基于虚拟样机技术的变速器动力学仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
变速器是汽车传动系的重要组成部分,其运动学和动力学特性关系到变速
    器本身乃至整车性能的发挥。虚拟样机技术在系统动力学仿真中的成功应用不
    仅可以提高仿真精度,而且可以缩短产品设计周期,对于工程实际具有重要的
    应用价值。
     本文以一台变速器为研究对象,从多方面开展了基于虚拟样机技术的变速
    器动力学仿真研究。探讨了变速器中齿轮-转子-轴承系统的刚体和柔性体的
    动力学仿真的研究方法,对同步器工作过程的仿真方法做了深入的研究,仿真
    结果更接近变速器的实际工况,对工程实际具有一定的指导作用。本文主要内
    容如下:
     首先在变速器零件 UNIGRAPHICS(简称 UG)三维模型的基础上进行装配建模,
    利用装配主模型在 UG 中创建运动分析方案进行变速器运动学仿真研究。在运动
    仿真过程中,进行干涉检查,从而验证了变速器几何参数设计的合理性。
     同步器是汽车变速器的重要部件,本文推导出同步器摩擦锥面平均半径的计
    算公式,针对同步器的工作过程分别进行了理论计算和基于多体动力学分析软件
    MSC-ADAMS 平台的仿真分析,并对理论计算结果和计算机仿真结果进行了对比分
    析。
     在 MSC-ADAMS 中建立了变速器传动机构的多刚体动力学仿真模型,基于
    Hertz 静力弹性接触理论推导出直齿轮及斜齿轮的接触力仿真参数计算公式。仿
    真得到的传动齿轮的啮合力的大小及频率都和理论计算结果一致,从而验证了计
    算公式的正确性。
     分别用模态试验和有限元技术对变速器的二轴进行了动态特性研究,研究结
    果验证了有限元模型的准确性。利用此有限元模型,在 ANSYS 中生成二轴的模态
    中性文件,建立了变速器传动机构的柔性体动力学仿真模型。仿真得到的轴承处
    所受的动载荷,为轴及轴承的强度、刚度及寿命分析提供了数值依据。
Since transmission is an important component of vehicle’s power train, the
    character in kinematics and dynamics of transmission is related to the reliability of
    vehicle directly. The application of virtual prototyping technology not only improves
    simulation technique’s precision, but also saves the time.
     Taking example for a transmission used in vehicle, the key steps and approaches
    of dynamic simulation on the transmission based on virtual prototyping technology
    are discussed. This thesis makes a deep research on the dynamics simulation methods
    of the gear-rotor-bearing system and the synchronizer mechanism. The simulation
    results are more precise, and this method is very useful for the practical design. The
    main points of the thesis are listed below.
     Firstly, assembly model of the transmission is built in the UNIGRAPHICS
    environment. Based on the assembly model, UG Scenario is put up for kinematically
    analyzed, simulated and animated. Interference check in the motion process indicates
    the transmission’s geometry parameters are reasonable.
     Synchronizer is an important device of transmission. In the thesis, average radius
    of friction cone in synchronizer is presented. Some important parameters in the
    synchronizing process are calculated, and then the process is simulated in the
    MSC-ADAMS environment, furthermore, the two results used different method is
    compared and analyzed.
     Some parameters used in simulation of exciting force in both spur gears and
    helical gears are presented based on Hertz formula. Then, the multi-body dynamics
    simulation model of the gear train mechanism is established in the thesis. The
    consistency of the simulation result and the calculated result indicates that the
    magnitude and frequency of the exciting force in gears is correct.
     The structural dynamics characteristics of the output shaft are analyzed through
    both the model test and the Finite Element Analysis. The consistency of the natural
    frequencies and modal shapes verifies the veracity of the FE model. Based on the FE
    model of the output shaft, the multi-body dynamics simulation model of the flexible
    system is established in the thesis. Through the dynamics analysis of the flexible
    system, the bearing impact is acquired, which is the basis of the further analysis of the
    stress and stiff analysis on shafts and bearings.
引文
[1]Michael Weyrich,Paul Drews.An Interactive Environment For Virtual
    Manufacturing:The Virtual Workbench.Computers in Industry. 1999(38):5~
    15
    [2] 宋培林,虚拟模型:机械工程的一门新兴技术,美国机械动力学公司,1999
    [3] 沈红芳,弧焊机器人虚拟样机研究:[硕士学位论文],上海:华东理工大学,
    2002
    [4] U.Jasnoch,H.Kress.Towards a Virtual Prototyping Environment.
    IFIP Workshop on VP.1994
    [5] Letherwood,Michael D,et al.Ground Vehicle Modeling and Simulation
    of Military Vehicles Using High Performance Computing. Parallel Computing
    Volume.2001,27(1/2):109~140
    [6] 杨东超、汪劲松等,ADAMS 在拟人机器人研究中的应用,机器人技术及应用,
    2001(4):21~23
    [7] 梁浩等,基于 ADAMS 及 ANSYS 的柔性机器人动力学仿真系统,机械科学与技
    术,2002,21(6):892~895
    [8] 马履中、尹小琴等,新型三平移并联机器人机构动力分析与动态仿真, 农业
    机械学报,2002,33(2):80~83
    [9] 宁晓斌、张文明等,基于虚拟样机的制动器低频噪声分析,矿山机械 2002
    (8):57~59
    [10] 宋健、穆希辉等,机械系统分析软件 ADAMS 在汽车列车动力学仿真中的应
    用,汽车工程,1997,19(5):286~290
    [11] 李智峰,汽车整车多体系统动力学仿真研究:[硕士学位论文],上海:同济
    大学,2000
    [12] 邱宣怀等,机械设计(第四版),北京:高等教育出版社,1997
    [13] 苏翼林等,材料力学(第二版),北京:高等教育出版社,1998
    [14] 张勇、许纯新等,行星齿轮变速器换档过程的建模与仿真,吉林大学学报
    (工学版),2002,32(1):23~27
    [15] 刘钊、詹永红等,变速箱计算机辅助分析,同济大学学报,2000,28(4):
    452~456
    [16] 宋小欣,变速箱齿轮啮合动力学的数字仿真,同济大学学报,2001,29(12):
    1503~1506
    [17] Unigraphics Solution Inc.,UG 运动分析培训教程,北京:清华大学出
    版社,2002
    [18] 刘惟信,汽车设计,北京:清华大学出版社,2001
    
    
    [19] Mechanical Dynamics inc.Using ADAMS/Solver.2002
    [20]张洪欣,汽车设计(第 2 版),北京:机械工业出版社,1996
    [21] 兰燕东,评定同步器换档特性的方法,天津汽车,1993(4):14~17
    [22] 宋健、张越今,ADAMS 软件应用中解决数值发散的技巧,汽车技术,1996
    (12):9~11
    [23] 傅志方,振动模态分析与参数识别,北京:机械工业出版社,1990
    [24] 大久保信行,尹传家译,机械模态分析,上海:海交通大学出版社,1985
    [25] 赵骞,摩托车对发动机和路面激励的动态响应及其结构设计方法学研究:
    [博士学位论文],天津:天津大学,2001
    [26] Ewins D.J, Modal Testing: Theory and Practice, Research Studies
    Press LTD,1984
    [27] 方远翔等, 振动模态分析技术,北京:国防工业出版社,1993
    [28] 张阿舟等,实用振动工程,北京:航空工业出版社,1997
    [29] Mitchell L.D. A Perspective View of Modal Analysis, 6th IMAC, Vol.1
    p.xvii,1988
    [30] 张令弥,振动测试与动态分析,北京:航空工业出版社,1992
    [31] 李军等,ADAMS 实例教程,北京:北京理工大学出版社,2002
    [32] Salah Faik 、 Holly Witteman . Modeling of Impact Dynamics: A
    Literature Survey.2000 International ADAMS User Conference
    [33] 王玉芳、童忠钫,圆柱撞击发身机理的研究,振动、测试与诊断,
    1991,11(1):16~22
    [34] 龙凯、程颖,齿轮啮合力仿真计算的参数选取研究,计算机仿真,2002,
    19(6):87~91
    [35] 杨景惠等,机械设计(机械类第 2 版),北京:机械工业出版社,1996
    [36] H. Y. Isaac Du, Simulation of Flexible Rotating Crankshaft with
    Flexible Engine Block and Hydrodynamics Bearings for a V6 Engine, SAE
    paper, 1999, 1999-01-1752:1852~1860
    [37] R.R.Craig, M.C.C.Bampton, Coupling of substructures for dynamics
    analyses,AIAA Journal,1968,6(7):1313~1319

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700