mGluR_1在单眼形觉剥夺性弱视大鼠视网膜的表达及阳性神经节细胞超微结构观察
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的研究视觉形成关键期内单眼形觉剥夺弱视大鼠视网膜中mGluR1的表达规律及神经节细胞超微结构变化,为临床上揭示弱视的病理机制及防治提供理论依据。
     方法随机对照取同期实验动物,建立大鼠单眼形觉剥夺弱视模型,经图形视觉诱发电位(PVEP)检测证实造模成功后,与正常对照组大鼠一起灌注、固定、取材,所得标本分为实验组未形觉剥夺眼、实验组形觉剥夺眼和正常对照眼组。三组分别做石蜡切片,脱蜡后进行HE染色,免疫组织化学染色,取电镜标本进行观察,摄像显微镜分层照相,计算机图像分析系统进行图像分析,SPSS12.0统计软件进行方差分析。
     结果①PVEP检测结果:经PVEP检测后可见,与正常组大鼠眼和实验组未形觉剥夺眼PVEP相比,实验组形觉剥夺眼PVEP的P波潜时延长、波幅降低,差异有显著性(P<0.01)。而正常组大鼠眼PVEP和实验组未形觉剥夺眼PVEP相比,差异无显著性(P>0.05)。大鼠单眼形觉剥夺弱视模型造模成功。②HE结果:正常组大鼠眼和实验组未形觉剥夺眼视网膜结构清晰,神经节细胞体积较大。实验组形觉剥夺眼视网膜各层普遍变薄,尤以内核层和内网状丛最为明显,各层细胞排列稀疏,胞体变小,排列稍紊乱。节细胞数量减少。③免疫组织化学结果:实验组形觉剥夺眼视网膜与正常眼视网膜和实验组非形觉剥夺眼视网膜相比mGluR1阳性着色平均光密度和平均灰度值进行统计分析,两者差异有显著性意义(p<0.01)。正常眼视网膜和实验组非形觉剥夺眼视网膜相比mGluR1阳性着色平均光密度和平均灰度值,两者差异无显著性意义(p>0.01)。④电镜观察结果:实验组形觉剥夺眼视网膜可见神经节细胞胞质轻度水肿,线粒体嵴和膜融合或消失,排列紊乱,粗面内质网脱颗粒现象明显。突触小泡明显减少,突触区线粒体肿胀,嵴间腔扩大,嵴紊乱。正常对照组视网膜和实验组非形觉剥夺眼视网膜神经元胞核正常,核膜完整,线粒体嵴规则,高尔基体发达,粗面内质网发达。突触小泡清晰可辨,量多均匀分布。
     结论①.单眼形觉剥夺弱视大鼠弱视眼视网膜的病理改变説明单眼形觉剥夺的发病机制与视网膜损伤有关。②弱视眼视网膜神经元发生形态改变,可能与视觉神经冲动传入减少致视网膜神经节细胞过早凋亡有关。③形觉剥夺致神经冲动传入减少,视网膜的mGluR1表达减少,突触可塑性变化,致神经元发生萎缩可能是弱视发病机理之一。④.通过对正常及弱视大鼠视网膜神经细胞的超微结构观察,证实了出生后早期不正常的视觉经历(形觉剥夺)可以导致视网膜神经节细胞发生不同程度的组织病理学损害。
Objective To explore the regulation of expression of mGluR1 and the changes of retinal ganglial cell ultrastructure at retinal of monocular deprivation amblyopia rat within critical period ,in order to reveal the pathology mechanism of amblyopia and provide the theory of prevention and cure.
     Methods Establishing the model of monocular deprivation amblyopia rat. After proving the model successful by PVEP, all of the rats were randomly divided into three groups: normal group,undeprived eyes of experimental group and deprived eyes of experimental group. HE staining after dewaxinngn, then immunohistochemistry, electron microscope, photography microscope, computer image analysis, SPSS 11.5 and ANOV were used to get the results.
     Results①Results of PVEP demonstrated that contrasted to undeprived eyes of experimental group rats and normal eyes, P wave of deprived eyes were prolonged in potential time and were lowed in amplitude. The difference was significant (P<0.01). However, there was no significant difference between normal eyes and undeprived eyes of experimental group rats(P>0.05). The monocular deprived amblyopia models of rat were built successfully.
     ②Results of HE : The density of cells in the retinal ganglion cell layer and the thickness of every layer in retinal which were undeprived eyes of experimental group rats and normal eyes were regularity. The cubia capacity of retinal ganglion cells were large.The thickness of every layer in retinal which were deprived eyes of experimental group became thinning .The cell body became shrink and arranged disord.There is no evident differentiation be found between normal eyes and undeprived eyes of experimental group rats.
     ③Compared with undeprived eyes of experimental groupd and normal group , the area of immunopositive neurons in deprived eyes of experimental groupare deficiency .There is significant difference between them (P<0.01). there was no significant difference between normal eyes and undeprived eyes of experimental group rats(P>0.01)
     ④We can see some neurons’kytoplasm edema slightly, mitochondrial cristae and membrane fused or disappeared, arrangement confused, rough endoplasmic reticulum degranulation obvious, nuclear membrane crimple in the deprived eyes of experimental group. For normal eyes and undeprived eyes of experimental group, the nucleis of neurons are normal, karyolemma integrity, mitochondria cristae regulation, Glogi’s body and rough endoplasmic reticulum developed. Syanptic cesicles can be identified clearly , uniformly distributed .
     Conclusion①The retina of monocular deprivation amblyopia has been damaged .②There are morphological abnormals happened in retinal ganglial cell of monocular derivation amblyopia .③Reduced afference of nerve pulse because of monocular deprivation leads to the expression difficiency of mGluR1 in retinal ganglial cell, then synaptic plasticity happened , then neurons atrophy occurred may be one of the etiopathogenesis of amblyopia .④Normal and visually-impaired by retina ganglial cell ultrastructure observation of normal visual and deprived eyes of experimental group, Confirmed the off-normal vision experience(shape sense deprives) of early birth may cause the retina ganglion cell to have the varying degree organization pathology harm.
引文
[1] Von Noorden GK.The development of the art and science of strabisurology outside Sorth America: part I[ J].J AAP0S 2001; 5( 2):65-69
    [2] Sengpiel F, Blakemore C.The neural basis of suppression and amblpopia in strabismus[ J].Eye 1996;10(Pt 2):250-258
    [3]张瑞岭,郝伟,刘克菊,等.NMDA受体在慢性吗啡处理大鼠伏隔核神经元突触可塑性改变中的作用[J].中国临床康复,2004,8:2492-2493
    [4] Husih, Ward MA, Choudhary JS, et al. Proteomic analysis of NMDA receptor adhesionprotein signaling complexes [J]. NatNeurosci, 2000, 3: 661-669
    [5] Hollmann M, Heinemann S. Cloned glutamate receptors[J]. Ann Rev Neurosci, 1994; 17:31- 108
    [6] Jiaz Lwy, Ago pyan S. Gene targeting reseals a role for the glutamate receptors mGluR5 and mGluR2 in learning and memory[J].Physiol and Behavior, 2001, 73: 793-802
    [7] Skeberdis VA, Lan ,JY, Teresa Jover, et al. Activation of metahotropic glutamate receptor I accelerates NMDA receptor trafficking[J]. Neurosci, 2001, 21: 6058-6068
    [8] Chok, Brovn MW,Bashir ZI, et al.Mechanisms and physiological role of enhancement of mGluR5 receptor function by groupII mGlu receptor activation in rat perirhinal cortex[J].Phyviol, 2002, 540: 895- 906
    [9]姚丽君,周苏娅,夏强.代谢型谷氨酸受体在突触可塑性中的作用研究进展[J].生理科学进展,2004,35:73-76
    [10] Sernagor E, Eglen S J .Wong R 0. Development of retinal ganglion cell structure and funetionl[J].Prog Retire Eye Res, 2001,20(2):139-174
    [11] Mobbs P. Everest KCool A. Singal shaping by voltage-gated Currents in retinal ganglion cells [J]. Brain Res. 1992 ,574(1-2):217-223
    [12] Rothe T, Juttner R, Bahring R,et al.Ion conductances related to deve-lopment of repetitive firing in mouse retinal ganglion neurons in situ [J].JNeumbiol,1999,38(2):191-206
    [13] Rattogm, Robnsondw,Yanb, et al.Developement of the light response in neonatal man malianrods [J]. N ature. 1991, 351(6328): 654- 657
    [14]姚丽君,周苏娅,夏强,代谢型谷氨酸受体在突触可塑性中的作用研究进展[J].生理科学进展,2004,35(1),73-76
    [15] Lawrence A. The effect of monocular deprivation on dendritic spines in visual cortex of yong and adult albino rat: evidence for a sensitive period [J]. Brain Res, 1979,161:156-161
    [16] Montero VM. Amblyopia decreases activation of the corticalgeniculate pathway and visual thalamic reticularis in attentive rats: a focal attention hypothesis [J].Neuroscience, 1999, 91: 805-17
    [17] Krzystkowa Km, et al. Changes obseved in electrophsiological investigations in amblyopia and strabismus. Kin Oczna 1998, 100(4): 229~234
    [18]王宗青mGluR1在单眼形觉剥夺弱视大鼠视皮质17区的表达及神经元超微结构观察[D].新乡医学院.2007
    [19]邵立功章应华张东果弱视视觉系统三级神经元及其突触的超微结构研究[J].中华眼科杂志,1994,30(1) : 53-56
    [20]杭振镰,蔡文琴.电子显微镜技术在临床医学的应用.第I版.重庆出版社,1990:113
    [21] Crawford ML, de Faber JT, Harwerth RS, et al. The effects of reverse monocular deprivation in monkeys. II, electrophysiological and anatomical studies[J]. Exp Brain Res. 1989,74:338
    [22] Morgan JI, Cohen DR, Hempstead JL, et al. Mapping patterns of c-fos expression in the central nervous system after seizure[J]. Science, 1987, 237(4711):192-7
    [23] Heggelun B, Harveit E. Neurotransmitter receptor mediating excitatory input to cells in the cat's lateral geniculate nucleus: 1. lagged cells[J]. J Neurphysiol, 1990,63:1347
    [24] BozziY, Pizzorusso T, Cremisi F, et al. Monocular deprivation decreases the expression ofmessengerRNA for braindeprived neurotrophic factor in the rat visualcortex[J].Neuroscience, 1995, 69(4): 1 133
    [25] CellerinoA, Kohler K. Brain-derived neurotrophic factorneurotrophin-4 receptor TrkB is localized on ganglion cell and dopaminergic amacrine cells in the vertebrate retina[J]. Comp Neuro,l 1997, 386(1): 149
    [26] KlockerN, kermerP, GleichmannM, et a.l Both the neuronal and inducible isoforms contribute to upregulation of retinal nitric oxide synthase activity by brain-derived neurotrophic factor. JNeurosc,i 1999, 19(19): 8 517
    [27]马代金.一氧化氮与形觉剥夺性近视眼.眼科研究[J], 2002,20(1): 89
    [28] Lan T T,Siew E,Chu R,et al. Ameliorative effect of MK-801 on retinal ischemia [J].J ocul Pharmacol Ther, 1997, 13: 129-137
    [29] Lagreze WA,Knorle R,Bach M.Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia [J].Invest Ophthalmol Vis Sci, 1998, 39:1063-1066
    [30]闫洪彦王波左萍萍等.代谢性谷氨酸受体拮抗剂鞘内给药预防早期神经病理性疼痛的实验研究[J].中华医学杂志,2006,86:484-485
    [1]吴迪.视网膜双极细胞上的谷氨酸受体[J].生理科学进展,1998,29:(4)349-351
    [2] Dani JA, Mayer ML. Structure and function of glutamate and nicotinic acetylcholine receptors[J]. Curr Opin Neurobiol, 1995, 5:310~317
    [3] Pin JP, Bockaert J. Get receptive to metabotropic glutamate receptors[J]. Curr Opin Neurobiol, 1995, 5:342~349
    [4]李树合.中枢神经系统亲代谢型谷氨酸受体的研究概况[J].国外医学.生理.病理科学与临床分册,1999,19:(6),455-458
    [5]姚泰,左极陈宜张.《人体生理学》[M].人民卫生出版社,2001,141-171
    [6]李淑兰,刘凤莲,王学珷等.谷氨酸及其受体在脑内的存在作用与谷氨酸的神经毒性[J].中国临床康复,2004,22:4553-4555
    [7]庞志平,徐天乐,李继硕.AMPA和KA受体的药理学和生理功能[J].神经解剖学杂志,1998,1:81-84
    [8] Nakanishi S. Integrative and Molecular Approuch to Brain Function[J]. Neuroscience ,1996,32:21-27
    [9]Conn PJ, Pin JP. Pharmacology and functions of metabotro-pic glutamate receptors[J].Annu Rev Pharmacol Toxicol,1997, 37:205-237
    [10] Holohean AM, Hackman JC, Davidoff RA. Mechanisms involved in the metabotropic glutamate receptor-enhancement of NMDA mediated motoneurone responses in frog spinalcord[J].Br JPharmacol,1999, 126(1):333-341
    [11]Tu JC, Xiao B, Yuan JP, et al. Homer binds a novel pro- line-rich motif and link groupⅠmetabotropic glutamate re- ceptor with IP3 receptor. Neuron,1998,21: 717~726
    [12]王智明,李云庆,施际武.大鼠脑内代谢性谷氨酸受体1,1A亚型的定位分布[J].解剖学报,1996,27:3
    [13] Ohishi H, Shigemoto R, Nakanishi S, et al.Distribution of the mRNA for a metabotropic glutamate receptor,mGluR2,in the central nervous system of therat[J].Neuroscience, 1993, 53: 1009-1018
    [14] Ohishi H, Shigemoto R, Nakanishi s, et al. Distribution of the mRNA for a metabotropic glutamate receptor (mGluR3) in the rat brain-An insitu hybridization study[J].Comp neurol, 1993, 335: 252-266
    [15]王智明,李云庆,施际武.大鼠脑内代谢性谷氨酸受体5亚型(mGluR5)定位分布的免疫细胞化学研究[J].解剖学报,1996,5:2
    [16]李金莲,丁玉强,李继硕等.代谢型谷氨酸受体7亚型在大鼠中枢神经系统内的分布[J].解剖学报,1999, 1:1-6
    [17]刘子建.代谢型谷氨酸受体的药理学、生理学及其与癫痫的关系[J] .中国组织化学与细胞化学杂志,2003,12:(1)99-105
    [18]姜茜,发育中突触可塑性相关分子的研究进展[J] .国际病理科学与临床杂志,2006,26:(6)515-518
    [19] Greengard P. The neurobiology of slow synaptic transmission [J].science, 2001, 94:1024-1029
    [20]费舟,章翔,刘思渝等.代谢型谷氨酸受体在脑损伤后的表达及意义[J].中国危重急救医学,2002, 9:545-547
    [21] Prezeau L, Carrette J, Helpap B, et al. Pharmacological characterization of metabotropic glutamate receptor in several types of brain cells in primary cultures [J].Mol Pharmacol, 1993, 45: 570-577
    [22]袁芳,王天佑.代谢型谷氨酸受体在脑缺血缺氧损伤中的作用[J].基础医学与临床,1998,18:2
    [23]Conn PJ, Pin JP .Pharmacology and functions of metabotropic glutamate receptors[J].Annu Rev Pharmacol Toxicol, 1997, 37: 205 -37
    [24]姚丽君,周苏娅,夏强.代谢型谷氨酸受体在突触可塑性中的作用研究进展[J].生理科学进展,2004,35:73-76
    [25]李树合,章翔.中枢神经系统亲代谢型谷氨酸受体的研究概况[J].国外医学,生理病理科学与临床分册,1999,19:455-458
    [26]张策,刘荣健,乔健天.突触前代谢型谷氨酸受体调节神经递质的释放[J].生理科学进展,2002,33:293
    [27] Mount HJ, Choi DW. Purkinge cell survival is differentially regulated by metabotropic and ionotropic excitatory amino acid receptora [J]. Neurosci, 1993, 13: 3173
    [28] Price MT, Romano C, Fix AS, et al. Blockade of the second messenger functions of the glutamate metabotropic receptor is associated with degenerative changes in the retina and brain of immature rodents [J]. Neuropharmacology, 1995, 34: 1069
    [29] BuissonA ChoiD.TheinhibitorymGluRagonist, S-4-carboxy-3-hydroxy-phenylglycine selectively attenuatca NMDA neurotoxicity and oxygenglucose deprivation induced neuronal death [J]. Neuropharmacology, 1995, 34:1081
    [30] Wiesel TN, Hubel DH. Effects of visual deprivation on morphology and physiology of cells in the cat's lateral geniculate body. Neurophysiol[J]. 1963,26:97R
    [31] Hubel DH, Wiesel TN. Plasticity of ocular dominancecolumns in monkey striate cortex[J]. Philos Trans R SocLondon Ser B, 1977, 278:377
    [32] Sernagor E, Eglen S J .Wong R 0. Development of retinal ganglion cell structure and funetionl[J].Prog Retire Eye Res, 2001, 20(2):139-174
    [33] Williams C ,Papakostopoulos D .Electro-oculographic abnormalitiesin amblyopia[J]. Br J Ophthalmol, 1995,79 (3): 218~224
    [34] Arden GB et al. Pattern ERG in amblyopia[J]. Invest Ophthalmol VisSci, 1985, 26 (1): 88~96
    [35] Arden GB, Wooding SL. Pattern ERG in amblyopia[J]. Invest Ophthalmol Vis Sci, 1985, 26 (1): 88
    [36]李建东.弱视的图形视网膜电图研究[J].中华眼科杂志, 1989, 25(3): 138~140
    [37]阴正勤.儿童斜视性弱视的图形视网膜电图和图形视觉诱发电位同步记录分析[J].眼底病, 1990, 6 (1): 2~4
    [38] Yin Z Q,et al.Development of pattern ERG and patern VEP spatial resolution in kitterns with unilateral esotropia[J].Ivest Ophthalmol VisSci 1994, 35 (2): 626~634
    [39]吴德正,吴乐正主编.临床视觉电生理学.北京:科学出版社.1999,203
    [40] Sernagor E, Eglen S J .Wong R 0. Development of retinal ganglion cell structure andfunetionl[J].Prog Retire Eye Res, 2001, 20(2):139-174.
    [41] Mobbs P. Everest KCool A. Singal shaping by voltage-gated Currents in retinal ganglion cells [J]. Brain Res. 1992 , 1(2):217-223
    [42] Braadstatter JH, Koulen P, Kuhn R, et al. Diversity of glutamate receptors in the mammalian retina[J]. Vision Res, 1998, 38:1385-1397
    [43] Koulen P, Kuhn R, Wassle H, et al. Group I matabotropic glutamate receptors mG1uR1a and mG1uR5a: Localization in both synaptic layers of rat retina[J]. Neurosci, 1997, 17(6):2200-2211
    [44] Koulen P, Mlitschek M, Kuhn R, Wass1e H, et al. Group II and group III metabotropic glutamate receptors in the rat retina: Distributions and developmental expression patterns[J]. Eur J Neurosci, 1996; 8:2177-2187
    [45] Peng YW, Blackstone CD, Huganir RL, et al. Distribution of glutamate receptor subtypes in the vertebrate retina[J]. Neurosci. 1995; 66(2):483-497
    [46] Holohean AM, Hackman JC, Davidoff RA. Mechanisms in-volved in the metabotropic glutamate receptor-enhancementof NMDA mediated motoneurone responses in frog spinalcord[J].Br JPharmacol,1999, 126(1):333-341.
    [47] Fagni L, Chavis P, Ango F,et al.Complex interactionsbetween mGluRs, intracellular Ca2+stores and ion channelsin neurons[J].Trends Neurosci,2000, 23(2):80-81
    [48] Davies CH,Clarke VR,Jane DE ,et al. Br J Pharmacol,1995, 116:1859-1869
    [49] Nakanishi S. Integrative and Molecular Approuch to Brain Func-tion, 1996;4:21-27
    [50] Heuss C, Scanziani M, Gahwiler BH, et al. G-protein in-dependent signaling mediated by metabotropic glutamaterecepto[J]r. Nat Neurosci, 1999, 2: 1070~1077
    [51] Choi S, Lovinger DM. Metabotropic glutamate receptor modulation of voltage-gated Ca2+channel involves multiple receptor subtypes in cortical neurons[J]. Neurosci,1996, 16 (1): 36~45
    [52] Bianchi R, Young SR, Wong RKS. GroupⅠmGluR activation causes voltage-dependent and-independent Ca2+rises in hippocampal pyramidal cells[J]. Neurophysiol, 1999, 81 (6): 2903~2913
    [53] Lin YB, Disterhoft JF, Slater NT. Activation of metabotropic glutamate receptors induces long-term depression of GABAergic inhibition in hippocampus [J].Neurophysiol, 1993, 69: 1000-1004
    [54] Jouvenceau A, Dutar P, Billard JM. Presynaptic depression of inhibitory postsynaptic potentials by metabotropic glutamate receptors agonists, LY35470 and DCG-Ⅳ[J].Eur J Pharmacol, 1995, 281: 131-139
    [55] Lafon-Cazal M, Viennois G, Kulun R, et al. mGluR7-like receptor and GABAB receptor activation enhance neurotoxic effects of N-methyl-D-Aspartate incultured mouse stiatal GABAergic neurons [J]. Neuropharmacology, 1999, 38:1631-164
    [56] Hu G, Duffy P, Swanson C, et al. The regulation of dopamine transmission by metabotropic glutamate receptors [J].Pharmacol Exp Ther, 1999, 289: 412-416
    [57] Yu SP, Sensi SL, Canzoniero LMT, et al. Membrane delimited modulation of NMDA current by metabotropic glutamate receptor subtype 1/5 in cultured mouse cortical neurons [J]. Physiol, 1997, 533: 721-732
    [58] Pisani A, Calabresi P, Centonze D, et al. Enhancement of NMDA responses by groupⅠmetabotropic glutamate receptor activation in striatal neurons [J]. Br J Pharmacol, 1997, 120: 1007-1014
    [59] Attucci S, Carla V, Mannaioni G, et al. Activation of type 5 metabotropic glutamate receptors enhances NMDA responses in mice cortical wedges [J].Br J Pharmacol, 2001, 132:799-806
    [60] Rodrigue-Moreno A, Sistiaga A, Lerma J, et al. Switch from facilitation to inhibitation of excitatory synaptic transsmission by groupⅠmGluR desensitization [J]. Neuron,1998, 21: 1477-1486
    [61] Allen JW, Ivanova SA, Fan L, et al. GroupⅡmetabotropic glutamate receptor activation atteneuates traumatic neuronal injury and improves neurological recovery after traumatic brain injury [J]. J Pharmacol Exp Ther, 1999, 290: 112-120
    [62] Faas GC, AdwanikarH, Gereau RW. Modulation of presynaptic calciumtransients bymetabotropic glutamate receptor activation:a differential role in acute depression ofsynaptic transmissionand long-term depression [J]. J Neurosci, 2002, 22: 6885-6890
    [63]沈怡,陆雪芬,胡学强.谷氨酸及其受体在缺氧缺血性脑病中的作用[J].广州医学院学报, 2000, 28:3
    [64]秦丽华,于恩华,徐群渊.与阿尔茨海默病有关的淀粉样蛋白及代谢型谷氨酸受体的研究进展[J].解剖科学进展, 2001, 7:250-252
    [65]顾兵,胡刚,张颖冬.亲代谢型谷氨酸受体与帕金森病相关性研究进展[J].临床神经病学杂志, 2003, 16:121-123
    [66]杨闯,郭兰婷,郭田友.谷氨酸受体与精神分裂症[J].中国神经精神疾病杂志,2005, 31:3
    [67]杜敏,王万辉.谷氨酸兴奋毒性与青光眼[J].山西医科大学学报, 2004, 35:204-207
    [68]周霞,夏晓波,蒋幼芹.视网膜Muller细胞谷氨酸转动体及其功能调节[J].国际眼科杂志, 2003, 3:56-58
    [69]贺温玲,刘少章,周继红.谷氨酸与缺血缺氧性视网膜病变研究现状[J].中国临床康复, 2005, 9:188-189
    [70] Lipton SA.Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage[J].Surv ophthalmol, 2003, 48: 38-46
    [71]王永淑,郭希让,鲍玉洲.免眼视网膜脱离后视网膜谷氨酸含量与视网膜色素上皮细腻增殖的关系[J].眼科新进展, 2004, 24:114-116
    [72] Lan T T,Siew E,Chu R,et al.Ameliorative effect of MK-801 on retinal ischemia[J] .J ocul Pharmacol Ther, 1999, 13: 129-137
    [73] Lagreze WA,Knorle R,Bach M.Memantine is neuroprotective in a rat model of pressure-induced retinal ischemia [J].Invest Ophthalmol Vis Sci, 1998, 39: 1063-1066

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700