用户名: 密码: 验证码:
内齿轮成形磨削工艺与装备技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由太阳轮、行星轮和内齿轮组成的行星轮系被广泛应用于起重、建筑、矿山、汽车、能源等行业的机械传动中。硬齿面齿轮可以成倍提高传动装置承载能力和使用寿命,大大减小传动装置的尺寸和重量。在我国,要提高行星轮系的制造精度,增加它的承载能力,关键要解决硬齿面内齿轮的高效率磨削问题。由于传统的范成法很难解决硬齿面内齿轮的磨削问题,而国外制造的数控成形磨齿机价格昂贵,致使国内内齿轮加工厂家普遍采用插(拉)齿后氮化处理的齿面强化工艺。这种工艺不仅对齿轮材料有特殊要求,而且加工效率和精度均不高。尽管国外已有商品化的数控成形磨齿机,国内也有个别厂家开始研制,但对内齿轮成形磨削工艺及装备技术的研究报道却很少。
     为了改变我国成形磨齿机依靠进口的局面,促进我国齿轮制造业的发展,研究并开发出具有我国自主知识产权的成形磨齿机和成形磨削技术已经迫在眉睫。鉴于此,本文对内齿轮成形磨削工艺及装备技术进行了系统地研究。论文的主要研究内容如下:
     (1)基于模块化设计原理,进行了内齿轮成形磨齿机模块化设计。在分析内齿轮成形磨齿机功能的基础上,设计了机床的总体布局,划分了机床的各级模块。以Pro/E为开发平台,以Pro/Toolkit为二次开发工具,建立了成形磨齿机各级模块的全参数化三维模型库,开发了支持模块化设计的磨齿机CAD系统。在此基础上对机床的零部件进行了详细设计和合理选择。
     (2)对成形磨齿机关键零部件的结构进行了分析与研究。利用Pro/E三维建模功能对内齿轮磨齿机立柱进行参数化建模,利用ANSYS分析软件对其进行了静力和动态分析,探讨了不同筋板布局形式对立柱动态特性的影响,通过灵敏度分析找到影响立柱性能的主要参数,提出了新立柱的结构设计方案。对砂轮架的结构进行了有限元分析和改进,建立了砂轮主轴的有限元模型,并对该主轴进行了模态分析,计算出了砂轮主轴的临界转速。
     (3)研究了渐开线廓形砂轮的修整方法,研制了成形砂轮修整装置。基于渐开线形成原理,分别用“范成法”和“插补法”研究了渐开线廓形砂轮的修整运动,建立了各自的数学模型,并对两种方法的砂轮修整装置进行了概念设计。通过比较分析这两种方法的可行性和经济性,设计并制造出了基于“插补法”的砂轮数控修整装置。
     (4)开发了渐开线廓形砂轮数控修整插补软件。内齿轮成形磨削的齿形精度主要取决于成形砂轮的形状精度,如何利用数控技术来实现渐开线廓形砂轮的修整是内齿轮数控成形磨削的关键。研究了可适用于任意齿数、模数的渐开线轮廓的砂轮修整技术,对渐开线插补作了较为深入的理论分析,提出了以法向允差δ为插补精度指标,通过改变展开角增量值△θ的大小不断改变插补点的密集程度,使插补点个数既能满足所需的修整精度,又能保证较高的砂轮修整效率。以VC++为平台开发出了可用于磨削任意参数和精度齿轮的砂轮数控修整软件。该软件主要分为四个模块:齿轮参数输入和计算对话框模块、渐开线插补计算模块、渐开线修整路径动态模拟模块、数控代码输出模块。该软件还能根据待加工齿轮参数自动生成加工代码,由RS232接口传入数控机床并保存在程序存储器中。
     (5)分析研究了内齿轮成形磨削工艺。成形磨削是硬齿面齿轮精加工的一种方法。它借助成形砂轮的切削作用去除轮齿表面的多余金属,可全面纠正齿轮磨前的各项误差,使整个齿轮达到较高的加工精度和表面质量。磨齿工艺的选择及制定不仅影响磨齿效率,而且影响齿面的轮廓精度和表面粗糙度。本文基于所开发的成形磨齿机床,主要研究成形磨削中所涉及的砂轮选择与修整、磨削液的选择与浇注方法、磨齿余量、磨削用量的选择等工艺性问题。
     (6)分析研究了影响成形磨齿质量的因素,提出了提高磨齿质量的措施。磨齿质量涉及内容广泛,这里主要指的是齿形精度、齿距精度、齿面粗糙度、齿面磨削烧伤等。在分析磨前插齿精度的基础上,根据成形磨齿原理,着重分析了影响内齿轮成形磨齿齿形精度和齿距精度的主要因素,并提出了提高齿形精度和齿距精度的措施。从磨齿工艺参数、砂轮修整等方面分析了影响齿廓表面粗糙度、齿面烧伤的因素,并提出了解决问题的对策。
     (7)完成了数控成形磨齿机安装调试。机床的安装精度对机床的加工精度将产生直接影响。对于所研制的数控成形磨齿机来讲,由于采用了模块化设计,给整机装配带来了极大方便。重点要做好数控滑台以及数控回转台的安装与调整。数控滑台的安装精度直接影响到工作台的直线运动精度,对加工齿轮的齿向精度、周节累积误差都有较大的影响。滚珠丝杠副与导轨的平行度、丝杠螺母座与滑台的高度要求都很严,仅靠加工无法保证,必须选择合适的装配方法。数控回转台用来对齿轮进行分度,其分度精度直接影响齿轮的周节累积误差。在实际安装时,既要考虑消除传动误差,又要考虑减小运动阻力。
     (8)完成了渐开线廓形砂轮的修整试验和内齿轮成形磨齿试验。砂轮修整试验包括生成砂轮修整程序和砂轮修整。首先向砂轮修整软件系统输入被加工齿轮的基本参数,利用渐开线修整路径动态模拟模块对渐开线形成过程进行仿真,再利用生成的砂轮修整程序,选择合适的砂轮修整余量对砂轮分别进行粗修和精修。磨齿前要检查工件安装位置、回转台中心位置、砂轮架竖直方向的位置是否正确,然后手工输入加工程序,进行空试车运行,确保加工轨迹正确无误。最后进行磨齿加工。检测发现,磨削齿轮的齿形误差、齿向误差、周节累积误差均可达到6级精度要求。
     综上所述,本文较详细地研究了内齿轮成形磨削工艺与装备技术。创新性地研制出了一种内齿轮数控成形磨齿机和成形砂轮数控修整装置,提出了内齿轮成形磨削的数学模型和加工方案,开发了内齿轮数控成形磨削软件系统。磨齿试验结果表明,所研制的数控成形磨齿机结构简单,经济实用,加工精度、加工效率以及柔性均较高,不仅可以加工内齿轮,也可以加工外齿轮;不仅可以加工直齿轮,也可以加工斜齿轮。本课题的完成有助于改变我国成形磨齿机床依赖进口的局面,带动国内齿轮加工机床制造业的发展。
The planetary gearing composed of sun gear, planet gear and internal gear is widely used in mechanical transmissions of crane industry, construction industry, mineral industry, automobile industry, energy industry and other industries. Equipped with hardened gears, the loading capacity and service life of transmission devices can be increased exponentially, and their size and weight can be decreased largely. At present in our country, in order to enhance manufacturing precision and loading capacity of planetary trains, the key is to realize the grinding of internal gears with hardened flanks. As it is difficult for generating method to machine the internal gears, and the CNC gear form grinding machines made in developed countries are very expensive, these make the domestic gear manufacturing factories find other ways to treat the internal gear with hard flanks. For example, after gear shaping or broaching, the internal gear is hardened by nitriding. Nitriding has the special requirements for the gear material and low processing efficiency. Because there is no any further finish machining after nitriding, it is impossible for the gears to have higher profile accuracy and loading capacity. Although there have been the commercial CNC gear form grinding machines in some developed countries, and a few of domestic companies have started to develop this kind of grinding machines, there is still very few report on the research of internal gear form grinding process and equipment technology.
     In order to change the situation that the gear form grinding machines rely on import from abroad, and promote the development of domestic gear manufacturing industry, it is urgent task to research and develop gear form grinding machine and technology owned the Autonomous Intellectual Property of P.R. China. For this reason, internal gear form grinding process and equipment technology are studied systematically in this dissertation. The primary research contents and accomplishments of this dissertation are as follows:
     (1) Based on modularization design principle, modular design of internal gear form grinding machine is completed. On the basis of function analysis, the layout of the internal gear form grinding machine is designed, and different modules of the machine are divided. Taking Pro/E software as developing platform and Pro/Toolkit as secondary development tool, a total parametric 3D modeling bank for each module of gear form grinding machine is established. A CAD system to support modular design of gear form grinding machine is developed. And then, the components and subassemblies of gear form grinding machine are designed in detail and selected rationally.
     (2) Analysis and research on the key components and subassemblies of gear form grinding machine are carried out.3D parametric model of the column of gear grinding machine is established by means of Pro/E. Both static analysis and dynamic analysis are performed by means of ANSYS software. The influences of different rib structures on the dynamic characteristic of column are investigated. The major parameters influencing on column's performance are found by analyzing the sensitivity of structure parameters, and a new design plan for column is proposed. With the aid in finite element analysis (FEA), the original structure of grinding wheel frame is improved. The finite element model of wheel spindle is set up, and modal analysis on the spindle is done. The critical revolution of the spindle is also calculated.
     (3) Dressing of involute grinding wheel is investigated and wheel dressing device is developed. According to involute generating principle, the motions required in dressing involute wheel are studied based on "generation method" and "interpolation method" respectively. Mathematical models of two wheel dressing methods are established, and two wheel dressing devices are drawn correspondingly. By comparing the feasibility and economics of the two methods, NC wheel dressing device based on "interpolation method" is finally designed and manufactured.
     (4) The interpolation software for dressing involute grinding wheel is developed. The tooth profile accuracy of gear form grinding depends mainly on the profile accuracy of form wheel to be dressed. How to dress involute grinding wheel by means of NC technology is the key to the internal gear grinding. The wheel dressing technology suitable for involute profile with arbitrary tooth, module and base circle radius is studied. On the basis of analyzing involute interpolation, taking the normal tolerance 8 as the interpolation accuracy index, the density of interpolation points can be changed constantly with the change of developable angle incrementΔθso that the numbers of interpolation points can meet the requirements not only for interpolation accuracy, but for interpolation efficiency. Taking VC++as developing platform, the wheel dressing software system is developed, which can be applied for dressing involute grinding wheel used for grinding the gears with any parameter and accuracy. The software system consists of four modules:gear parameters input and calculation dialog block, interpolation accuracy calculation and control, dressing route simulation, NC machining code output. By means of this software system, NC machining code can be generated automatically according to the parameters of gear to be machined, and input into the CNC unit through RS232 interface.
     (5) Internal gear form grinding process is analyzed and researched. Gear form grinding is one of the finishing processes of gears with hard flank. It can remove the excess metals from tooth flank by means of form grinding wheel, and correct completely various errors existed in pre-grinding gear so as to have gear acquire higher machining accuracy and surface quality. The selection and formulation of gear form grinding process have an influence not only on the grinding efficiency, but on the tooth profile accuracy and surface roughness. Based on the autonomous developed CNC internal gear grinding machine, the issues on the selection and dressing of grinding wheel, the selection of grinding fluids, grinding allowance, and grinding variables involved in gear form grinding process are mainly discussed.
     (6) The factors influencing on gear grinding quality are analyzed, and the measures to improve gear grinding quality are put forward. Gear grinding quality includes many contents. Here means primarily profile accuracy, tooth spacing accuracy, tooth flank roughness, flank grinding burn, and so on. On the basis of analyzing gear shaping accuracy, some major factors influencing on profile accuracy and tooth spacing accuracy in internal gear form grinding are analyzed emphatically in light of gear form grinding principle, and the corresponding measures are proposed. The factors influencing on tooth flank roughness, flank burn are also discussed from gear grinding process, wheel dressing and gear material, the countermeasures to solve these problems are pointed out.
     (7) Installation and adjustment of CNC gear form grinding machine are completed. Installation accuracy of machine tool has direct influence on the machining accuracy. As to the CNC gear form grinding machine mentioned above, modular design makes the assembly of total machine very convenient. The emphasis is to install and set the NC slide and NC rotary table well. The installation accuracy of NC slide has direct influence on the linear motion accuracy. Therefore, it would have larger influence on the tooth alignment accuracy and accumulative pitch error. As the requirements for the parallelism of ball screw and nut to guide-way, and the distance from the centerline of nut seat to the slide bottom are very strict, it is difficult to ensure these requirements only relying on machining, proper assembly methods must be selected. NC rotary table is used for the indexing of gear. Its indexing accuracy has direct influence on the accumulative pitch error. In practical installation, both eliminating transmission error and reducing moving resistance are considered at the same time.
     (8) Involute wheel dressing test and internal gear form grinding test are completed. The wheel dressing test includes the generating wheel dressing program and wheel dressing. Firstly, basic parameters of gear to be machined are input into wheel dressing software system. Then, the involute forming process is simulated by means of involute dressing route simulation module. Lastly, the rough and finish dressing of grinding wheel are carried out by means of wheel dressing program generated in the software system. Before grinding the gear, the wheel dressing device, workpiece, center of rotary table, and grinding wheel frame etc. should be set to proper position. Then by inputting machining program manually through the operation panel, the unloading trial run must be done in order to ensure the grinding track correct. Lastly, gear grinding can be carried out. It is found by inspecting the ground gear that the precision with grade 6 can be met whether in tooth error, or tooth alignment error and pitch error.
     To sum up, internal gear form grinding process and equipment technology are researched in detail in this dissertation. Not only a kind of CNC internal gear form grinding machine and a wheel dressing device are researched and developed creatively, but the mathematical model for internal gear form grinding and machining plan are put forward creatively. A software system for internal gear form grinding is developed. Gear grinding tests show that the gear form grinding machine is simple in design, economical and practical, and has higher machining accuracy and flexibility. In reality, the grinding machine can be used to grind cylindrical spur and helical gears whether they are external or internal gears. The completion of this project would be helpful for changing the situation that gear form grinding machines rely on importation, thus promoting the development of domestic gear machine manufacturing industry.
引文
[1]黄昌国.浅谈重载工业齿轮技术的发展[J].现代零部件,2005,(5):86-87.
    [2]安立宝.齿轮加工技术新进展[J].航空工艺技术,1994,(1):33-35.
    [3]朱景梓.渐开线内啮合圆柱齿轮传动[M].北京:国防工业出版社,1991.
    [4]《渐开线齿轮行星传动的设计与制造》编委会著.渐开线齿轮行星传动的设计与制造[M].北京:机械工业出版社,2002.
    [5]彭晓南,姚红霞,曹新民,等.成形法加工的大模数内齿轮的齿形分析[J].矿山机械,2003,(5):49-50.
    [6]周沛,赵军,徐宝龙等。德国数控圆柱齿轮成形磨齿机及磨齿工艺[J].现代制造工程,2002,(9):91-92.
    [7]遇立基.EM02003展出的数控成形磨齿机[J].世界制造技术与装备市场(WMEM),2004, (2):37-40.
    [8]孙季初CIMT2005磨齿机评述[J].世界制造技术与装备市场,2005,(3):64-65.
    [9]马云.从CIMT2005看磨齿机的发展趋势[J].世界制造技术与装备市场,2005,(3):66-69.
    [10]Hua-Yun You, Pei-Qing Ye, Jin-song Wang, et al. Design and application of CBN shape grinding wheel for gears [J]. International Journal of Machine Tools & Manufacture, 2003, (43):1269-1277.
    [11]M. A. Haidar, A. Ishibashi, K. Sonoda, et al. Minimization of effect of CBN wheel wear on ground gear errors, International Journal of Machine Tools & Manufacture 1999, (39):607-626.
    [12]徐璞,穆临平,蒋新柏,等.硬齿面齿轮珩齿技术的进展[J].太原工业大学学报,1993,(9):45-50.
    [13]全玉璋.硬齿面刮削与硬质合金刮削滚刀[J].汽车技术,1991,(5):43-46.
    [14]Faydor L. Litvin, Ignacio Gonzalez-Perez, Kenji Yukishima, et al. Generation of planar and helical elliptical gears by application of rack-cutter, hob, and shaper[J]. Computer methods in applied mechanics and engineering, 2007, (196):4321-4336.
    [15]Taku U, Kennichi T, Masafumi S. Study on hob for cutting internal gears. Trans. of the ASME Jour. Of Eng. For Industry,1974, (2):1-10.
    [16]Taku U, Kennichi T, Masafumi S. Studies on the internal gear hobs. BULL of the JSME,1975,18 (115):73-80.
    [20](日)相浦正人,广尾靖彰.用球形滚刀滚切内齿轮[J].制造技术与机床,1997,(2):13-16.
    [21]王跃进.球形滚刀的螺旋面原理[J].机械工程学报,1991,27(4):16-21.
    [22]Cui Yunqi, Hu Zhanqi. Theory of helicoid spherical hob. Chinese Journal of Mechanical Engineering,1995,8 (3):57-65.
    [23]肖兵.内齿轮滚削加工简介[J].机械,1997,24(6):46-47.
    [24]董中.用剃齿法精加工硬齿面齿轮新技术的发展[J].工具技术,1983,(12):22-27.
    [25]江甫炎.近代齿轮制造工艺[M].北京:航空工业出版社,1994.
    [26]王静,刘静波,曹荣.国内外齿轮加工技术及设备[J].成都纺织高等专科学校学报,2001,(7):27-30.
    [27]Newman Rex. Hard finishing by conventional generating and form grinding[J]. Gear Technology,1991,8(2):36-41.
    [28]Richmond Dennis. CNC gear grinding methods[J]. Gear Technology,1997,14(3):43-50.
    [29]李宇鹏,霍文权.圆柱蜗杆砂轮的计算机辅助参数化法设计[J].燕山大学学报,2002,(4):319-321.
    [30]刘丰林,游华云.内齿轮CBN成形磨齿法[J].磨床与磨削,1998,32(4):44-45.
    [31]刘永平,李鹤岐,龚俊.YC7150磨齿机高精度数控分齿系统设计[J].制造技术与机床,2004,(16):63-65.
    [32]龚俊,刘永平,赵学,等.锥面砂轮磨齿机高精度数控分齿的算法研究[J].兰州大学学报(自然科学版),2002,38(6):54-57.
    [33]罗生梅,赵学,姚天鹏.计算机控制高精度磨齿机设计研究.中国机械工程,2004,15(16):1440-1442.
    [34]李继贤,张飞虎.成形砂轮修整技术研究现状[J].机械工程师,2006,(10):19-22.
    [35]Hong-Tsu Young, Der-Jen Chen. Online dressing of profile grinding wheels [J]. Int J Adv Manuf Technol,2006, (27):883-888.
    [36]薄宵.磨工实用技术手册[M].南京:江苏科学技术出版社,2002.
    [37]刘军和,刘蔚.金刚石滚轮在砂轮修整中的应用[J].轴承,2003,(12):43-44.
    [38]徐湘涛.金刚石修整滚轮技术(上)[J].超硬材料工程,2006,18(2):17-21.
    [39]徐湘涛.金刚石修整滚轮技术(下)[J].超硬材料工程,2006,18(3):31-35.
    [40]袁哲俊,刘华明,唐宜胜.齿轮刀具设计(上册)[M].北京:新时代出版社,1983.
    [41]四川省机械工业局.齿轮刀具设计理论基础[M].北京:机械工业出版社,1982.
    [42]张光辉,魏静,王黎明.基于离散点截形螺旋面加工原理研究[J].中国机械工程,2007,18(10):1178-1181.
    [43]贺红霞,张洛平.基于斜齿圆柱齿轮数控成形磨削方式下的砂轮修形轨迹计算[J].煤矿机械,2004,(10):12-14.
    [44]Zhou. Y. S, Shao. M. Form grinding technology for the mold of powder metallurgy gears[J]. Chinese journal of mechanical engineering,2005, (1):162-165.
    [45]Nishida Noriteru, Kobayashi Youichi, Ougiya Yasuhiko, Tsukamoto Naohisa. Profile calculation method for form grinding wheels[J]. Journal of the Japan Society of Precision Engineering,1992,58(4):628-634.
    [46]闵好年,周玉山,邵明.渐开线齿轮模具成形磨削砂轮廓形的计算通式[J].现代制造工程,2006,(1):1-3.
    [47]周玉山.粉末冶金齿轮模具数控成形磨齿技术的研究[D].广州:华南理工大学,2005.
    [48]王建军.成形磨削中砂轮修整精度的研究[J].金刚石与磨料磨具工程,2002,5(13):48-49.
    [49]肖德明.超硬砂轮的成形修整[J].磨床与磨削,1997,(3):47-50.
    [50]P.Dennis.用可修整的金刚石和立方氮化硼砂轮进行成形磨削[J].机械工程师,2001,(7):69-71.
    [51]T. Suzuki, H. Ohmori, Y. Dai, W. Lin. Ultra-precision fabrication of Glass Ceramic Aspherical Mirrors by ELID-grinding with a Nano-level Positioning Hydrostatic Drive System [J], Key Engineering Materials.2003,238:49-52.
    [52]于爱兵.成形金刚石砂轮的电解修整阴极设计[J].金刚石与磨料磨具工程,2003,137:61-63.
    [53]Yanase. Tatsuhito, Usuki Masao, Uematsu Tetsutaro, Suzuki Kiyosh On-machine High Precision Truing for Thin Grinding Wheels by EDM [J]. Journal of the Japan Society for Precision Engineering.1995,61(6):819-823.
    [54]梁锡昌.成形磨齿论文集(C).重庆:重庆大学出版社,1998.
    [55]邓中明,徐太荣.新型砂轮修整器的优化设计[J].武汉纺织工学院学报,1999,12(2):11-12.
    [56]邓中明,徐太荣.曲线逼近法磨齿方法的研究[J].磨床与磨削,1999,12(4):61-62.
    [57]刘永祥,张善青.数控渐开线展成砂轮修整装置[J].金刚石与磨料磨具工程,2002,(5):50-51.
    [58]ZHANG Ziqiang, YANG Qiusheng, ZHENG Zhidan. Studies on wheel dressing method in form grinding of revolving curved surfaces grooves [A]. Progress of Machining Technology [C]. Beijing:Aviation Industry Press,2002:363-368.
    [59]Zhang Z Q, Yan Q S, Chen S B, et al. Influence of dresser setting and assembling errors on shape precision of form wheel [J]. Key Engineering Materials, 2004(259-260):63-67.
    [60]张自强,阎秋生,陈少波等.编程容易实现的新型砂轮修整器[J].中国制造业信息化,2004,33(4):111-112.
    [61]张自强,阎秋生,陈少波等.一种转动轴与移动轴并联的数控砂轮修整器[J].组合机床与自动化加工技术,2004,32(6):3-6.
    [62]张自强,阎秋生,陈少波等.一种能简化编程的数控砂轮修整器结构[J].工具技术,2004,38(7):29-30.
    [63]王建军,姚斌.成形磨削中砂轮修整精度的研究[J].金刚石与磨料磨具工程,2002,(5):48-49.
    [64]邓中明,徐太荣.成形磨齿修整器笔尖测量装置的设计[J].现代机械,1999,52(4):39-40.
    [65]曾凡月.高精度金刚石滚轮成型修整装置的研制及其应用[J].金刚石与磨料磨具工程,2004,(4):76-77.
    [66]贾延林.模块化设计[M].北京:机械工业出版社,1993.
    [67]卢军峰,薛庆.模块化设计中的模块创建策略[J].机械设计与制造,2005,(7):10-11.
    [68]蔡业彬.模块化设计方法及其在机械设计中的应用[J].机械设计与制造,2005,(8):154-156.
    [69]Ulrich, Tung. K. Fundamentals of product Modularity Issues in Design/Manufacturing integration[C]. Proceedings ASME winter Annual meeting conference. New York: ASME,1991,85-88.
    [70]Ito. Y, Shinno H. Structural description and similarity of the Structural configuration in machine tools [J]. Int. J. MTDR,1982,22(2):97-110.
    [71]Jefrey. B, Dahmus, Javier P Gonzalez-Zugasti. Modular product Architecture. Processings of 2000 ASME Design Engineering Technical Conferences[C]. New York: ASME,2000,95-97.
    [72]童时中.模块化原理设计方法及应用[M].北京:中国标准出版社,1999.
    [73]候亮.机械产品广义模块化设计理论研究及其在液压机产品中的应用[D].天津:天津大学,2002.
    [74]杜陶钧,黄鸿.模块化设计中模块划分的分级、层次特性的讨论[J].机电产品开发与创新,2003,(2):50-53.
    [75]张松林.机械设计的一种创新设计[J].武汉理工大学学报,2001,(3):15-17.
    [76]P. Gu, Sosale. Product modularization for life cycle engineering [J]. Robotics and Computer Integrated manufacturing,1999,15(5):387-401.
    [77]宗鸣镝.产品模块化设计中模块划分的多角度、分级特性讨论[J]. CAD/CAM与制造业信息化,2003,(7):35-37.
    [78]姜银华,马宏计.模块化设计在数控机床上的应用[J].机械工业标准化与质量,2004,(11):20-23.
    [79]Fujita k. Product variety optimization under modular architecture [J]. Computer-Aided Design,2002,49(2):63-65.
    [80]宋辉,曲向丽. Visual C++实用培训教程[M].北京:人民邮电出版社,2002.
    [81]熊林. access 2003数据库实用教程[M].武汉:华中师范大学出版社,2006.
    [82]徐慧.Visual C++数据库编程技术与实例[M].北京:人民邮电出版社,2005.
    [83]李世国.Pro/TOOLKIT程序设计[M].北京:机械工业出版社,2003.
    [84]陈勇平.平面磨削力建模及其应用研究[D].长沙:中南大学,2007.
    [85]文怀兴,夏田.数控机床系统设计[M].北京:化学工业出版社,2005.
    [86]Saeed Moaveni. Finite Element Analysis Theory and Application with ANSYS [M]. Second Edition. Beijing:Publishing House of Electronics Industry,2005.
    [87]黄国权.有限元法基础及ANSYS应用[M].北京:机械工业出版社,2004.
    [88]Bathe K.J. Finite element procedures in engineering analysis [M].New York: Prentice Hall, Inc.,1982.
    [89]张国瑞.有限元法[M].北京:机械工业出版社,1992.
    [90]Warnecke. G, Zim. U. Kinematic Simulation for Analyzing and Predicting High Performance Grinding Processes [J]. Annals of CIRP,1998,47(1):50-53.
    [91]邵将,李世国. Pro/E与ANSYS的连接方法和应用实例[J].机械设计,2004,(9):58-60.
    [92]焦洪宇. Pro/E模型导入ANSYS问题的研究[J].辽宁工学院学报,2004,(12):37-39.
    [93]吴国洋,龙思远.LX150摩托车曲轴箱体的有限元分析与结构改造[J].重庆大学学报,2004,27(8):11-14.
    [94]Knagy, Changyp, Tsai jw. Integrated CAE strategies for the design of machine tool spindle-bearing system [J]. Finite Element in Analysis and Design,2001,37(6): 485-511.
    [95]宋勇,艾宴清.精通ANSYS7.0有限元分析[M].北京:清华大学出版社,2004.
    [96]Li Xingtong. Use of finite element structural models in analyzing machine tool chatter [J]. Finite Element in Analysis and Design.2002,38(11):1029-1046.
    [97]罗筱英,唐进元.数控弧齿锥齿轮磨齿机主轴系统的有限元分析[J].机械传动,2004,28(2):10-12.
    [98]丛明,易红,汤文成,等.机床床身结构的有限元分析与优化[J].制造技术与机床,2005,(2):47-50.
    [99]杨萍,贺小明. ANSYS与Pro/E无缝连接的应用研究[J].机械设计与制造,2006,(1):58-60.
    [100]David S Hardage, Gloria J Wiens. Modal analysis and modeling of a parallel kinematic machine [J]. Manufacturing Science and Engineering,2003, (10):857-862.
    [101]郭志全.基于有限元的加工中心立柱结构静、动态设计[J].机械强度,2006,28(2):287-291.
    [102]Hsu W, Woon IM Y. Current research in the conceptual design of mechanical product [J]. Computer Aided Design,2006,30(5):377-389.
    [103]张德泉,李真.数字控制成形磨削技术的研究[J].制造技术与机床,1998,(5):34-35.
    [104]Abbas. A. T. A general algorithm for profiling and dressing of complicated shape grinding wheels [J]. Robotics and Computer-Integrated Manufacturing,2004, (20): 313-327.
    [105]刘华建.时间分割法的渐开线插补[J].先进制造技术,2006,25(1):23-24.
    [106]Chen Chien-Fa, Tsay Chung-Biau. Computerized Tooth Profile Generation and Analysis of Characteristics of Elliptical Gears with Circular-Arc Teeth [J]. Journal of Materials Processing Technology,2004, (148):226-234.
    [107]Bedis, Qunn N. Advanced Interpolation Techniques for NC machines [J]. Journal of Engineering for industry,1993,115(20):329-336.
    [108]姚必强.一种时间分割插补的渐开线加工方法[J].机械制造与研究,2006,(9):34-35.
    [109]Zhou. Y. S, Shao. M, form grinding technology for the mold of powder metallurgy gears[J], Chinese journal of mechanical engineering,2005, (1):162-165.
    [110]廖效果,刘又午,朱剑英.数控技术[M].武汉:湖北科学技术出版社,2000.
    [111]党玉春.时间分割渐开线插补新算法[J].组合机床与自动化加工技术,2006,(12):31-32,37.
    [112]张敬东.等误差直线逼近渐开线节点的简易计算方法[J].组合机床与自动化加工技术, 2004,(3):29-30.
    [113]张彦博.等误差圆弧逼近渐开线的节点计算新方法[J].组合机床与自动化加工技术,2004,(3):26-27,30.
    [114]王丽萍,孙国防,季绍坤.非圆曲线数控编程的等误差圆弧逼近法及其实现[J].现代制造工程,2006,(10):30-32.
    [115]黄恺.渐开线有关问题的探讨[J].制造技术与机床,1999,12(12):21-23.
    [116]陶江,郭平茹,古晓利.渐开线插补算法的用例[J].山西机械,1999,103(2):16-17.
    [117]赵万生,史旭明,王刚.参数方程曲线的直接插补研究[J].哈尔滨工业大学学报,2000,32(1):133-134.
    [118]徐慧. Visual C++数据库编程技术与实例[M].北京:人民邮电出版社,2005.
    [119]赛奎春,张雨.Visual C++工程应用与项目实践[M].北京:机械工业出版社,2005.
    [120]朱秀琳,文怀兴,孙波.数控磨齿机人机界面的开发[J].制造技术与机床,2004,(6):104-107.
    [121]胡海生,李升亮.VC++6.0实用培训教材[M].北京:清华大学出版社,2003.
    [122]Guo Wenliang, Zheng Xiaohua, Han Nianchen. Method of measuring system errors for gear grinding machine[C]. Proceedings of the International Symposium on Test and Measurement,1997,655-658.
    [123]Yoshino Hidehiro, Ikeno Kazuhiro. Error compensation for form grinding of gears[J]. Transactions of the Japan Society of Mechanical Engineers,1991, 57(543):3652-3655.
    [124]Guo Wenliang, Ya Gang, Zheng Xiaohua,Liu Zhibo. Error analysis and compensation of precision gear grinding[C]. Proceedings of the International Symposium on Test and Measurement,1997,630-632.
    [125]Kobayashi Youichi, Nishida Noriteru, Ougiya Yasuhiko, Nagata Hiroshi. Estimation of grinding wheel setting error in helical gear processing by form grinding[J]. Transactions of the Japan Society of Mechanical Engineers,1997,63(612): 2852-2858.
    [126]赵雪松,赵晓芬.机械制造技术基础[M].武汉:华中科技大学出版社,2006.
    [127]Syoji K, Zhou L. Studies on Truing and Dressing of Diamond wheels (1st report). JSPE,1990,24(2):124.
    [128]Salje E, Machensen H G V. Dressing of Conventional and CBN Wheels with Diamond Form Rollers. CIRP,1984,33(1):205.
    [129]Syoji K, Piao C. Studies on Truing of Diamond Wheels (3rd report). JSPE,1988, 54(2):198.
    [130]郭隐彪,杨继东,梁锡吕,等.金刚石滚轮对树脂砂轮的修形特性研究[J].重庆大学学报(自然科学版),1998,21(3):50-54.
    [131]许洪基,陶燕光,雷光.齿轮手册(第2版)下册[M].北京:机械工:出版社,2005.
    [132]梅家兵.影响齿轮主要加工精度超差原因分析[J].机械工艺师,2000(9):60-61.
    [133]西门子公司研发部.西门子802C操作与编程[M].南京:南京大学出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700