泵用渐开线齿轮CAD/CAE集成技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在液压系统中,齿轮泵占很大的比重,它广泛应用于机床、轻工、船舶、石化等各类机械产品的液压系统中。齿轮泵的质量和性能直接影响着机械产品的性能。随着液压系统的不断发展,对齿轮泵的要求日益提高,迫切需要设计、制造出质量更佳的齿轮泵。
     随着科学技术的不断发展和应用,新的设计技术——CAD和CAE分析应运而生。同时制造业正在逐步实现信息化,而制造业信息化的起点是设计数字化。为实现齿轮泵设计的数字化,本文开发出了高效、智能化的泵用渐开线齿轮CAD/CAE集成系统。该系统以泵用渐开线齿轮为研究出发点,但它同样适用于一般的渐开线齿轮传动。该系统对于实现渐开线齿轮设计的数字化、智能化、集成化,缩短产品设计周期,提高产品设计质量,具有重要的理论价值和工程意义。本文的主要工作和创新之处如下:
     (1)基于泵用渐开线齿轮的齿形特征,利用齿轮啮合的基本原理,经过分析、推导,得出了组成齿轮全齿廓的渐开线、过渡曲线以及齿根圆弧的数学方程;在对齿轮啮合过程进行深入分析的基础上,指出了目前使用的渐开线齿轮重合度计算公式不适合用来计算某些参数的齿轮泵的重合度,并给出了适合齿轮泵特征的重合度计算公式。
     (2)依据组成渐开线齿轮齿廓的各段曲线的数学方程,利用数值计算方法求出各段曲线之间的交点,确定各段曲线上用来组成齿轮齿廓的有效部分,齿轮齿廓是各段有效曲线依次连接而成的。利用Visual Basic 6.0编程语言在AutoCAD平台上实现了渐开线齿轮齿廓的自动绘制。
     (3)建立渐开线齿轮的CAE分析模型,选用ZRCAE作为CAE分析软件,剖析了ZRCAE的输入数据格式,按照此格式,利用CAD设计的计算结果,直接生
    
    郑州机械研究所硕士学位论文
    成CAE分析所需的全部数据文件,然后由ZRCAE读取该数据文件进行分析计算
    及后处理,真正实现了泵用渐开线齿轮的参数设计和CAE分析的无缝集成,使
    用户彻底摆脱了齿轮实体造型的束缚,大大提高了设计分析的效率和质量。
     (4)利用渐开线齿轮的齿廓,在501 idworkS平台上通过编程实现了渐开
    线齿轮完全自动的参数化实体造型,为后期的模拟装配和运动仿真奠定了基础。
     (5)分析了齿轮泵的性能特征,建立了泵用渐开线齿轮基本参数的优化模
    型,对齿轮泵的齿轮参数进行了优化,提高了齿轮泵的综合性能。算例计算表
    明该优化模型正确、合理,进一步提高了齿轮泵的设计水平和效率。
Gear pump is used widely in the hydraulic system such as machine tool, light industry, shipping, oil chemicals etc. The quality and capability of gear pump affect the characteristics of machines directly. With the progress of hydraulic system, it is appealing the high quality gear pump. The higher quality gear pump is requested.
    The new CAD and CAE technologies are appearing with the development of science and technology. At the same time the manufacturing is bringing informationilization into effect. The base of informationilization is digital design. In order to use digital design in the gear pump field, an integrated system of CAD/CAE for involute gear is developed in this dissertation. This system is high efficient and intelligent. Although this system was developed depended on the features of gear pump, it can be used in all kinds of cylindrical involute gear. This system has great significance for realizing digital design, for shortening the time of design, for improving the quality of gear, etc. The main results and the creative ideas are summarized as follows:
    1. Based on the profile features of involute gear in gear pump, the active profile and the fillet of gear are analyzed according to the mesh theory. The equations of involute profile and fillet are worked out. Based on analysis of the mesh process of gears, it's pointed out that the traditional calculation formula of involute gear's contact ratio is not suited for calculating the gear's contact ratio in the pumps with some parameters, and a suitable formula is offered in this dissertation.
    2. Depended on the profile equations of involute gear, the intersection points of
    
    
    
    these curves are worked out by numerical method. The effective ranges of these curves are determined by these points. The whole profile can get by linking these effective curves together in proper order. A Visual Basic 6.0 program is developed to draw the whole profile automatically.
    3. Selected the ZRCAE as a CAE software, the form of input data was dissected deeply. The input data of ZRCAE was gained from the results of CAD calculation for gear. This process realized the seamless integrated of parameters design and CAE for involute gear. This can let designer to get rid of the constraint of modeling of involute gear completely, improves the efficiency and quality of gear design greatly.
    4. An automatic 3D modeling of involute gear is gained by a Visual Basic program depended on the precise profile and SolidWorks. The 3D modeling is the foundations of dynamic imitation and simulative assemble.
    5. Referenced other gear pump optimizing calculation and combined the feature of gear pump, a kind of optimizing calculation method of gear pump is put forward. And the optimized model of involute gear for gear pump is built. These can improve the characteristics of gear pump.
引文
[1]嵇光国编著.液压泵故障诊断与排除.北京:机械工业出版社,1997.4
    [2]褚克勤,傅理琦.齿轮泵泵体设计点滴.拖拉机与农用运输车,1995(2):22~23
    [3]殷金祥,周骥平.斜齿齿轮泵齿轮的优化设计.机械设计与制造工程,2001,30(4):7~8
    [4]李志华,刘小思,顾广华.齿轮泵齿轮基本参数的优化设计.江西农业大学学报,1997(9):132~136
    [5]方光义.斜齿齿轮泵设计计算方法初探.内蒙古科技与经济,2002(8):81
    [6]祝海林,邹曼.输送高粘度液体用齿轮泵的特点与发展方向.石油机械,2002,30(1):42~44
    [7]孟继安,梁启国.新型高粘度齿轮泵的性能试验研究.化工机械,1998(5):34~36
    [8]马永其,孙永华.高粘度外啮合齿轮泵结构及特性分析.流体机械,1997,25(12):19~22
    [9]甘学辉,吴晓铃,侯东海.全齿廓啮合斜齿齿轮泵流量脉动特性.石油化工机械,2002,31(5):8~10
    [10]甘学辉.聚合物齿轮泵特性理论研究及数值模拟:[博士学位论文].北京:机械科学研究院,2002
    [11]祝海林,邹曼.提高高粘度齿轮泵性能和寿命的途径.石油化工设备技术,1999,20(1):43~45
    [12]赵亮,王冬屏,任喜岩.齿侧间隙很小时齿轮泵困油问题分析.机械工程学报,1999,35(6):77~80
    [13]甘学辉,吴晓铃,郑英豪.外啮合斜齿齿轮泵困油特性分析.机械传动,2001,25(4):8~10
    [14]甘学辉,吴晓铃,向平.斜齿齿轮泵有侧隙啮合困油特性的研究.机械传动,2002,26(2):8~10
    [15]侯波,栾振辉.中心轮齿数对复合式外齿轮泵流量脉动的影响分析.机械传动,2002,26(1):54~56
    [16]赵亮,王东屏,任喜岩.斜齿齿轮泵流量脉动特性分析.大连铁道学院
    
    学报,2001,22(4):25~28
    [17]周骥平,姜铭,李益民等.斜齿齿轮泵小脉动输出特性.机械工程学报,2000,36(12):18~20
    [18]谢继生.高压平衡式复合齿轮泵.煤矿自动化,1996(2):55~58
    [19]石喜富,栾振辉.复合齿轮泵的参数优化.机械研究与应用,2002,15(1):22~24
    [20]张军.二齿齿轮泵.煤矿机械,2002(2):44
    [21]蒋伟,栾振辉.活齿齿轮泵的工作原理.煤矿机械,1998(7):29~30
    [22]栾振辉,孙丽华.无啮合力齿轮泵.煤矿机械,2002(1):40~41
    [23]侯东海,司春华,吕泮功.少齿差摆线齿轮泵啮合原理及几何参数选择.机械转动,1995(3):24~27
    [24]刘忠明,侯东海,王小椿等.一种复合型线齿轮泵的齿廓反求及分析.机械转动,2000(1):13~14
    [25]张妙龄,潘政广.新型内啮合摆线齿轮泵的研制.流体机械,1997(10):19~21
    [26]朱敏,周兆群.新型摆线少齿差齿轮泵的齿形设计.机械,1999(1):20~24
    [27]吴限,高红旗.齿轮泵的流量调节方式之新设想.机械工程师,1996(增刊):33
    [28]陈炜,林忠钦.机械CAD/CAE技术应用研究.机械工程师,1999(2):28~29
    [29]吴鲁纪.GS系列高速渐开线圆柱齿轮传动CAD:[硕士学位论文].郑州:郑州机械研究所,2003
    [30]杨寿夜,刘忠明.齿轮传动CAD技术的发展趋势.21世纪的中国齿轮行业发展战略研讨论文集,1998.8
    [31]Wang Lixin, Huang Wenliang. Solid Model Generation of Involute Cylindrical Gears. GEAR TECHNOLOGY. 2003 (9-10): 40~43
    [32]吴晓光.AutoCAD for Windows环境下三维齿轮造型的ARX编程.制造业自动化,2000,22(4):37~40
    [33]张志森,李世国,张裕中.基于Solid Edge的渐开线斜齿轮齿廓三维造型技术研究.机械设计与研究,2002,18(3):22~23
    [34]秦朗,邵平.渐开线直齿圆柱齿轮的参数化三维造型.淮南工学院学报,
    
    2001,21(3):26~29
    [35]吴鲁纪,常可勤.基于特征的三维渐开线圆柱齿轮CAD.机械传动,2002,26(4):53~54
    [36]F.L. Litvin, A.G..Wang, R.F. Handschuh. Computerized Generation and Simulation of Meshing and Contact of Spiral Bevel Gears with Improved Geometry. Comput. Methods Appl. Mech. Engrg. 158(1998):35~64
    [37]Faydor L. Litvin, Qi Fan, Daniele Vecchinato, etc. Computerized Generation and Simulation of Meshing of Modified Spur and Helical Gears Manufactured by Shaving. Comput. Methods Appl. Mech. Engrg. 190(2001):5037~5055
    [38]Alexander Kapelevich. Geometry and Design of Involute Spur Gears with Asymmetric Teech. Mechanism and Machine Theory , 35 (2000):117~130
    [39]尹柏生.有限元系统的发展现状与展望.计算机世界,2001(4)
    [40]刘辉,吴昌林,杨叔子.参数化啮合斜齿轮三维有限元网格的自动生成.华中理工大学学报,1997,25(4):13~15
    [41]杨文通,孙大乐,蔡春源.双圆弧齿轮接触有限元分析离散化网格自动生成算法.东北大学学报(自然科学版),1996,17(4):416~419
    [42]顾守丰,连小珉,丁能根等.斜齿轮弯曲强度三维有限元分析模型的建立及其程序实现.机械科学与技术,1996,15(2):167~171
    [43]吴继泽等.齿根过渡曲线与齿根应力.北京:国防工业出版社,1989
    [44]张力,王军,周彦伟.不同齿根过渡曲线的齿轮弯曲强度的有限元分析.矿山机械,1997(6):45~47
    [45]Alexander L. Kapelavich, Yuriy V. Shekhtman. Direct Gear Design: Bending Stress Minimization. GEAR TECHNOLOGY, 2003,9-10:44~47
    [46]Michele Ciavarella, Giuseppe Demelio. Numerical Methods for the Optimisation of Specific Sliding, Stress Concentration and Fatigue Life of Gears. International Journal of Fatigue, 21 (1999): 465~474
    [47]王玉新,柳杨,王仪明等.渐开线直齿圆柱齿轮齿根应力的有限元分析.机械设计,2001(8):21~24
    
    
    [48]孙雪梅,朱育权,高嵩.齿轮齿根应力过程的计算——应力影响矩阵法.西安工业学院学报,2001,21(3):256~261
    [49]李彦平,刘凯,周春国等.大高宽比微型齿轮齿根弯曲应力的有限元分析.西安理工大学学报,2002,18(1):18~21
    [50]郭振华,黄营,陈定方等.AutoCAD建模与有限元分析的集成.机械传动,1999,23(1)(增刊):79~81
    [51]Chien-Hsing Li, Hong-Shun Chiou, Chinghua Hung, etc. Integration of Finite Element Analysis and Optimum Design on Gear Systems. Finite Elements in Analysis and Design, 38 (2002):179~192
    [52]John Argyris, Alfonso Fuentes, Faydor L. Litvin. Computerized Integrated Approach for Design and Stress Analysis of Spiral Bevel Gears. Comput. Methods Appl. Mech. Engrg., 191(2002):1057~1095
    [53]Faydor L. Litvin, Alfonso Fuentes, Qi Fan, etc. Computerized Design, Simulation of Meshing, and Contact and Stress Analysis of Face-milled Formate Generated Spiral Bevel Gears. Mechanism and Machine Theory, 37(2002):441~459
    [54]陶泽光,李润方,林腾蛟.齿轮系统有限元模态分析.机械设计与研究,2000(3):45~46
    [55]蒋孝煜,高维山.有限元法在齿轮弯曲应力计算中的应力.清华大学科学报告,QH79013,1979.3
    [56]刘树成,吴继泽.渐开线斜齿轮弯曲强度的研究.机械科学与技术,1991(4)
    [57]ZF Friedrichshafen AG, Dip 1-Ing. R. Bick, Dipl-Ing. A. Britten. Modern Methods of Gear Calculation. Drive System Technique, 2002.4: 1
    [58]吴序堂.齿轮啮合原理.北京:机械工业出版社,1982
    [59]西北工业大学机械原理及机械零件教研室编,孙桓,陈作模主编.机械原理(第五版).北京:高等教育出版社,1996
    [60]紫瑞CAE软件使用说明书.郑州:紫瑞软件有限公司,2000
    [61]高维山等.变速器.北京:人民交通出版社,1990
    [62]西北工业大学机械原理及机械零件教研室编,濮良贵,纪名刚主编.机械设计(第六版).北京:高等教育出版社,1996
    
    
    [63]孙兰风等.参数几何化曲面造型过程可视化的研究.机械设计,1999(10):19~21
    [64]刘惟信.机械最优化设计(第二版).北京:清华大学出版社,1994
    [65]现代数学手册(经典数学卷).武汉:华中科技大学出版社,1999:997~998
    [66]F.L. Litvin,M. De Donno,A. Peng, etc. IntegratedComputer Program for Simulation of Meshing and Contact of Gear Drives. Comput. Methods Appl. Mech. Engrg., 181(2000):71~85
    [67]Chung-Yunn Lin, Chung-Biau Tsay, Zhang-Hua Fong. Computer-aided Manufacturing of Spiral Bevel and Hypoid Gears by Applying Optimization Techniques Journal of Materials Processing Technology, 114(2001):22~35
    [68]刘忠明,唐定国.多级齿轮参数优化设计及其程序.机械传动,1994(3)(增刊):56~57
    [69]康博创作室.AutoCAD2000使用大全.北京:清华大学出版社,1996
    [70]谢贻权,何福保主编.弹性和塑性力学中的有限单元法.北京:机械工业出版社,1981
    [71]赵汝嘉,曹岩主编.SolidWorks2001精通与提高篇.北京:机械工业出版社,2002
    [72]张树兵,戴红,陈哲编著.Visual Basic6.0入门与提高.北京:清华大学出版社,1999
    [73]郭仁生,苏君,卢洪胜编著.优化设计应用.北京:电子工业出版社,2003
    [74]齿轮手册编委会.齿轮手册(上、下册)(第二版).北京:机械工业出版社,2000.8
    [75]毛新财.齿轮传动设计Expert/CAD系统的研究:[硕士学位论文].西安:长安大学,2001
    [76]张领.基于特征的参数化齿轮系统的优化设计:[硕士学位论文].长沙:中南林学院,2001

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700