形觉剥夺性弱视幼视皮质17区GAP-43的表达
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的
     本研究的目的主要是观察形觉剥夺性弱视动物模型及对它们应用左旋多巴治疗后,视皮质17区生长相关蛋白GAP-43的表达,从而探讨形觉剥夺性弱视形成的可能机制及左旋多巴对形觉剥夺性弱视视觉功能恢复作用的可能机制。
     研究方法
     50只4周龄幼,随机分为正常组、剥夺组、对照组、低剂量组及高剂量组共5组,每组10只。后四组于4周龄时行左眼睑缝合术,8周龄时经PVEP检测确定为弱视形成后:剥夺组处死所有动物;对照组打开眼睑反向缝合右眼睑4周做遮盖治疗模型;低剂量组与高剂量组打开眼睑分别予以20mg/kg、80mg/kg左旋多巴溶液灌胃给药,每日一次,持续4周,行PVEP检测后处死动物。正常组于8周龄时行PVEP检测后随机处死5只,剩余5只于12周龄时行PVEP检测后处死。所有动物处死后取右脑半球视皮质17区行HE及免疫组织化学染色观察GAP-43蛋白免疫阳性细胞数。
     研究结果
     (1)电生理结果:PVEP主要以P_(100)波振幅及潜时改变为特点。8周龄时,剥夺组、低剂量组、高剂量剥夺眼P_(100)波振幅比对侧眼及同周龄正常组幅值降低,潜时延长(P<0.05);12周龄时,低剂量组剥夺眼P_(100)波振幅增高,与对侧眼及同周龄正常组相比无差异(P>0.05),而P_(100)波潜时则未达到正常(P<0.05);高剂量组剥夺眼P_(100)波振幅增高、潜时缩短,与对侧眼及同周龄正常组相比无差异(P>0.05)。
     (2)光镜下,HE染色结果显示:剥夺组视皮质神经元的数目有所减少,形态不规则,体积大小不一,胞浆突起变短或消失,有些胞核变小、变暗。应用左旋多巴后,高剂量组神经元大部分恢复,细胞体积增大,轴突也有一定程度的恢复;对照组、低剂量组都仅有少数的神经元有恢复。
     (3)免疫组化结果:剥夺组较正常组GAP-43表达明显减少,差异有显著性(P<0.05);高剂量组GAP-43表达与正常组基本相似,差异无显著性(P>0.05);对照组、低剂量组和正常组相比有显著性差异(P<0.05)。
     结论
     (1)剥夺组较正常组视皮质17区GAP-43表达明显减少,提示GAP-43可能在形觉剥夺性弱视形成过程中起一定的作用。
     (2)应用左旋多巴干预后视皮质17区GAP-43表达增多,提示左旋多巴对形觉剥夺性弱视视功能改善的机制可能是通过GAP-43表达的改变而实现的。
Objective
     To investigate expression of GAP-43, a growth associated protein, in 17 Area of visual cortex in monocular form-deprived amblyopia model and the model treated with levodopa. The possible mechanism of monocular form-deprived amblyopia and therapeutic effect of levodopa are discussed.
     Methods
     Fifty kittens of 4-week-old were randomly divided into five groups: normal group, monocular form-deprived group, control group, low-dose group, high-dose group, each group had ten cats. The left eyelids were sutured in behind four groups at 4-week-old.The kittens were raised for 4 weeks and were assured the formation of amblyopia by PVEP. Then ten kittens were killed in monocular form-deprived group; the right eye of the kittens in the control group were sutured as a model of patch therapy for 4 weeks; the kittens in the low-dose group and the high-dose group were daily received with levodopa of 20mg/kg and 80mg/kg for 4 weeks separately.5 kittens were killed at 8-were-old and others were killed at 12-week-old by PVEP in normal group. The visual cortex 17 area of right brain were obtained to observe morphology and immunohistochemistry in all kittens.
     Result
     (1)Electrophysiology: At 8-week-old, the latency and ampitude of P_(100) of PVEP was significantly delayed and declined in monocular deprived eyes of monocular form-deprived group control group, low dose and high dose group, compared with fellow eyes and normal eyes (P<0.05). At-12-week-old,the amptitude of low dose group in monocular deprived eyes is no significant difference compared with fellow eyes and normal eyes (P>0.05);but the lantency did not recover to normal(P<0.05).In high group, the amptitude and lantency recovered to normal, presenting a insignificant difference compared with fellow eyes and normal eyes(P>0.05).
     (2)Morphology: compared with the normal group, numbers of neuron in the form-deprived group decrease and most of them, appearance of neuron is not regular, volume of neuron is unequal, ecphyma of neuron is getting shorter or disappearance. Some nucleus of neurons are smaller and darkening. After administration of levodopa, most of neurons are recovered and the volume of neuron is bigger and the axon is recovered in the high-dose group .But in the low-dose group and the control group, few of neurons recovered.
     (3)Immunohistochemistry: Compared with the normal group, the expression of GAP-43 is significant difference in the form-deprived group (P<0.05). The expression in high-dose group is similar to the normal group and no significant difference is found (P>0.05) . Compared with the normal group, there is significant difference between the control group and the low-dose group (P<0.05).
     Conclusions
     (1)There is significant increase of the expression of GAP-43 in the form-deprived group compared with the normal group. It indicates that GAP-43 may play a important role in formation of amblyopia.
     (2)There is significant decrease of the expression of GAP-43 in the high-dose group with levodopa. It suggests that the improved visual function of amblyopia may be brought into effect through GAP-43 expression.
引文
1.邵立功,郭静秋.弱视的基础与临床对比研究[J].眼科,1993,3(1):54-55.
    2.赵堪兴.早期发现和早期干预努力提高弱视的防治水平[J].中华眼科杂志,2002,38(8):449-451.
    3.Gottlob I,Stangler-Zuschrott E.Effeet of levodopa on contrast sensitivity and scotomas in human amblyopia[J].Invest Ophthalmol Vis Sci,1990,31(4):776-780.
    4.Gottlob I,Charlier J,Reinecke RD.Visual acuities and scotomas after one week of levodopa administration in amblyopic patients[J].Invest Ophthalmol Vis Sci,1992,33(9):2722-2728.
    5.吴小影,刘双珍,徐和平,等.左旋多巴联合卡比多巴治疗儿童弱视的初步报告[J].眼科学报,1998,14:238-241.
    6.Mason MR,Campbell G,Caroni P,et al.Overexpression of GAP-43 in thalamic projection neurons of transgenic mice dose not enable them to regenerate axons through peripheral nerve grafts[J].Exp Neurol,2000,165(1):143-152.
    7.Benowitz LI,Perrone-Bizzozero NI.The expression of GAP-43 in relation to neuronal growth and plasticity:when,where,how,and why[J]? Proy Brain Res,1991,89:69-87.
    8.Velazquez RJ,Bell DF,Armstrong PF,et al.Complications of the use of the llizarov technique in the correction of limb deformities in children[J].J Bone Joint Surg Am,1993,75(8):1148-1156.
    9.张利伟.左旋多巴与胞二磷胆碱对形觉剥夺性弱视治疗效果的研究[D].博硕士学位论文:昆明医学院,2009.
    10.邓小明,朱科明.常用实验动物麻醉[M].上海:第二军医大学出版社,2001:179.
    11.Daw NW,Berman NE,Ariel M.Interaction of critical periods in the visual cortex of kittens[J].Science,1978,199(4328):565-567.
    12.Gondon JA,Stryker MP.Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse[J].JNeurosci,1996,16(10):3274-3286.
    13.余涛,阴正勤,翁传煌,等.双眼形觉剥夺对成年大鼠视皮层兴奋性递质受体的表达和分布的影响[J].眼科新进展,2009,29(2):84-89
    14.Freeman RD,Tsumoto T.An electrophysiological comparison of convergent and divergent strabismus in the cat:electrical and visual activation of single cortical cells[J].J Neurophysiol,1983,49(1):238-25.
    15.潘映辐.临床诱发电位学[M].北京:人民卫生出版社,1988,321-365.
    16.Lei DM,Manny RE.The pathophysiology of amblyopia:electrophysiological stidies[J].Ann NY Acad Sci,1982;388,243-263.
    17.Arden GB,Bamard WM,Mushin As.Visually evoked responses in amblyopia[J].Br J Ophthalmol,1974,58(3):183-192.
    18.Snyder A,Shapley R.Deficits in the visual evoked potential of cats as a result of visual deprivation[J].Exp Brain Res,1979:37(1):73-86.
    19.阴正勤,方谦逊,宋广瑶等.儿童弱视的图形视觉诱发电位分析[J].中华眼科杂志,1988,24(5):268-27.
    20.Gaspra P,Berger B,Febvret A,et al.Catecbolamine innervation of the human cerebral cortex as revealed by corparactive imununohistochemistry of tyrosine hydroxylase dopamine-beta-hydroxylase[J].J Comp NeuraI,1989,279(2):249-271.
    21.Berger B,Trottier S,Verney C,et al.Regional and laminar distribution of the dopamine and serotonin innervation in the maeaque celebral cortex:radieautograhpic study[J].J Comp Neural,.1988,273(1):99-119.
    22.Mohan K,Dhankar V,Sharma A.Visual acuities after levodopa administration in amblyopia[J].J Pediatr Ophthalmol Strabismus,2001,38(2):62-67.
    23.Crewther SG,Crewther DP.Amblyopia and suppression in binocular cortical neurones of strabismic cat[J].Neuroreport,1993,4(9):1083-1086.
    24.Leguire LE,Rogers GL,Bremer DL,et al.Levodopa and childhood amblyopia[J].J Pediatr Ophthalmol Strabismus,1992,29(5):290-298.
    25.Das T,Kundu S,Mazumdar AK,et al.Studies on central nervous system function in diabetes mellitus[J].J Indian Med Assoc,2001,99(2):84-89.
    26.Kind PC,Mitchell DE,Ahmed B,et al.Correlated binocular activity guides recovery from monocular deprivation[J].Nature,2002,416(6879):430-433.
    27.黄仲委,余杨桂,王燕等.糖尿病性视网膜病变的图形[J].眼视光学杂志,2001,3(3):169-171.
    28.Payne BR,Cornwell P.System -wide repercussions of damage to the immature visual cortex[J].Trends Neurosci.1994:17(3):126-130.
    29.邵立功,章应华,张东杲.弱视视觉系统三级神经元及其突触的超微结构研究[J].中华眼科杂志[J],1994,30(1):53-56.
    30.宋坤英,赵堪兴,林锦墉等.左旋多巴对弱视视皮质区神经细胞的影响[J].中国斜视与小儿眼科杂志,2004,12(4):150-152.
    31.Andreasen TJ,Luetie CW,Heideman W,et al.Purification of a novel calmodulin binding protein from bovine cerebral cortex membranes[J].Biochemistry,1983,22(20):4615-4618.
    32.Benowitz LI,Routtenberg A.GAP-43:an intrinsic determinant of neuronal development and plasticity[J].Trends Neurosci,1997,20(2):84-91.
    33.Dahlstrom A,Czernik AJ,Li JY.Organelles in fast axonal transport.What molecules do they carry in anterograde vs retrograde directions,as observed in mammalian systems[J]? Mol Neurobiol,1992,6(2):157-177.
    34.Honer WG,Falkai P,Chen C,et al.Synaptic and plasticity-associated proteins in anterior frontal cortex in server mental illness[J].Neuroscience,1999,91(4):1247-1255.
    35.Stewart HJ,Cowen T,Curtis R,et al.GAP-43 immunoreactivity is widespread in the autonomic neurons and sensory neurons of the rat[J].Neuroscience,1992,47(3):673-684.
    36.Chapman ER,Au D,Alexander KA,et al.Characterization of the calmodulinbinding domain of neuromodulin functional significance of serine41 and phery lalanine42[J].J Biol Chem 1991,266(1):207-213.
    37.Gajda M,Adriaensen D,Cichocki T.Development of innervation of long bones:expression of the growth associated protein-43[J].Folia Histochem Cytobiol,2000,38(3):103-110.
    38.He Q,Dent EW,Meiri KF.Modulation of actin filament behavior by GAP-43(neuromodulin)is dependent on the phosphorylation status of serine41,the protein Kinase C site[J].J Neurosci,1997,17(10):3515-3524.
    39.Larry IB,Aryeh R.A membrane phosphoprotein associated with neural development,axonal regeneration,phospholipid metabolism,and synaptic plasticity[J].TINS,1987,10(12):527-533.
    40.严恒林.生长相关蛋白(GAP-43)与神经发育和再生[J].神经解剖学杂志,1993;9(2):155
    41.Gamby C,Waage MC,Allen RG,et al.Growth-associated protein-43(GAP-43) facilitates peptide hormone secretion in mouse anterior pituitary AtT-20 cells[J].J Biol Chem,1996,271(17):10023-10028.
    42.帖利军,潘建军,宋天保,等.GAP- 43在发育大鼠中枢神经系统的表达[J].西安医科大学学报,2001,22(6):499
    43.Mosevitsky MI,Konovalova ES,Bichevaya NK,et al.Enhanced level of site-specific proteolysis of GAP- 43 protein during early stages of brian development[J].Biochemistry(Mosc),2000,65(10):1153-1156.
    44.Meiri KF,Pfenninger KH,Willard MB.Growth- associated protein,GAP-43,a polypeptide that is induced when neurons extend axons,is a component of growth cones and corresponds to pp46,a major polvpeptide of a subcellular fraction enriched in growth cones[J].Proc Natl Acad Sci USA,1986,83(10):3537-3541.
    45.Wiesel TN,Hubel DH.Single-cell response is striate cortex of kittens deprived vision in one eye[J].J Neurophysiol,1963,26:1003-1017.
    46.Wiesel TN,Hubel DH.Comparison of effects of unilateral and bilateral eye closure on cortical unit responses in kittens[J].J Neurophysiol,1965,28(6):1029-1040.
    47.Hubel DH,Wiesel TN.The period of susceptibility to the physiological effects of unilateral eye closure in kittens[J].J Physiol,1970,206(2):419-436.
    48.Wiesel TN.Postnatal development of the visual cortex and influence of environment[J].Nature,1982,299(5884):583-591.
    49.Hubel DH,Wiesel TN.Binocular interaction in striate cortex of kittens reared with artificial squint[J].J Neurophysiol,1965,28(6):1040-1059.
    50.Kiorpes L,Kiper DC,Okeefe LP,et al.Neuronal correlates of amblyopia in the visual cortex of macaque monkeys with experimental strabismus and anisometropia[J].J Neurosci,1998.18(16):6411-6424.
    51.Hubel DH,Wiesel TN,LeVay S.Plasticity of ocular dominance columns in monkey striate cortex[J].Philos Trans R Soc Lond B Biol Sci,1977,278(961):377-409.
    52.LeVayS,Stryker MP,Shatz CJ.Ocular dominance columns and their development in layer Ⅳof the cat' s visual cortex:a quantitative study[J].J Comp Neurol,1978,179(1):223-244.
    53.Shatz CJ,Stryker MP.Oculardominance in layer Ⅳ of the eat' s visual cortex and effects of monocular deprivation[J].J Physiol,1978,281:267-283.
    54.LeVay S,Wiesel TN,Hubel DH.The development of ocular dominance columns in normal and visually deprived monkeys[J].J Comp Neurol,1980,191(1):1-51.
    55.Swindale NV,Vital-Durand F,Blakemore C.Recovery from monocular deprivation in the monkey:Reversal of anatomical effects in the visual cortex[J].Proc R,Soc Lond B Biol Sci,1981,213(1193):435-450.
    56.Jonathan C,Horton,Davina R Hocking.Timing of the critical period for plasticity of ocular dominance column in macaque striate cortex[J].J Neurosci 1997,17(10):3684-3709.
    57.Blakemore C,Van Sluyters RC.Reveral of physiological effects of monocular deprivation in kittens:further evidence for a sensitive period[J].J physiol,1974,237(1):195-216.
    58.Meberg PJ,Barnes CA,McNaughton BL,et al.Protein Kinase C and F1/GAP-43 gene expression in hippocampus inversely related to synaptic enhancement lasting 3 days[J].Proc Natl Acad Sci USA,1993,90(24);12050-12054.
    59.Qinzhang zhu,Julien JP.A key role for GAP-43 in the retiotectal topographic organization[J].Exp Neurol,1999,155(2):228-242.
    60.Mori A,Jack Y.Experience-driven plasticity of visual cortex and GAP-43[J].J Neurosci Res.2003,71(4):267-279.
    61.欧阳晖.正常与单眼形觉剥夺大鼠发育过程中视网膜GAP-43mRNA的表达及意义[D].博硕士学位论文:福建医科大学,2007.
    62.Z.J.Huang,A.Krikwood,T.Pizzorusso,et al.BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex[J].Cell,1999,98(6):739-755.
    63.Bradbury EJ,Moon LD,Popat RJ,et al.Chondroitinase ABC promotes functional recovery after spinal cord injury[J].Nature,2002,416(6881):636-640.
    64.Zuber M,Donnerer J.Effect of FK506 on neurotransmitter content and expression of GAP-43 in neurotoxin-lesioned peripheral sensory and sympathetic neurons[J].Pharmacology,2002,66(1):44-50.
    65.段艳萍,王金德,黄佑庆等.GAP-43治疗大鼠脊髓横断后神经中丝NF200表达的变化[J].神经解剖学杂志,2008,24(4):406-410.
    1.刘家琦.抓紧弱视和斜视防治工作.中华眼科杂志.1995,21(增):1.
    2.邵立功,章应华,张东杲.弱视视觉系统三级神经元及其突触的超微结构研究.中华眼科杂志,1994,30(1):53-56.
    3.Wai M S,Lorke DE,Kung LS,Yew DT.Morphogenesis of the different types of photoreceptor the chicken and the effect of amblyopia in neonatal chicken.Microsc Restech,2006,69(2):99-107.
    4.Wetheimer G.Center-surroud antagonism in spatial vision:retinal or cortical locus?Vision Res,2004,44(21):2457-2465.
    5.Hendrickson AE,Movshon JA,Eggers HM et al.Effects of early unilateral blur on the macaque visual system Ⅱ anatomical observation.J Neurosci,1987,7(5):1327-1339.
    6.Von Noorden GK,Middleditch PR.Histology of monkey lateral geniculate nucleus after unilateral lid closure cortex and experiment strabismus:further observation.Invest Ophthalmol Vis Sci,1975,14(9):674-683.
    7.Crawford ML,Harwerth RS.Ocular dominance column width and contrast sensitivity in monkey reared with strabismus and anisometropia.Invest Ophthalmol Vis Sci,2004,45(9):3036-3042.
    8.Horton JC,Stryker MP.Amblyopia induced by anisometropia without shrinkage of ocular dominance columns in human striate cortex.Proc Nail Acad sci USA,1993,90(12):5494-5498.
    9.Basser PJ,Mattiello J,LeBihan D.MR diffusion tension spectroscopy and imaging.Biophys J,1994,66(1):259-267.
    10.Beaulieu C.The basis of anisotropic water diffusion in the nervous system -a technical review.NMR Bimed,2002,15(7):435-455.
    11.Pierpaoli C,Jazzard P,Basser PJ,et al.Diffusion Tensor MR Imaging of the Human Brain.Radiology,1996,201(3):637-648.
    12.Xie S,Gong GL,Xiao JX,et al.Underdevelopment of optic radiation in children with amblyopia:A tractography study.Am J Opthalmol,2007,143(4):642-646.
    13.郭明霞,张云亭,张权等.DTI与BOLD-fMRI技术对屈光不正性弱视皮质损害机制的研究.中国实用眼科杂志,2007,25(1):27-30.
    14.赵堪兴,史学峰.新世纪我国斜视弱视研究进展.中华眼科杂志,2005,41(4):729-735.
    15.杨永峰,孙汉军,胡义德.NMDA受体在视觉发育过程中的作用.眼科新进 展,2005,25(6):378-380.
    16.阴正勤,余涛,陈莉.斜视性弱视猫发育过程中视皮层神经元NMDAR1表达的免疫组织化学电镜观察.中华眼科杂志,2002,38(2):472-475.
    17.Yin ZQ,Crewther SG,Yang M,ea al.Distribution and location of NMDA receptor subunit 1 in visual cortex of strabismic and anisometropic and amblyopic cats.Neuroreport,1996,7(18):2997-3003.
    18.Murphy KM,Dufffy KR,Jones DG.Experience-dependent changes in NMDAR1expression in visual cortex of an animal model for amblyopia.Vis Neurosci,2004,21(4):653-670.
    19.Kleinschmidt A,Bear MF,et al.Bloeked of“NMDA”receptor disrupts experience dependent plasticity of kitten striate cortex.Seience,1987,238(4825):355-358.
    20.Nucci C,Piccirillis S,Nistic OR,et al.Apoptos is in the mechanisms of neuronal plasticity in the developing visual system.Eur J Ophthalmol,2003,13(4):36-43.
    21.Silver MA,Fagiolini M,Gillespie DC,et al.Infusion of nerve growth factor(NGF)into kitten visual cortex increases immunoreactivity for NGF,NGF receptors,and choline acetyltransferase in basal in basal forebrain without affecting ocular dominance plasticity or column development.Neuroscience,2001,108(4):569-585.
    22.Cellerino A,Maffei L.The action of neurotrophins the development and plasticity of the visual cortex.Prog Neurobiol,1996,49(1):53-71.
    23.Berardi N,Cellerino A,Domenici L,et al.Monoelonal antibodies to Nerve Growth Factor affect the postnatal development of the visual system.Proc Natl Acad Sci,1994,91(2):684-688.
    24.Nagano T,Yenagawa Y,Obata K,et al.Brain-derived neurotrophic factor upregulates and maintains AMPA receptor currents in neuonrtial GABA ergicneurons.Mol Cell Neurosci,2003,24(2):340-356.
    25.Tropea D,Capsoni S,Tongiorgi E,et al.Mismatch between BDNF mRNA and protein expression in the developing visual cortex:the role of visual experience.Eur J Neurosci,2001,13(4):709-721.
    26.Galuske RA,Kim DS,Castren E,et al.Brain-derived neurotrophic factor reversed experience dependent synaptic modifications in kitten visual cortex.Eur J Neurosci,1996,8(7):1554-1559.
    27.Gianfranceschi L,Siciliano R,Walls J,et al.Visual cortex is rescued from the effects of dark rearing by overexpression of BDNF.Proc Natl Acad Sci USA,2003,100(21):12486-12491.
    28.Huang ZJ,Kirkwood A,Pizzorusso T,et al.BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex.Cell,1999,98(6):739-755.
    29.Mason MR,Campbell G,Caroni P,et al.Overexpression of GAP- 43 in thalamic projection neurons of transgenic mice dose not enable them to regenerate axons through peripheral nerve grafts.Exp Neurol,2000,165(1):143-152.
    30.Zhu Q,Julien JP.A key role for GAP-43 in the retinotectal topographic organization.Exp Neurol,1999,155(2):228-242.
    31.Moya KL,Jhaveri S,Schneider GE,et al.Immunohistochemical localization of GAP-43in the developing hamster retinofugaI pathway.J Comp Neurol,1989,288(1):51-58.
    32.林发森,庄建福,朱益华,等.单眼剥夺大鼠视皮层及外侧膝状体中生长相关蛋白(GAP-43)的表达及其意义.中国斜视及小儿眼科杂志,2005,13(4):156-159.
    33.Mower AE,Liao DS.cAMP/Ca2+ response element-binding protein function is essential for ocular dominant plasticity.Neurosci,2002,(6):223-2245.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700