沙芥与斧形沙芥生理生态适应性及生殖生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
沙芥和斧形沙芥是十字花科(Cruciferae)沙芥属(Pugionium Gaertn)二年生草本植物,该属是亚洲中部蒙古高原沙地的特有属,其中沙芥为中国的特有种,斧形(翅)沙芥于1992年被列为濒危种。本论文以沙芥和斧形沙芥为试材,研究了水分、沙埋、高温对其萌发、出苗、成苗的影响及根系发育、生殖和传粉生物学,以期掌握其生理生态适应性,为沙芥和斧形沙芥的生存与繁衍机制的研究奠定理论基础,为恢复自然植被、保护和扩大野生资源及人工栽培提供实践指导。其主要研究结果如下:
     1.沙芥与斧形沙芥种子萌发对水分和沙埋的生理生态适应性
     (1)沙芥和斧形沙芥果实能够萌发的土壤含水量范围均为2~20%,适宜萌发的土壤含水量为6~12%;果实能够出苗的土壤含水量均为3~20%,果实适宜出苗的土壤含水量范围均为6~16%。说明极低的土壤含水量就能满足果实萌发与幼苗出土的适宜条件,其种子萌发机制表现了对沙生环境极强的适应性。
     (2)当土壤含水量为6~12%时,沙芥与斧形沙芥幼苗生物量显著高于其他处理,当土壤含水量为3~8%和4~8%时,二者根冠比分别达到最大。
     (3)沙芥与斧形沙芥最适宜的的供水量分别为:高于当地7月降雨量的50%和接近当地7月的降雨量;当降雨量为当地6月平均降雨量(50mm/month),沙埋深度1~4cm可以出苗;当降雨量为当地7月的降雨量(100mm/month),沙埋深度分别1-8cm、0~4cm均可出苗。最适宜的沙埋深度分别为2cm和lcm,说明斧形沙芥种子萌发期和幼苗出土期的抗旱性强于沙芥,但沙芥较斧形沙芥耐沙埋。
     2.沙芥与斧形沙芥幼苗生长对温度和沙埋深度的生理生态适应性
     (1)沙芥与斧形沙芥热处理出现轻微热害症状分别为:45℃/2h和40℃/24h;热处理直接导致植株死亡:沙芥50℃/24h、60℃/3h;斧形沙芥45℃/24h、50℃/8h和60℃/2h,说明沙芥比斧形沙芥耐高温。
     (2)不同温度对叶绿素荧光参数的影响分析,50℃显著影响沙芥光合作用,40℃显著影响斧形沙芥光合作用,60℃严重破坏沙芥与斧形沙芥的光合作用,说明沙芥比斧形沙芥耐高温。
     (3)当沙埋深度达沙芥与斧形沙芥幼苗高度的1/3时,有利于促进其生长;当沙埋深度达幼苗高度2/3时,抑制其生长,二者通过延长节间来适应沙埋。幼苗全部沙埋存活率为0%,沙埋2/3,存活率分别为80%、60%;沙埋1/2和1/3,存活率为100%。
     3.沙芥与斧形沙芥植株叶片水分生理和根系生长对生态的适应性
     (1)沙芥与斧形沙芥叶片的相对含水量、自然饱和亏、临界饱和亏和需水程度的各水分生理指标,虽然存在一定不同,但未形成显著差异;水势日变化呈现单峰曲线,在11:00-15:00均处于最低值。沙芥与斧形沙芥自然状态下脱水幅度变化相似,转折拐点分别12.77h和11.00h。
     (2)沙芥和斧形沙芥自然种群二年生植株根系周围的土壤含水量分别为3.13±0.46%、1.90±0.68%;一年生分别为2.68±0.11%、2.50±0.45%。
     (3)沙芥与斧形沙芥的主根垂直,水平根系发达;一年生(沙芥29片叶、斧形沙芥23片叶)侧根分布最大的土层深度为20-40cm、最大的区域均为:深度20-40cm、半径为0-40cm的范围内。二年生侧根分布最大的土层深度都为40-60cm、最大的区域均为:深度均为40-60cm、距主根0-40cm的半径范围内。沙芥和斧形沙芥侧根根量均随着距主根水平距离的增大分别呈对数函数和指数函数关系减少。
     4沙芥与斧形沙芥大小孢子的发生及雌雄配子体的发育
     (1)沙芥与斧形沙芥大小孢子的发生及雌雄配子体的发育基本一致;
     (2)小孢子母细胞减数分裂过程的胞质分裂属于同时型,四分体的排列方式为四面体型,成熟花粉为3细胞花粉。
     (3)花药具4个药室,花药壁发育为双子叶植物型,腺质绒毡层。
     (4)胚珠2室,每室1枚弯生胚珠,寥型胚囊。
     (5)胚珠发育开始略迟于花药发育。小孢子母细胞已进入减数分裂阶段,胚珠中才分化出孢原细胞。雄配子当形成功能大孢子之后,雌配子体发育相当迅速。
     5沙芥与斧形沙芥传粉生物学
     (1)沙芥与斧形沙芥开花呈单峰曲线,在自然生境区日开花高峰分别为18:00-19:00和19:00-20:00。
     (2)沙芥与斧形沙芥花粉萌发的最佳培养基分别为25%蔗糖+0.001%硼酸和30%蔗糖+0.005%硼酸;花粉萌发的温度范围均为15-38℃,最适萌发温度为25℃;从花冠松动到开花后16h花粉活力最高;花粉适宜的储藏期,在室温下为1d、在4℃下为7d;开花后24-48h、柱头可授性最强,是授粉的最佳时期。其开花日高峰和花粉萌发特性表现了对沙区环境的适应性。
     (3)沙芥传粉媒介中,风的飘移能力非常微弱。自然种群的访花昆虫,沙芥有19种,分属于6个目;斧形沙芥有7种,分属于4个目。沙芥与斧形沙芥自然种群主要传粉昆虫的访花频率呈双峰曲线,高峰时分别为7:00-11:00和15:00-20:00。全天传粉昆虫的访问单株频次沙芥可达150次以上、斧形沙芥不足7次,传粉媒介沙芥以蜂为主,斧形沙芥以风为主。
Puionium Gaertn is a biennial herbaceous vegetable of cruciferous plants, a specially inhabiting in Mongolian plateau, including P.cornutum(L.)Gaertn.and P.dolabratum Maxim. P.cornutum(L.)Gaertn is a special species in China and P.dolabratum Maxim is listed an endangered species in 1992. In this thesis, in terms of seed germination, seedling growth, water physiology, pollination mechanism and reproductive development so on, the physiological and ecological adaptation of Puionium Gaertn was investigated and estimated, which can offer theoretical guidance and technical support for sand-fixing, provide theoretical basis for the survival and reproduction of the sand plants. The main findings are as follows:
     1. Physiological and ecological adaptation of seed germination
     (1) The soil moisture contents of P.cornutum and P.dolabratum fruit germination can range from 2% to 20%, the best suitable germination is 6% to 12%; the soil moisture content which the seedling of fruits can be grow can range from 3% to 20%, the seedling of seeds can be grow can range from 3% to 16%; the best suitable seedling growing of all fruit and seed can range from 6% to 16%.
     (2) P.cornutum and P.dolabratum have the biggest biomass in 6% to 12% of the soil water content, have the significantly highest Root-top ratio respectively in 3% to 8% and 4% to 8%.
     (3) The best appropriate burial depth of P.cornutum and P.dolabratum are respectively 2cm and 1cm. The best suitable water supply are respectively 135ml and 90ml, then the best appropriate amount of monthly rainfall arel50ml and 100ml.The sand burial depth of seedling emergence:when the water supply for the 45ml, all are 1-4cm; when water supply are 90m, respectively are 1-8cm and 0-4cm; when the water supply of 135ml, respectively are 1-8cm and 0-8cm.
     2. Physiological and ecological adaption of seedling growing
     (1) P.cornutum and P.dolabratum have some flexibility to the high temperature, while a variety of symptoms of heat injury to P.cornutum always be later than P.dolabratum,about 1-3h later.
     (2) At a temperature of 25-50℃range, PS II reaction center not damaged or affected. when the temperature rises to 60℃, PSⅡreaction center by the damage has been increased significantly; heat should be 40-50℃.P.cornutum should be a very stronger heat resistance than P.dolabratum.
     (3) P.cornutum and P.dolabratum were buried 1/3 which promote its growth,2/3 which inhibit their growth; seedling survival rate of all burial was 0%,2/3 were respectively 80% and 60%,1/2 and 1/3 were respectively 100%.
     3. Physiological and ecological adaptation of the moisture physiology
     (1) The moisture Physiological indexes have't significantly different between P.cornutum and P.dolabratum. Water potential changes in a single peak curve,11:00-15:00 in the lowest value.
     (2) P.cornutum and P.dolabratum dehydration rate degree of change in the state of nature is similar. The turning inflexion respectively is 12.77h and 11.00h.
     (3) The soil moisture around the biennial roots of P.cornutum and P.dolabratum were 3.13±0.46%,1.90±0.68%; the annual roots were 2.68±0.11%,2.50±0.45%.
     (4) The main roots of P.cornutum and P.dolabratum are vertical, horizontal roots system are very strong; the lateral roots distribution of the annual have maximum in the soil depth of 20-40cm; the largest regions for the distribution were the depth of 20-40cm, the radius within the range of 0-40cm; the lateral roots distribution of the biennial is largest in the soil depth of 40-60cm; the largest regions for the distribution is the depth of 40-60cm, the radius of 0-40cm away from the main root. The amount of lateral root of roots of P.cornutum is logarithmic decreased; the amount of lateral roots of P.dolabratum is exponential decreased, with increasing distance from the root.
     4. Megasporogenesis and microsporogenesis; Female and male gametophyte
     (1) The cytokinesis of the microspore mother cell is the successive type. The microspore tetrads are tetrahedron. The mature pollens are 3 cells.
     (2) The anther have 4chambers.The anther wall development type is dicotyledons. Tapetum is the secretory type.
     (3) Each locule contains the two ovules. The mature ovules are curve. The enlbryo sac is Polygonum type.
     (4) The female gametophyte is later than male gametophyte. The female inflorescence is beginning to grow when the male inflorescence is developing to monocyte microspore.
     5. Pollination Biology
     (1) P.cornutum and P.dolabratum reaches its full boom respectively in 18:00-19:00 and 19:00-20:00 in the natural population。
     (2) The pollen germinating percentage of P.cornutum and P.dolabratum reached the highest on the media supplemented respectively with 25% sucrose,0.001% Boric acid and 30% sucrose,0.005% Boric acid; The most congenial temperature of pollen germinating is 25℃,and effective temperature is 15-38℃;The pollen can reach highest peak from the biggest white flower bud to 16h after blooming; Low temperature (4℃) is advantage to pollen storaging. The stigma of P.cornutum and P.dolabratum had highest receptivitied from 24h to 48h after blooming.
     (3) Wind is very weak during pollinating for P.cornutum. Investigation showed that there are 19 and12 species flower visiting insects in the natural populations of P.cornutum and P.dolabratum. The frequency of pollinators in the natural populations was bimodal curve, the peak were 7:00-11:00 and 15:00-20:00.The visiting frequency of P.cornutum is up to 150 times every day, less than 7 times of P.dolabratum. The role of pollinating insects on P.dolabratum is very weak.
引文
[1]J.M.莫兰.环境科学导论[M].北京:海洋出版社,1987,41-43
    [2]A.W.哈尼.植物与生命[M].北京:科学出版社,1984,125-195
    [3]刘志民.木岩黄芪的繁殖特点及其与沙生适应性的关系[J].植物生态学与地植物学学报,1992,Vol.16(2):136-142
    [4]赵文智.砂生槐沙生适应性初步研究[J].植物生态学报,1998,Vol.22(4):379-384
    [5]Zhang C-Y(张称意),Yu F-H(于飞海),Dong M(董鸣).Effects of sand burial on the survival,growth and biomass allocation in semishrub Hedysarum leave seed-lings[J]. Acta Bot Sin(植物学报),2002, Vol.44(3):337-343
    [6]崔秀萍.浑善达克沙地黄柳的生理生态研究[D].内蒙古农业大学博士论文,2007
    [7]赵翠仙,黄子琛.腾格里沙漠主要旱生植物旱性结构的初步研究[J].植物学报,1981,Vol.24(4):278-285
    [8]杨文斌,任建民.柠条锦鸡儿、沙柳蒸腾速率与水分关系分析[J].内蒙古林业科技,1995,Vol.3: 1-6
    [9]王勋陵,马骥.从旱生植物叶结构探讨其生态适应的多样性[J].生态学报,1999,Vol.19(6):787-792
    [10]黄振英、吴鸿.30种新疆沙生植物的结构及其对沙漠环境的适应[J].植物生态学报,1997,Vol.21(6):521-530
    [11]Maun M A. Adaptations of Plants to burial in coastal sand dunes[J]. Can J Bot, 1998, Vol.76 (5):713-738
    [12]Danin A. Plants of deser dunes [M]. S Pringer Verlag, Berlin, Heidelbegr, New Ybrk。 1996
    [13]Maun M A. Adaptations enhancing survival and establishment of seedlings on coastal dune systems[J]. Vegetatio,1994. Vol. 111(1):59-70
    [14]Maun M A. Seed germination and seedling establishment of Calamovilfa-longifoliaon Lake Huron sand dunes[J].Can J Bot,1981, Vol.59(4):460-469
    [15]van der Valk AG. Environment factors controlling the distribution of forbs on coastal foredunes in Cape Hatteras National Seashore[J]. Can JBot,1974, Vol.52(5):1057-1073
    [16]Baskin CC, Baskin JM. Seeds:Ecology, Biogeography and Evolution of Dormancy and Germination[M]. San Diego:Academic Press.1998,212-534
    [17]黄振英,Gutterman Y.油篙与中国和以色列沙漠中的两种蒿属植物种子萌发策略的比较[J].植物学报,2000,Vol.42(1):71-80.
    [18]Huang Z-Y(黄振英),Gutterman Y. Comparison of germination strategies of Artemisia ordosica with its two congeners from deserts of China and Israel. Acta Bot Sin(植植物学报),2000, Vol.42(1):71-80
    [15]Li R-P(李荣平), Jiang D-M(蒋德明),Liu Z-M(刘志民),et al. Effects of sand burying on seed germination and seedling emergence of six psammochytes species [J].Chin J Appl Ecol(应用生态学报),2004,Vol.15(10):1865-1868
    [20]黄振英,Gutterman Y,胡正海等.白沙蒿种子萌发特性的研究Ⅱ.环境因素的影响[J].植物生态学报,2001,Vol.25(2):240-246
    [21]Maun M A,Riach S. Morphology of caryopses, seedling and seedling emergence of the grass Calamovilfa lingifoliafrom various depths in sand[J]. Oecologia,1981, Vol.49(1):137-142
    [22]Ren J, Tao L, Liu XM. Effect of sand burial depth on seed germination and seedling emergence of CalligonumL. species [J].J Arid Environ,2002, Vol.51(4):603-611
    [23]Huang Zhenying & Gutterman Yitzchak. Seedling desiccation tolerance of Leymus racemosus (Gramineae) (wild rye), a sand dune grass inhabiting the Junggar Basin of Xinjiang, China[J]. Seed Science Research,2004,Vol.14(2):233-239.
    [24]Harris D, Davy A J. Seedling growth in Elymus farctusafter episodes of burial with sand[J]. Ann Bot,1987, Vol.60(5):587=593
    [25]Sykes M T,Wilson J B. An experimental investigation into response of New Zealand sand dune species to different depths of burial by sand[J]. Acta Bot Neerl,1990, Vol.39(2):171-181
    [26]Zhang J H.Maun M A. Effects of sand burial on seed germination, seedling emergence, survival, and growth of Agropyron psammophilum[J].Can J Bot,1990, Vol.68(2):304-310
    [27]Disraeli DJ. The effects of sand deposits on the growth and morphology of Ammophila breviligulata[J]. J Ecol,1984, Vol.72 (1):145-154
    [28]Seliskar D M. The effects of accelerated sand accretion on growth, carbohydrate reserves and ethylene production in Ammophila breviligulata (Poaceae) [J].Am JBot, 1994, Vol.81(5):536-541
    [29]Zhang JH,Maun MA. Effects of burial in sand on the growth and reproduction of Cackie edentula[J].Ecography,1992, Vol.15 (3):296-302
    [30]Maun M A. The effects of burial by sand on survival and growth of Calamovilfa longifolia[J].Ecoscience,1996, Vol.3(1):93-100
    [31]Brown J F. Effects of experimental burial on survival, growth and resource allocation of three species of dune plants[J].J Ecol,1997, Vol.85(2):151-158
    [32]高润梅.珍稀濒危植物的胚胎学研究进展[J].2002山西农业大学学报,2002,Vol.(03)139-145
    [33]Sykes M T, Wilson J B. An experimental investigation into response of New Zealand sand dune species to different depths of burial by sand[J].Acta Bot Neerl,1990, Vol.39 (2):171-181
    [34]Huang Z Y, Gutterman Y, Osborne D. Value of the mucilaginous pellicle to seeds of the sand-stabilizing desert woody shrub Artemisia sphaerocephala(Asteraceae) [J]. Trees Struc Func,2004, Vol.18(6):669-676
    [35]Huang Z Y, Hu Z H, Gutterman Y. Structure and function of mucilaginous achenes of Artemisia monosperma from the Negev Desert of Israel [J].Isr J Plant Sci, 2000,Vol.48 (4):255-266
    [36]Huang Z Y, Gutterman Y. Artemisia monospermaachene germination in sand:Effects of sand depth, sand/moisture content, cyanobacterial sand crust and temperature [J]. JArid Environ,1998, Vol.38(1):27-43
    [37]朱选伟,黄振英,张淑敏等.浑善达克沙地冰草种子萌发、出苗和幼苗生长对土壤水分的反应[J].生态学报,2005,Vol.25(2):364-370
    [38]Rowland J,Maun M A. Restoration ecology of an endangered plant species: Establishment of new populations of Circium pitcheri. Rest Ecol,2001, Vol.9(1):60-70
    [39]北京林学院主编.土壤学[M].北京:中国林业出版社,1992:71-75
    [40]朱维琴,吴良欢,陶勤南.作物根系对干旱胁迫逆境的适应性研究进展[J].土壤与环境,2002,Vol.11(4):430-433
    [41]常学礼,李胜功,赵学勇,等.平茬对黄柳灌丛影响的研究[J].中国沙漠,1997,Vol.17(增刊1):54-59
    [42]梁宇,高玉葆,任安芝,等.不同沙地生境下黄柳(Salixgordejevii)种群若干数量特征的比较研究[J].生态学报,2000,Vol.20(1):80-87
    [43]张国盛,王林和.李玉灵,等.1999a.毛乌素沙地臭柏根系分布及根量.中国沙漠,19(4):378—383
    [44]白文明.乌兰布和沙区紫花苜蓿根系生长及吸水规律的研究[J].植物生态学报,2001,Vol.25(1):35-41
    [45]阿拉木萨,蒋德明等.沙地人工小叶锦鸡儿植被根系分布与土壤水分关系研究[J].水土保持学报,2003,Vol.17(3):78-81
    [46]杨明,董怀军,杨文斌,等.四种沙生植物的水分生理生态特征及其在固沙造林中的意义[J].内蒙古林业科技,1994,Vol.2:4-7
    [47]任安芝,高玉葆,王金龙.不同沙地生境下黄柳(Salix gordejevii)的根系分布和冠层结构特征[J].生态学报.2001,Vol.21(3):399-404
    [48]何维明.不同生境中沙地柏根面积分布特征[J].林业科学.2000,Vol.36(5):17-20
    [49]张金虎.宁夏盐池沙地沙柳和柠条抗旱生理及土壤水分特征研究[D].北京林业大学硕士学位,2008
    [50]孙建华.毛乌素沙地黑沙蒿根系分布及其生境适应性[D].西北农林科技大学硕士学位,2008
    [51]周宜君,刘春兰,冯金朝等.沙冬青抗旱、抗寒机理的研究进展[J].中国沙漠.2001,Vol.21(3):312-316
    [52]高海峰.柽柳属植物水分状况的研究[J].植物生理学通讯,1988,Vol.2:20-24
    [53]何海燕,许国辉,马国强等.青海东部主要造林树种的水分生理研究[J].西北林学院学报.2003,Vol.18(2):9-12
    [54]傅瑞树,苏铁耐旱、抗寒及光合生理特性研究[J].武夷科学,2001,Vol.17(1):44-50
    [55]王福森,孙惠杰,温宝阳等.几个杨树新品种抗旱能力与生理反应研究[J],防护林科技,2001,Vol.46(1):18-20
    [56]姚砚武,李淑英,周连第等.常绿阔叶林木在北方地区抗旱适应类型分析[J].北京农业科学.2001,Vol.4:24-28
    [57]曾凡江,张希明,李小明等.柽柳的水分生理特性研究进展[J].应用生态学报,2002,Vol.13(5):611-614
    [58]李卫国,杨吉华,冀宪领等.不同桑树品种水分生理特性的研究[J].蚕业科学,2003,Vol.29(1):24-27
    [59]王韶唐,荆家海,丁钟荣等.植物生理学实验指导[M].西安:陕西科学技术出版社,1987,2-10
    [60]何明珠,王辉,陈智平.荒漠植物持水力研究[J].中国沙漠,2006,Vol.26(3):403-407
    [61]王利军,黄卫东.高温胁迫及其信号转导[J].植物学通报,2000,Vol.17(2):114-120
    [62]陈建明,俞晓平,程家安.叶绿素荧光动力学及其在植物抗逆生理研究中的应用[J].浙江农业学报,2006,18(1):51-55
    [63]陈贻竹,李晓萍,夏雨,等.叶绿素荧光技术在植物环境胁迫研究中的应用[J].热带亚热亚植物学报,1995,3(4):79-86
    [64]杨甲定,赵哈林, 张铜会.黄柳与垂柳的耐热性和耐旱性比较[J].植物生态学报,2005,Vol.29(1):42-47
    [65]张谧,王慧娟,于长青.超旱生植物沙冬青高温胁迫下的快速叶绿素荧光动力学特征[J].生态环境学报,2009,Vol.18(6):2272-2277
    [66]黄双全,郭友好.传粉生物学的研究进展[J].科学通讯,2000,Vol.45:225-237
    [67]郭友好.传粉生物学与植物的进化.见:陈家宽,杨继.植物进化生物学[M].武汉:武汉大学出版社,1994,232-280
    [68]中国植物学会编.中国植物学史[M].北京:科学出版社.1994
    [69]周世良,潘开玉,洪德元.传粉对杭州石莽竺(唇形科)结实的影响[J].云南植物研究,1998,Vol.20(4):445-452
    [70]奇文清,龙瑞麟,陈晓麟.濒危植物南川升麻传粉生物学的研究[J].植物学报,1998,Vol.40(8):688-694
    [71]刘林德,王仲礼,田国伟,申家恒.刺五加传粉生物学研究[J].植物分类学报,1998a,Vol.36(2):19-27
    [72]王仲礼,刘林德,田国伟,申家恒.短柄五加开花及传粉生物学研究[J].生物多样性,1997,Vol.5(4):251-256
    [73]刘林德,王仲礼,田国伟,申家恒.刺五加开花后雌蕊的发育状态与受精作用[J].植物分类学报,1998b,Vol.36(2):111-118
    [74]罗毅波,裴颜龙,潘开玉,洪德元.矮牡丹传粉生物学的初步研究[J].植物分类学报,1998,Vol.36(2):134-144
    [75]肖宜安,何平,李晓红.濒危植物长柄双花木的花部综合特征与繁育系统[J].植物生态学报,2004,Vol.28(3):333-340
    [76]黄双全,郭友好,潘明清,陈家宽.鹅掌揪的花部综合特征与虫媒传粉[J].植物学报,1999,Vol.41(3):241-248
    [77]李周岐,王章荣.用RAPD标记检测鹅掌揪属种间杂交的花粉污染[J].植物学报,2001,Vol.43(12):1271一127
    [78]周坚,樊汝汶.中国鹅掌揪传粉生物学研究[J].植物学通报,1999,Vol.16(1):75-79
    [79]徐庆,姜春前,刘世荣,郭泉水.濒危植物四合木种群传粉生态学研究[J].林业科学研究,2003,Vol.16(4):391-397
    [80]王立龙,王广林,刘登义,王兴明,沈章军.珍稀濒危植物小花木兰传粉生物学研究[J].生态学杂志,2005,.Vol.24(8):853-857
    [81]刘林德,李玮,祝宁,申家恒,赵惠勋.刺五加、短梗五加的花蜜分泌节律、花蜜成分及访花者多样性的比较研究[J].生态学报,2002,Vol.22(6):847-853
    [82]祖元刚.濒危植物种群结构和动态模型的研究简介[J].植物生态学报,1999,23(1):96.
    [83]何田华,饶广远,尤瑞麟.濒危植物木根麦冬的胚胎学研究[J].植物分类学报,1998,Vol.36(4):305-309
    [84]奇文清,冯云,陈朱希昭,等.濒危植物南川升麻生殖特性的研究[J].植物学报,1997,Vol.39(1):7-10
    [85]田惠桥,陈家宽,郭友好.濒危植物-长喙毛茛泽泻的受精作用及胚和胚乳的发育[J].植物 分类学报,1995,Vol.33(4):357-361
    [86]田惠桥,陈家宽,郭友好.濒危植物—长喙毛茛泽泻的雌雄配子体发育[J].植物分类学报,1995a.Vol.33(3):221.-224
    [87]郭延平,潘开玉,葛颂.濒危植物裂叶沙参的大小抱子发生及雌雄配子体发育[J].植物分类学报,1997,Vol.35(4):293-296
    [88]樊汝汶,叶建国,尹增芳,等.鹅掌楸种子和胚胎发育的研究[J].植物学报,1992,Vol.34(6):437-442
    [89]黄双全,郭友好、濒危植物鹅掌楸的授粉率及花粉管生长[J].植物分类学报,1998,Vol.36(4):310-316
    [90]黄双全,郭友好.鹅掌楸花部综合特征与虫媒传粉[J].植物学报,1999,Vol.41(3):241-248
    [91]祖元刚,唐艳.高山红景天有性生殖过程及濒危原因的生态学分析[J].植物研究,1998,Vol.18(3):336-339
    [92]张萍,申家恒.高山红景天胚胎学研究[J].植物研究,1998,Vol.18(1):38-44
    [93]赵一之.沙芥属的分类校正及其区系分析宋兆伟, 郝丽珍, 文静等内蒙古大学学报(自然科学版),1999,Vol.30(2):197-199
    [94]贺晓,周世权,阎洁.沙芥与斧形沙芥营养器官的解剖学观察[J].干旱区资源与环境,1998,Vol.12(2):96-100
    [95]贾晋.沙芥形态与解剖学研究[D].呼和浩特:内蒙古农业大学,2003
    [96]郝丽珍,翟胜,贾晋等.沙芥营养生长规律及叶片解剖结构的研究[J].华北农学报,2004,Vol.19(4):66-70
    [97]姚兆华,郝丽珍,王萍等.沙芥属植物叶片的气孔特征研究[J].植物研究,2007,Vol.27(2):199-203
    [98]张凤兰.沙芥属植物遗传多样性及其亲缘关系研究[D].呼和浩特:内蒙古农业大学,2009
    [99]张卫华.沙芥种子发芽生理的研究[D].呼和浩特:内蒙古农业大学,2004.22
    [100]张卫华,郝丽珍,王彦华等.沙芥种子吸水和发芽过程中几种贮藏物质的含量变化[J].植物生理学通讯,2005,Vol.41(4):528-530
    [101]宋兆伟,郝丽珍,黄振英等.光照和温度对沙芥和斧形沙芥植物种子萌发的影响[J].生态学报,2010,Vol.30(10):2562-2568
    [102]宋兆伟,郝丽珍,文静等.NaCl对斧形沙芥种子萌发的影响.华北农学报,2010,Vol.25(2):172-177
    [103]韩海霞.沙芥种子发育及休眠生理特性的研究[D].呼和浩特:内蒙古农业大学,2007
    [104]杨冬艳.干旱胁迫下沙芥(p.cornutum)与斧形沙芥(p.dolabratum)幼苗生理生化应答反应及机理探讨[D].呼和浩特:内蒙古农业大学,2005
    [105]霍红竹.不同叶龄沙芥与斧形沙芥幼苗抗旱生理研究[D].呼和浩特:内蒙古农业大学,2007
    [106]杜永光,郝丽珍,王萍等.沙芥生长发育及种子产量与播种期关系研究[J].华北农学报,2006,Vol.(5):118-122
    [107]杜永光.沙芥生长发育特性及适应低温的生化基础研究[D].呼和浩特:内蒙古农业大学,2005
    [108]王丽丽.沙芥属蔬菜低温胁迫生理应答及春化特性研究[D].呼和浩特:内蒙古农业大学,2008
    [109]姚兆华,郝丽珍,王萍等.沙芥属植物叶片的气孔特征研究[J].植物研究,2007,Vol.27(2):199-203
    [110]杨晓宇.沙芥属蔬菜幼苗光合特性及其对干旱胁迫响应的研究[D].呼和浩特:内蒙古农业大学,2009
    [111]Zhang X S. The construction principle and optimal model of the grass land and ecological background of MuUs sandy land[J].Acta Phytoecologica Sinica.1994, Vol.18:1-16
    [112]Wang T, Zhu Z D, Wu W.Sandy desertification in the north China [J]. Science in China (Series D),2002, Vol.45 (Supp.):23-24
    [113]郑元润,张新时.毛乌素沙地高效生态经济复合系统诊断与优化设计[J].植物生态学报,1998,Vol.22:262-268
    [114]王涛.我国沙漠化研究的若干问题4/2.沙漠化的研究内容[J].中国沙漠,2003,Vol.23:477=482
    [115]赵一之.内蒙古珍稀濒危植物图谱[M].北京:中国农业科技出版社,1992.30
    [116]Baskin C C, Baskin J M. Seeds Ecology, Biogeography and Evolution of dormancy and germination[M]. San Diego:Academic press,1998.70-71
    [117]Zheng Y R,Xie Z X,Gao Y,et al. Germination responses of Caragana korshinskii Kom. to light, temperature and water stress[J].Ecological Research,2004, Vol.19 (5):553-558
    [118]Gutterman Y. Seed germination in desert plants[M]. Adaptations of Desert Organisms Berlin:Springer-Verlag.1993,20-21
    [119]Philippi T, Seger J. Hedging one's evolutionary bets, revisited[J]. Trends Ecology Evolution 1989, Vol.4:41-44
    [120]Smith S E, Riley E, J L Tiss, D Fendenheim. Geographical variation in predictive seedling emergence in a perennial desert grass [J]. Journal of Ecology,2000, Vol.88 (1):139-149
    [121]Mustart P J, Cowling R M. Effects of soil and seed characteristics on seed germination and their possible roles in determining field emergence patterns of four Agulhas Plain (South Africa) Proteaceae[J]. Canadian Journal of Botany 1993, Vol.71:1363-1368
    [122]Maun M A, Lapierre J. Effects of burial by sand on seed germination and seedling emergence of four dune species [J]. American Journal-of Botany,1986. Vol.73(3): 450-455
    [123]Vlesshouwers L M.Modeling the effect of temperature, soil penetration resistance, burial depth and seed weight on preemergence growth.of weeds [J]. Annals of Botany,1997, Vol.79:553-563
    [124]Ren J, Tao L, Liu X M. Effect of sand burial depth on seed germination and seedling emergence of Calligonum L. species [J]. Journal of Arid Environments,2002, Vol. 51:603-611
    [125]Zhu X W, Huang Z Y, Chu Y, et al. Effects of sand burial depth and seed size on seed germination and seedling emergence in Caraganamicrophylla and Hedysarum laeve, the two leguminous shrubs in Otindag Sandland, Ch ina. Isr.J[J]. Plant Sci,2004, Vol.52:133-142
    [126]Huang Z Y, Gutterman Y. Influences of environmental factors on achene germination of Artemisia sphaerocephala, a dominant semi-shrub occurring in the sandy desert areas of Northwest China [J]. ActaBot. Boreal,1999, Vol.65:187-196
    [127]Wen B, Lan Q Y, He H Y. Effects of illumination, temperature and soil miosture content on seed germination of Hopea hainanensis[J]. J. Trop. Sub. Bot.,2002, Vol.10(3):258-262
    [128]Schulze E D. Carbon dioxide and water vapor exchange in response to drought in the atmosphere and in the soil Annu[J]. Rev. Plant Phys,1986, Vol.37:247-274
    [129]Jong T J de, Klinkhamer P G L. Seedling establishment of the biennials Crisium vulgare and Cynoglossum officinale in a sand-dune area the importance of water for differential survival and growth[J]. J. Ecol,1988, Vol.76:393-402
    [130]Reader R J, Jalili A, Grime J P,et al. A comparative study of plasticity in seedling rooting depth in drying soil [J].J.Ecol.,1993, Vol.81:543-550
    [131]Huang Zhenying, Zhang Xinshi, Zheng Guanghua & Gutterman Yitzchak. Influence of Light, Temperature, Salinity and Storage on Seed Germination of Haloxylon anmodendron. Journal of Arid Environments,2003, Vol.55 (3):453-464
    [132]BERRY J,BJORKMAN O. Photosynthetic response and adaptation to temperature in higher plants[J]. Annual Review of Plant Physiology,1980, Vol.31:491-543
    [133]Dai J, Gao H, Dai Y, Zou Q. Changes in activity of energy dissipating mechanisms in wheat flag leaves during senescence. Plant Biol,2004, Vol.6:171-177
    [134]Chen HX, Li WJ, An SZ, Gao HY. Dissipation of excess energy in Mehlerperoxidase reaction in Rumex leaves during salt shock. Photosynthetica,2004a, Vol.42:117-122
    [135]Fryer MJ, Andrews JR, Oxborough K, Blowers DA, Baker NR. Relationship between CO assimilation, photosynthetic electron transport, and active O2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiol,1998, Vol.116:571-580
    [136]Chen HX, Li WJ, An SZ, Gao HY. Characterization of PS Ⅱ photochemistry and thermostability in salt-treated Rumex leaves. J Plant Physiol,2004b, Vol.161: 257-264
    [137]Lu C, Zhang J. Changes in photosynthesis.Ⅱ function during senescence of wheat leaves. Physiol Plant,1998a, Vol.104:239-247
    [138]赵玉宏.应用Logistic方程测定冷季型草坪草抗热性研究[J].2004,Vol.12(4):108-110
    [139]王家保,林秋金,叶水德.5种测量热带果树单叶面积的方法研究[J].热带农业科学,2003,Vol.23(1):11-14
    [140]He W M, Zhong Z C. Morphological and growth responses of the climbing plant, Gynostemma Pentaphyllum seedlings to varying intensity[J]. Acta Phytoecologica Sinica,2000, Vol.24(3):375-378
    [141]Hughes A P, Freeman P R. Growth analysis using frequent small harvests [J]. J.Appl.Ecol.1967, Vol.4:553-560
    [142]Nanarblzzo F,Quartacci M F, Izzo p. Lipid changes in maize seedling in responses to field water deficits. Botany,1989, Vol.40:675-680
    [143]中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999.1192.
    [144]LI P M, CHENG L L, GAO H Y, et al. Heterogeneous behavior of PSII in soybean(Glycine max)leaves with identical PSII photochemistry efficiency under different high temperature treatments[J]. Journal of Plant Physiology, in press.
    [145]YAMANE Y, SHIKANAI T,KASHINO Y,et al. Reduction of QA in the dark:Another cause of fluorescence Fo increases by high temperature in higher plants[J].Pho-tosynthesis Research,2000, Vol.63:23-34
    [146]Freas K E & Kemp P R. Some relationships between environmental reliability and seed dormancy in desert annual plants. Journal of Ecology,1983, Vol.71:211-217.
    [147]Fakhri A. Bazzaz, John Grace. Plant resource allocation[M]. San Diego:Academic Press,1997.1-9
    [148]Zhang J H, Maun MA. Effects of burial in sand on the growth, and reproduction of Cackie edentula[J].Ecography,1992, Vol.15 (3):296-302
    [149]邹琪.植物生理学实验指导[M].北京:中国农业出版社,2000
    [150]胡文海,陈春霞,胡雪华,李桂英.干旱胁迫对2种辣椒植株形态可塑性与持水力的影响[J].江西农业大学学报,2008,Vol.30(4):643-647
    [151]张力君,王林和,易津.驼绒藜等8种耐寒灌木持水力分析[J].干旱区资源与环境,2003,Vol.3:122-127
    [152]何玉惠.两种驼绒藜属植物抗旱性生理生化指标研究[D].甘肃农业大学;2005年
    [153]吕贻忠,胡克林,李保国.毛乌素沙地不同沙丘土壤水分的时空变异[J].土壤学报,2006,Vol.43(1):152-154
    [154]Fitter A H. Characters and functions of root systems. In:Waisel Y, EshelE, Kafkaf i U, eds. Plant Roots:The Hidden Half[M]. Dekker, NewYork,1991,3-25
    [155]Eissenstat D M. Costs and benefits of construction roots of small diameter[J]. Journal of Plant Nutrition,1992, Vol.15:763-782
    [156]张力君,彭运翔,王永生.僵麦草属3种植物的持水力和燕腾速率[J].干旱区资源与环·境.2001,Vol.15(5):68-70
    [157]王继和.民勤沙区主要乔灌木体内水分状况及其抗旱性特点的探讨[A].中国植物生理学会第三次全国会议论文摘要汇编[C].1982.272-273
    [158]Shivannna K R. Jonri B M. Sastri D C. Development and physiology of angiosperm pollen[M].Today tomorrow's priters and publishers. India,1979
    [159]周云龙.植物生物学[M].北京:高等教育出版社2000.243
    [160]邹琦.植物生理学实验指导[M].北京:中国农业出版社,2000.148-150
    [161]Dafni A. Pollination Ecology [M]. New York:Oxford Univ Press,1992.1-57.
    [162]‘何启伟.十字花科蔬菜优势育种[M].北京:农业出版社,1993.106-109
    [163]王金平.矮慈姑人工授粉后花粉管生长的荧光显微观察[J].信阳师范学院学报(自然科学版),1999,Vol.12(2):185-188
    [164]车代弟,樊金萍,王金刚.东方百合花粉萌发培养基组分的优化[J].植物研究,2003,Vol.23(2):178-181
    [165]马书荣.长春花(Catharanthus roseus)传粉生物学的研究[D].沈阳:东北林业大学,2005,458李宗艳,万晓敏,唐岱,王锦.黄牡丹花粉萌发特性的研究[J].浙江林学院学报,2004,Vol.21(3):285-289
    [166]BALOCH M J, LAKHO A R, BHUTTO H, SOLANGI Y M. Impact of sucrose concentrations on in vitro pollen germination of okra, Hibiscus esculentus [J]. Pakistan Journal of Biological Sciences,2001, Vol.4 (4):402-403
    [167]李宗艳,万晓敏,唐岱,王锦.黄牡丹花粉萌发特性的研究[J].浙江林学院学报,2004,Vol.21(3):285-289
    [168]胡适宜.被子植物胚胎学[M].北京:人民教育出版社,1982
    [169]方炎明,樊汝汶.植物生殖生态学[M].济南:山东大学出版社,1996
    [170]赵运林.兰科植物传粉生物学研究概述[J].植物学通报,1994,Vol.27(3):11-17
    [171]胡适宜,杨宏远.植物胚胎学与生殖生物学—发展现状及近期战略的初步设想.植物科学.北京:中国林业出版社,1994:30-57
    [172]Johri B M. Seminar on comparative embryology of angiosperms [M]. Nat Inst Sci,1967
    [173]孟金陵.植物生殖遗传学[M].北京:科学出版社,1995.36-62
    [174]刘林德,王仲礼,田国伟,等.刺五加大、小孢子发生和雌雄配子体发育的观察[J].植物分类学报,1998a,Vol.364:28-295
    [175]周江菊,唐源江,廖景平。小孢子发生和雄配子体发育的观察[J].热带亚热带植物学报,2005,Vol.13(4):285-290
    (176]李宁,董玉芝,梁风丽.中亚鸢尾(Iris blowdowill)小孢子发生和雄配子体形成[J].植物研究,2005,Vol.25(2):140-143
    [177]胡铁锋.南蛇藤大孢子的发生及雌配子体发育[D].东北林业大学:2009
    [178]张秋艳,郑宝江.暴马丁香大孢子发生及雌配子体发育的研究[J].佳木斯大学学报(自然科学版),2008,Vol.26(3):425-127

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700