and methionine levels on growth performanceand slaughter performance, a two-factor combinational design of quadratic regression and orthogonalrotation was used. The results showed that a certain levels of choline and methionine could improveADG, F/G, dressing percentage and abdominal fat percentage of broiler aged1to21days. Whenmethionine levels were0.5~0.7%, ADG of broilers was decreased with the reduction of choline levels.When the methionine levels were0.42~0.5%, the choline levels were1300~1738mg/kg, F/G wasminimum. When methionine levels were0.5~0.7%, the dressing percentage was decreased with theincreasing methionine levels; methionine were0.36~0.5%, the dressing percentage was improved withthe addition of choline. Abdominal fat percentage was decreased with the rise of the choline levels;when choline levels were1300~1920mg/kg, abdominal fat percentage was decreased with thereducing methionine. It could be concluded that the requirements of choline and methionine for optimalgrowth performance were1434~1631mg/kg and0.47%. The requirements of choline and methioninefor optimal carcass performance were1984mg/kg and0.49%.
     Exp.4Requirement of Choline and Methionine of Broiler Aged21to42Days by QuadraticOrthogonal Rotation Combination Design
     A research on choline and methionine requirements for broilers aged21to42days were carried out.A total of48021-day old broilers were divided into12groups (4duplicates per group and eachduplicate had10broilers) in random. A diet with low level of choline and methionine was used as thebasic diet in this experiment, in which the contents of choline and methionine were600mg/kg and0.30%respectively. To study the influence of different choline and methionine levels on growthperformance and slaughter performance, a two-factor combinational design of quadratic regression andorthogonal rotation to study the influence on production and slaughter performance in different choline and methionine was used. The results showed that choline and methionine have significant effects onADFI, F/G, abdominal fat and lowest liver fat of21to42days broilers. When choline levels were860~1120mg/kg, ADFI was enhanced with the rise of methionine, till the levels of methionine added at0.4%. When the methionine were0.35~0.42%, choline were860~1120mg/kg, F/G was minimum.When methionine were0.3~0.47%, abdominal fat percentage was decreased with the rise of the cholinelevels. When the levels of methionine were0.30~0.40%,choline were1000~1400mg/kg, the liver fatof broilers was decreased with the rise of choline and the reducing methionine. In this experiment,choline and methionine requirements for best growth performance of broilers aged21to42days were990-1030mg/kg and0.40-0.43%, respectively. For best slaughter performance, choline and methioninerequirements were1780-1880mg/kg and0.37-0.38%, respectively.
引文
1.陈宝江,王承民.用甜菜碱替代部分蛋氨酸对肉仔鸡生产性能的影响.当代畜牧,2001(4):27.
    2.陈承祯.烟酰胺、胆碱对肉仔鸡生长性能及脂肪代谢的影响:[硕士论文]中国人民解放军军需大学,2002.
    3.陈芳,杨代勤,阮国良,等.胆碱对黄鳝消化酶活性的影响.集美大学学报(自然科学版),2006(3):203-207.
    4.戴洪伟.21~42日龄肉仔鸡蛋氨酸需求量的研究:[硕士论文]杨凌:西北农林科技大学,
    2003.
    5.丁永胜,牟世芬.离子色谱法测定饲料中氯化胆碱和三甲胺的含量.色谱,2004(2):174-176.
    6.高山林,郡翠红,李艳娥,等.甜菜碱替代蛋氨酸对肉仔鸡生产性能的影响.畜禽业,2005(5):48-49.
    7.高艳霞,李同洲,李建国.甜菜碱在猪营养上的作用.饲料博览,2002(10):39-41.
    8.顾志良,赵万里,周勤宣.肉鸡腹脂与皮下脂肪、肌脂率、肝脂率的关系.中国家禽,1994(3):27-29.
    9.呙于明,邝贤斌,徐仁达,等.在肉仔鸡日粮中以甜菜碱替代部分蛋氨酸的研究.中国饲料,1997(2).
    10.郭小权,徐国华,刘姝.畜禽胆碱缺乏症及其防治.江西畜牧兽医杂志,2001(3):22-23.
    11.郭玉琴,丁角立.日粮中不同甜菜碱和胆碱水平对肉仔鸡脂类代谢的影响.中国畜牧杂志,1998,34(5):31-32.
    12.黄钧,蒋伟明,甘西,等.不同胆碱水平对斑点叉尾鮰幼鱼生产性能的影响.广西畜牧兽医,2010,26(4):195-197.
    13.黄丽,刘京平,容晓文.在线渗析-离子色谱法直接测定奶粉中胆碱.中国卫生检验杂志,2008(3):444-445.
    14.霍启光.胆碱.北京:中国农业科学技术出版社,1993.
    15.李慧,王宏,任泽林.胆碱的研究进展.饲料工业,2007(20):7-10.
    16.李建亚.胆碱的生理功能和饲料添加.中国饲料,1990(2):28-30.
    17.李媛媛,薛静,李莹倩,等.离子色谱法测定婴幼儿乳粉中的胆碱含量.食品科技,2008(12):267-270.
    18.刘邵扬,黄得纯,吕敏芝等.仙湖肉鸭B系肌内脂肪含量与屠体性能关系研究.广东畜牧兽医科技,2011,36(3):15-17.
    19.鲁建伟,蔡辉益.日粮中添加叶酸和甜菜碱节约蛋氨酸和胆碱的效应对肉仔鸡生理生化和生产性能的影响.饲料工业,2002(7):6-10.
    20.沈红.胆碱的生物学效应的研究.北京农学院学报,2000(3):62-66.
    21.沈红,霍启光.日粮胆碱水平及其存在形式对肉仔鸡的影响.中国畜牧杂志,1999,35(6):24-26.
    22.谭林,姜海龙.肌内脂肪含量与猪肉品质的相关性分析.饲料博览,2010,12:11-13.
    23.唐登华,殷裕斌,郭良辉.肉仔鸡日粮中氯化胆碱添加量的研究.湖北农学院学报,2001,21(4):323-325.
    24.汪以真,许梓荣,冯杰.甜菜碱对猪肉品质的影响及机理探讨.中国农业科学,2000,33(1):94-99.
    25.王道尊,赵亮,谭玉钧.草鱼鱼种对胆碱需要量的研究.水产学报,1995,19(2):133-139.
    26.王宏,霍启光.家禽机体对胆碱的需要量.中国家禽,1997(8):40-41.
    27.王宏,霍启光.胆碱对鸡脂肪代谢的调节作用.中国饲料,1998(4):14-15.
    28.王宏,霍启光.动物营养中胆碱同其它甲基供体间的关系.动物营养学报,1999,11(2):1-5.
    29.王吉峰,郝正里.玉米豆粕中胆碱生物学效价的研究.2001,13(2):58-64.
    30.王锐,侯永清.胆碱和甜菜碱对鲫鱼肝、胰脏脂质积累的影响.粮食与饲料工业,2004(4):43-44.
    31.王三立.禽生产.1.中国重庆:重庆大学出版社,2007.
    32.王玉芳,王树人,陈海艳,等.同型半胱氨酸对培养内皮细胞损伤的研究.中国病理生理杂志,2001,17(3):268-270.
    33.徐之勇,刘卫彩,余燕,等.日粮中不同胆碱含量对雏鸡的影响.养禽与禽病防治,2010(2):11-14.
    34.许丽.鸡营养中的胆碱及其效用评价:[博士论文]东北农业大学,2002.
    35.薛静.离子色谱法和高效液相色谱法测定奶粉中胆碱含量的研究:[硕士论文]东北师范大学,
    2008.
    36.杨永明,卢德勋,甄玉国.胆碱及其应用.饲料博览,2001(3):38-41.
    37.易中华.家禽营养中甜菜碱与蛋氨酸和胆碱的关系.饲料博览,2002(2):7-8.
    38.张宏福,赵峰,张子仪.仿生消化法评定猪饲料生物学效价的研究进展//张宏福.饲料营养研究进展.北京:中国农业科学技术出版社,2010:36-43.
    39.张幸开.维生素A对肉牛肌内脂肪沉积及ACC/HSL、PPARγ基因表达的影响:[硕士论文]杨凌:西北农林科技大学,2005.
    40.章礼刚.胆碱、蛋氨酸和硫酸盐的营养原理及应用.饲料研究,1987(11):45-47.
    41.赵学军,叶均安,刘建新.高产奶牛的叶酸、VB12和胆碱营养及其相互关系.饲料博览,2003(3):8-11.
    42.郑长山.胆碱、蛋氨酸和硫酸盐在家禽营养中的相互关系.河北农业大学学报,1989(3):138-142.
    43.郑洪国,宁张磊,梁立娜.离子色谱法检测氯化胆碱及杂质胺/铵的含量.饲料工业,2009(5):26-28.
    44.中华人民共和国国家质量监督检验检疫总局. HG/T2941-2004饲料级氯化胆碱的测定.2004.
    45.中华人民共和国国家质量监督检验检疫总局. GB/T17481-2008预混料中氯化胆碱的测定.
    2008.
    46.中华人民共和国卫生部. GB/T5413.20-1997婴幼儿配方食品和乳粉胆碱的测定.1997.
    47.周磊,范茂丹,陆鸣.脂肪肝与血脂参数的相关性分析.中国疗养医学,2001,20(3):214-215
    48.周源,冯国强,李丹丹,等.黄羽肉鸡对胆碱的需要量研究.中国家禽,2011,33(3):14-17.
    49. Ahmed M. E., Abdelati K. A. Effect of Choline Chloride Supplementation on Broiler Chicks FedLeucaena Leucocephala Seeds. International Poultry Science,2011,10(2):143-146.
    50. Alexander H. D., Engel R. W. The importance of choline in the prevention of nutritional edema inrats fed low-protein diets. Journal of Nutrition,1952,47(3):361-374.
    51. Ashburn L. L., Sebrell W. H., Lillie R. D. Histogenesis and repair of the hepatic cirrhosis in ratsproduced on low protein diets and preventable with choline. Washington: U.S. GovernmentPrinting Office,1942.
    52. Augspurger N. R., Scherer C. S., Garrow T. A., et al. Dietary S-methylmethionine, a component offoods, has choline-sparing activity in chickens. Journal of Nutrition,2005,135(7):1712-1717.
    53. Baker D. H., Czarnecki G. L. Transmethylation of Homocysteine to Methionine: Efficiency in theRat and Chick. Journal of Nutrition,1985,115:1291-1299.
    54. Baker D. H., Halpin K. M., Czarnecki G. L., et al. The choline-methionine interrelationship forgrowth of the chick. Poultry Science,1983,62(1):133-137.
    55. Barak A. J., Tuma D. J. A simplified procedure for the determination of betaine in liver. Journal ofLipids,1979,14(10):860-863.
    56. Barak A. J., Tuma D. J., Beckenhauer H. C. Ethanol, the choline requirement, methylation andliver injury. Life Sciences,1985,37(9):789-791.
    57. Bernheim F., Bernheim M. Oxidation of acetylcholine by tissues. American Journal of Physiology,1933,104:438-440.
    58. Best C. H., Huntsman M. The effects of the components of lecithine upon deposition of fat in theliver. Journal of Physiology,1932,75(10):405-412.
    59. Blusztajn J., Zeisel S., Wurtman R. Synthesis of lecithin (phosphatidylcholine) fromphosphatidylethanolamine in bovine brain. Brain Research,1979,179:319-327.
    60. Borkenhagen L., Kennedy E., Fielding L. Enzymatic formation and decarboxylation ofphosphatidylserine. Journal of Biological Chemistry,1961,236:C28-C30.
    61. Bremer J., GreenbergDM. Biosynthesis of choline in vitro. Biochimica et Biophysica Acta,1960,46:205.
    62. Bremer J., P H. F., D M. G. The biosynthesis of choline and its relation to phospholipldmetabolism. Biochimica et Biophysica Acta-Bioenergetics,1960,43:477.
    63. Buchman A. L., Ament M. E., Jenden D. J., et al. Choline deficiency is associated with increasedrisk for venous catheter thrombosis. Journal of Parenteral and Enteral Nutrition (JPEN),2006,30(4):317-320.
    64. Bunchasak C. Role of Dietary Methionine in Poultry Production. Poultry Science,2009,46(3):169-179.
    65. Chaplin M. D., Mulford D. J. Amino alcohols and methyl donors in rats fed low choline dietscontaining added cholesterol. Journal of Nutrition,1966,89(4):501-504.
    66. Chew T. W., Jiang X., Yan J., et al. Gender and folate intake affect choline dynamics and geneexpression in mice consuming isotopically labeled choline. Journal of Nutrition,2011,141(8):1475-1481.
    67. Crews F. T., Hirata F., Axelrod J. Identification and properties of methyltransferases thatsynthesize phosphatidylcholine in rat brain synaptosomes. Journal of Neurochemistry,1980,34(6):1491-1498.
    68. Daft F. S., Sebrell W. H., Lowry J. V. Treatment of dietary liver cirrhosis in rats with choline andcasein. Washington: U.S. Government Printing Office,1941.
    69. Daily J. W., Sachan D. S. Choline supplementation alters carnitine homeostasis in humans andguinea pigs. Journal of nutrition,1995,125(7):1938-1944.
    70. Dantzler W., Evans K., Wright S. Basolateral choline transport in isolated rabbit renal proximaltubules. Pflügers Archiv European Journal of Physiology,1998,436:899-905.
    71. Davis K. L., Hollister L. E., Barchas J. D., et al. Choline in tardive dyskinesia and Huntington'sdisease. Life Science,1976,19(10):1507-1515.
    72. de la Huerga J., Popper H. Urinary excretion of choline metabolites following cholineadministration in normals and patients with hepatobiliary diseases. Journal of Clinical Investigation,1951,30(5):463-470.
    73. Degani H., Eliyahu G., Maril N. Choline metabolism: Meaning and significance. SyllabusEducational Course International Socety for Magnetic Resonance in Medicine,2006.
    74. Du Vigneaud V. J. P. C. The effect of choline on the ability of homocystine to replace methioninein the diet. Journal of Biological Chemistry,1939,131:57-76.
    75. Emmert J. L., Baker D. H. A chick bioassay approach for determining the bioavailable cholineconcentration in normal and overheated soybean meal, canola meal and peanut meal. Journal ofNutrition,1997,127(5):745-752.
    76. Emmert J. L., Garrow T. A., Baker D. H. Hepatic betaine-homocysteine methyltransferase activityin the chicken is influenced by dietary intake of sulfur amino acids, choline and betaine. Journal ofNutrition,1996,126(8):2050-2058.
    77. Feed AP. Scientific Opinion on safety and efficacy of choline chloride as a feed additive for allanimal species. European Food Safety Authority Journal,2011,9(9):2353.
    78. Finlelstein J. D., Martin J. J., Harris B. J., et al. Regulation of Hepatic HomocysteineMethyltransferase by Dietary Betaine. Journal of Nutrition,1983,113:519-521.
    79. Fischer L. M., DaCosta K. A., Kwock L., et al. Sex and menopausal status influence human dietaryrequirements for the nutrient choline. American Journal of Clinical Nutrition,2007,85(5):1275-1285.
    80. Fouladi P., Nobar R. S. D., Ahmadzade A., et al. Effect of Choline Chloride Supplement on theInternal Organs and Carcass Weight of Broilers Chickens. Journal of Animal and VeternaryAdvance,2008,7(9):1164-1167.
    81. Fritz J. C., Roberts T., Boehne J. W. The chick's response to choline and its application to an assayfor choline in feedstuffs. Poultry Science,1967,46(6):1447-1454.
    82. Gelenberg A. J., Wojcik J., Falk W. E., et al. CDP-choline for the treatment of tardive dyskinesia: asmall negative series. Comprehensive Psychiatry,1989,30(1):1-4.
    83. Gordon R. S., Sizer. I. W. Ability of sodium sulfate to stimulate growth of the chicken. Science,1955,122:1270.
    84. Growdon J. H., Wurtman R. J., Barbeau A. Choline and lecithin in brain disorders. New York:Raven Press,1979.
    85. Hale O. M., Schaefer A. E. Choline requirement of rats as influenced by age, strain, vitamin B12and folacin. Proceedings of the Society for Experimental Biology and Medicine,1951,77(4):633-636.
    86. Hartroft W. S., Ridout J. H., Sellers E. A., et al. Atheromatous changes in aorta, carotid andcoronary arteries of choline-deficient rats. Proceedings of the Society for Experimental Biologyand Medicine,1952,81:384.
    87. Haubrich D. R., Gerber N., Pflueger A. Choline availability and the synthesis ofacetylcholine.//Wurtman Rj W. J. E. Nutrition and Brain. New York: Raven Press,1979:57-71.
    88. Haubrich, Gerber N. Choline dehydrogenase. Assay, properties and inhibitors. BiochemicalPharmacology,1981,30:2993-3000.
    89. HAWorked,陈勇.对胆碱的再认识.畜禽业,1999,115(11):15-16.
    90. Hirata F., Axelrod J. Enzymatic synthesis and rapid translocation of phosphatidylcholine by twomethyltransferases in erythrocyte membranes. Proceedings of the National Academy of SciencesUSA,1978,75:2348-2352.
    91. Holbrook P., Wurtman R. Presence of base‐exchange activity in rat brain nerve endings:Dependence on soluble substrate concentrations and effect of cations. Journal of Neurochemistry,1988,50:156-162.
    92. Hongu N., Sachan D. S. Carnitine and Choline Supplementation with Exercise Alter CarnitineProfiles, Biochemical Markers of Fat Metabolism and Serum Leptin Concentration in HealthyWomen. Journal of Nutrition,2003,133(January):84-89.
    93. Jacobs R. L., Stead L. M., Devlin C., et al. Physiological regulation of phospholipid methylationalters plasma homocysteine in mice. Journal of Biological Chemistry,2005,280(31):28299-28305.
    94. James W. D., Nobuko H., Randall L. M., et al. Choline supplementation increases tissueconcentrations of carnitine and lowers body fat in guinea pigs. Journal of Nutritional Biochemistry,1998,9(8):464-470.
    95. Kennedy E., Weiss S. The function of cytidine coenzymes in the biosynthesis of phospholipides.Journal of Biological Chemistry,1956,222:193-214.
    96. Ketola H. G., Nesheim M. C. Influence of dietary protein and methionine levels on the requirementfor choline by chickens. Journal of Nutrition,1974,104(11):1484-1489.
    97. Kettunen H., Peuranen S., Tiihonen K., et al. Intestinal uptake of betaine in vitro and thedistribution of methyl groups from betaine, choline, and methionine in the body of broiler chicks.Comp Biochem Physiol A Mol Integr Physiol,2001,128(2):269-278.
    98. Kin V. M., Podkolzina T., Tsova O. A. Choline and methionine in rations of broiler chickens.Птицеводство,1998,0(6):25-26.
    99. Klee W. A., Richardsh. H., Cantonig. L. The synthesis of methionine by enzymic transmethylation.VII. Existence of two separate homocysteine methylpherases on mammalian liver. Biochimica etBiophysica Acta,1961,54:157-164.
    100. Laikhtman M., Rohrer J. S. Determination of choline in infant formula by ion chromatography.Journal of Aoac International,1999,82(5):1156-1162.
    101. Lipstein B., Bornstein S., Budowski P. Utilization of choline from crude soybean lecithin by chicks.
    1. Growth and prevention of perosis. Poultry Science,1977,56(1):331-336.
    102. Lowry K. R. O., Baker D. H. I. Effect of betaine relative to choline as a dietary methyl donor.Poultry Science,1987,66(Supplment1):120.
    103. March B. E., MacMillan C. Choline concentration and availability in rapeseed meal. PoultryScience,1980,59:611-615.
    104. Melville D. B. The synthesis and metabolism of certain hydroxybetaines related to choline. Urbana:University of Illinois,1939.
    105. Menten J. F., Pesti G. M., Bakalli R. I. A new method for determining the availability of choline insoybean meal. Poultry Science,1997,76(9):1292-1297.
    106. Michael D. V. Choline’s key role in poultry diet revisited. Feedstuffs,2010,82(July5):1-3.
    107. Michel V., Yuan Z., Ramsubir S., et al. Choline Transport for Phospholipid Synthesis.Experimental Biology and Medicine,2006,231:490-504.
    108. Mills C. A., Cottingham E., Taylor E. The influence of environmental temperature on dietaryrequirement for thiamine, pyridoxine, nicotinic acid, folic acid and choline in chicks. AmericanJournal of Physiology,1947,149(2):376-382.
    109. Molitoris B. A., Baker D. H. The choline requirement of broiler chicks during the seventh week oflife. Poultry Science,1976a,55(1):220-224.
    110. Molitoris B. A., Baker D. H. Assessment of the quantity of biologically available choline insoybean meal. Journal of Animal Science,1976b,42(2):481-489.
    111. Molitoris B. A., Baler D. H. Choline Utilization in the Chick as Influenced By Levels of DietaryProtein and Methionine. Journal of Nutrition,1976,106:412-418.
    112. Mookerjea S. Action of choline in lipoprotein metabolism. Federation Proceedings,1971,Jan-Feb;30(1):143-150.
    113. Neill A. R., Grime D. W., Dawson R. M. Conversion of choline methyl groups throughtrimethylamine into methane in the rumen. Biochemical Journal,1978,170(3):529-535.
    114. Ort J. F. D. W. E. Methionine, Cystein, Sulphate and Choline in Chick Starter Diets. PoultryScience,1984,63(supplement1):159.
    115. Pesti G. M., Benevenga N. J., Harper A. E., et al. Factors influencing the assessment of theavailability of choline in feedstuffs. Poultry Science,1981,60(1):188-196.
    116. Pesti G. M., Harper A. E., Sunde M. L. Sulfur amino acid and methyl donor status of corn-soydiets fed to starting broiler chicks and turkey poults. Poultry Science,1979,58(6):1541-1547.
    117. Pesti G. M., Harper A. E., Sunde M. L. Choline/methionine nutrition of starting broiler chicks.Three models for estimating the choline requirement with economic considerations. PoultryScience,1980a,59(5):1073-1081.
    118. Pesti G. M., Harper A. E., Sunde M. L. Choline/methionine nutrition of starting broiler chicks.Three models for estimating the choline requirement with economic considerations. PoultryScience,1980b,59(5):1073-1081.
    119. Pietruszko R., Chern M. K. Betaine aldehyde dehydrogenase from rat liver mitochondrial matrix.Chemico-Biological Interactions,2001,130–132:193-199.
    120. Pillai P. B., Fanatico A. C., Blair M. E., et al. Homocysteine remethylation in broilers fed surfeitcholine or betaine and varying levels and sources of methionine from eight to twenty-two days ofage. Poultry Science,2006,85(10):1729-1736.
    121. Pourreza J., Smith W. K. Performance of laying hens fed on low sulphur amino acids dietssupplemented with choline and methionine. British Poultry Science,1988,29(3):605-611.
    122. Quillin E. C., Combs G. F., Creek R. D., et al. Effect of choline on the methionine requirements ofbroiler chickens. Poultry Science,1961,40(3):639-645.
    123. R P., G B. Mitochondrial oxidative stress, aging and caloric restriction: the protein and methionineconnection. Biochimica et Biophysica Acta,2006,1757(5-6):496-508.
    124. Rafeeq M., Pasha T. N., Rashid N., et al. Effect of supplementation of methionine, betaine andcholine on the performance of broiler chicken in early life fed methionine deficient ration. Journalof Animal&Plant Sciences,2011,21(4):778-780.
    125. Raubenheimer P. J., Nyirenda M. J., Walker B. R. A choline-deficient diet exacerbates fatty liverbut attenuates insulin resistance and glucose intolerance in mice fed a high-fat diet. Diabetes,2006,55(7):2015-2020.
    126. Ray R., Ramakrishnan N., Rao B. S. Oral choline in tardive dyskinesia. Indian Journal of MedicalResearch,1982,76:628-631.
    127. Rehman H. Fish odour syndrome. Postgraduate Medical Journal,1999,75:451-452.
    128. Rontein D., Nishida I., Tashiro G., et al. Plants synthesize ethanolamine by direct decarboxylationof serine using a pyridoxal phosphate enzyme. Journal of Biological Chemistry,2001,276(38):35523-35529.
    129. Ruiz N., Miles R. D., Harms R. H. Choline, Methionine and Sulphate Interrelationships in PoultryNutrition. World's Poultry Science Journal,1983,39:185-198.
    130. Russell L. Vitamins in Animal and Human Nutrition. Iowa State University Press/Ames,2000.
    131. Ryu K. S., Roberson K. D., Pesti G. M., et al. The folic acid requirements of starting broiler chicksfed diets based on practical ingredients.1. Interrelationships with dietary choline. Poultry Science,1995,74(9):1447-1455.
    132. Saeee C. E., Baker D. Sulohur utilization by the chick with emphasis on the effect of inorganicsulpgate on cystine-methionine interrelationgship. Journal of Nutrition,1974,104:244.
    133. Saunderson C. L., Mackinlay J. Changes in body-weight, composition and hepatic enzymeactivities in response to dietary methionine, betaine and choline levels in growing chicks. BritishJournal of Nutrition,1990,63(2):339-349.
    134. Schaefer A. E., Salmon W. D., Strength D. R. Interrelationship of vitamin B12and choline; effecton growth of the chick. Proceedings of the Society for Experimental Biology and Medicine,1949,71(2):202-204.
    135. Schaefer A. E., Salmon W. D., Strength D. R., et al. Interrelationship of folacin, vitamin B12andcholine; effect on hemorrhagic kidney syndrome in the rat and on growth of the chick. Journal ofNutrition,1950,40(1):95-111,2.
    136. Schaefer A. E., Salmon W. D., Strength D. R. The influence of vitamin B12on the utilization ofcholine precursors by the chick. Journal of Nutrition,1951,44(2):305-311.
    137. Sheard N., Krasin B. Restricting Food Intake Does Not Exacerbate the Effects of aCholine-Deficient Diet on Tissue Carnitine Concentrations in Rats. Journal of Nutrition,1994,124:738-743.
    138. Shin O. H., Mar M. H., Albright C. D., et al. Methyl-group donors cannot prevent apoptotic deathof rat hepatocytes induced by choline-deficiency. Journal of Cellular Biochemistry,1997,64(2):196-208.
    139. Siva R. C. Effect of choline deficiency on the fatty acids of liver and body lipids in the rat.Biochemical Journal,1952,52(2):320-324.
    140. Snell A. P., Cleary M., Sambrook M. Treatment of tardive dyskinesia with choline andtetrabenazine. Postgraduate Medical Journal,1980,56(659):663-664.
    141. Southern L. L., Brown D. R., Werner D. D., et al. Excess supplemental choline for swine. Journalof Animal Science,1986,62(4):992-996.
    142. Stekol J. A., Hsu P. T., Weiss S., et al. Labile Methyl Group and its Synthesis de novo in Relationto Growth in Chicks. Journal of Biological Chemistry,1953,203:763-773.
    143. Stekol J. A., Smith P. W. S. The synthesis of choline and creatine in rats under various dietaryconditions. Journal of Biological Chemistry,1953,201(1):299-316.
    144. Svobodova Z. S., Drahota Z. The development of oxidative enzymes in rat liver mitochondria.Physiol Bohemoslov,1977,26:525-534.
    145. Taveau R. D. M., Hunt R. The effects of a number of derivatives of choline and analogouscompounds on the blood-pressure. Washington: U.S. Government Printing Office,1911.
    146. Tsuge H., Onishi H. N. Y. A novel purification and some properties of rat liver mitochondrialcholine dehydrogenase. Biochimica et Biophysica Acta,1980,614:274-284.
    147. Ukes T. H. Choline. Annual Review of Biochemistry,1947,16:193.
    148. Vachhrajani K. D., Sahu A. P., Dutta K. K. Excess choline availability: a transient effect onspermatogenesis in the rat. Reproductive Toxicology,1993,7(5):477-481.
    149. Varela-Moreiras G., Selhub J., Costa K. Effect of chronic choline deficiency in rats on liver folatecontent and distribution. journal of nutritional biochemistry,1992,3:519-522.
    150. VERA MICHEL Z. Y. S. R. Choline Transport for Phospholipid Synthesis. Experimental Biologyand Medicine (Maywood).,2006,231(5):490-504.
    151. Waldroup P. W., Motl M. A., Yan F., et al. Effects of Betaine and Choline on Response toMethionine Supplementation to Broiler Diets Formulated to Industry Standards. Journal of AppliedPoultry Research,2006,15:58-71.
    152. Welch B. E., Couch J. R. Homocysteine, vitamin B12, choline and methionine in the nutrition ofthe laying fowl. Poultry Science,1955,34:217.
    153. Wilken D. R., McMacken M. L., Rodriquez A. Choline and betaine aldehyde oxidation by rat livermitochondria. Biochimica et Biophysica Acta,1970,216(2):305-317.
    154. Workel H. A., Keller T., Reeve A., et al. The rediscovered vitamin for poultry. World Poultry,1998,9:366-373.
    155. Wurtman R., Ulus I., Cansev M. Choline and its products acetylcholine and phosphatidylcholine.//A L. Neural Lipids, Handbook of Neurochemistry and Molecular Neurobiology. BerlinHeidelberg: Springer-Verlag,2007:443-501.
    156. Yolanda L., Derilo, Balnave D. The Choline and Sulphur Amino Acid Requirement of BroilereChickens Fed on Semi-purified Diets. British Poultry Science,1980,21:479-487.
    157. Zeisel S. H. Choline deficiency. Journal of Nutritional Biochemistry,1990,1:332-344.
    158. Zeisel S. H. Gene response elements, genetic polymorphisms and epigenetics influence the humandietary requirement for choline. Iubmb Life,2007,59(6):380-387.
    159. Zeisel S. H., Blusztajn J. K. Choline and human nutrition. Annu. Rev. Nutr.,1994,14:269-296.
    160. Zeisel S. Dietary choline: Biochemistry, physiology and pharmacology. Annual Review ofNutrition,1981,1:95-121.
    161. Zeisel S., Blusztajn J. K. Choline and humman nutrition. Annual Review of Nutrition,1994,14:169-196.
    162. Zeisel S., Wurtman R. Developmental changes in rat blood choline concentration. BiochemicalJournal,1981,198:565-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700