惠民凹陷临南洼陷断块油气藏断层封堵机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油地质成藏理论的指导下,综合应用地震、测井、岩心和分析化验资料,对临南洼陷断层封堵的类型和机理进行了研究,通过对研究区断面附近地层的系统取样,探讨了成岩作用、深部流体以及动力变质作用对断层封堵的影响,并采用断层封闭系数和模糊数学等方法对研究区断层封堵能力进行综合评价。
     影响断层封闭性的影响因素可分为断距、断移地层泥岩含量以及主应力三个因素。本文根据临南洼陷断层附近岩心详细取样分析,分别对岩性对接、泥岩涂抹、成岩作用、深部流体以及动力变质作用5个方面对断层封闭机理进行研究,重点是前人研究较少的成岩作用、深部流体以及动力变质作用等微观机理。
     通过取心井铸体薄片、扫描电镜、粘土矿物、全岩矿物、碳酸盐含量、同位素分析以及孔隙度、渗透率和压汞等测试,分析成岩作用对断层封堵的影响,以解释高砂地比情况下断层的封堵性。断层是流体运移的通道,不同温压条件下形成不同的成岩相、自生矿物组合,其孔隙度、渗透率等物性特征有明显的差别;因此,与正常砂岩相比,断层附近砂岩的自生矿物组合明显不同,物性明显变差,原因是碳酸盐胶结、粘土矿物胶结、沥青质和铁质胶结等成岩作用对储层的物性具有破坏作用。另外,与断层上盘目的层对接的下盘对接层往往是比较老的地层,两盘的压实程度不同,孔隙度和渗透率也不相同,因此,压实作用对断层封闭性有一定的影响。
     不同期次的深部流体,影响到沉积盆地尤其是断层附近的成岩作用。深部流体富含CO_2、CO、H_2、K~+、Na~+、卤素等,其中的K~+、Mg~(2+)的存在使碎屑岩、泥岩发生广泛的伊利石化、绿泥石化等;在C02流体参与下,碳酸盐岩发生白云岩化、铁白云岩化。这些化学反应均在较高温度下发生。在岩浆活动期熔融的岩浆沿断层运移,释放出所携带的C02与水反应形成HCO~(3-)和H~+,增加的酸度引起长石等不稳定矿物的溶蚀溶解,流体中的HC03’与溶蚀溶解形成的Ca~(2+)、Mg~(2+)、Fe~(3+)十结合则形成铁白云石。深部流体引起以上对温度变化敏感的砂岩填系物的重新分配,大大降低了储层的物性,增加了断层的封堵能力。
     在断层活动中,上下两盘相对错动,在巨大的应力作用下断面两侧发生动力变质作用。如碎裂岩中长英质矿物颗粒被错移并形成棋盘格式构造、断面附近砂岩发生了具有S-C组构的糜棱岩化等。断裂发育初期,断裂带表现为张裂缝发育的脆性变形,断裂带的物性较好,断层对油气具有垂向输导作用;随着断裂活动的进一步加强,断面附近发生糜棱岩化,颗粒受力破碎直至研磨、粉碎成细粒的糜棱岩,孔隙度也由正常地层向断面附近糜棱岩的逐渐减小,对油气起侧向封堵作用;其后,随着断裂活动的消亡,胶结充填带的裂缝被碳酸盐胶结充填,使孔隙不再具有连通性,断裂带的物性变差,断层在垂向和侧向均具有较好的封堵能力。
     在综合考虑断层带泥岩含量、区域应力、流体压力、断面产状等因素影响的基础上,提出断层封闭系数和断层封闭性模糊评价方法对断层封堵能力进行评价。断层所能封堵的油柱高度越高,则其封闭性越好;其所能封闭的油柱高度越低,则其封闭性较差。根据研究区大量实测数据分别回归出排驱压力与油柱高度、SGR、孔喉半径以及与孔隙度和渗透率的关系;泥岩含量与排驱压力之间呈正相关的关系,孔喉半径与排驱压力呈负相关关系,孔隙度和渗透率与排驱压力之间呈负相关性。
     断层是否具有封闭性,关键在于断层的活动时期与油气的运移时期的配置关系。惠民凹陷开始油气运移时间为东营末期,主要油气运移期为明化镇期—至今。当油气运移时断层处于静止期,断层在垂向上是封闭的,油气以侧向运移为主;当油气运移时断层仍旧活动时,在纵向上常常具有开启性,油气沿断裂自深部向浅部运移,在浅层适当的圈闭中聚集成藏,在垂向上形成多套含油层系。
Under the guidance of petroleum geology reservoiring theory and comprehensive application of seismic, logging, core and analysis materials, the type of fault sealing ability and mechanism have been studied. The influence of diagenesis, deep fluids, dynamic metamorphism on fault sealing ability is discussed. By systematic sampling near the cross-section of research area, the fault sealing ability in the studied area is evaluated using fault sealing coefficient and fuzzy mathematics method.
     The factors of influencing the fault sealing ability can be divided into three factors:broken distance, broken move stratigraphic, mudstone content and principal stress. According to the detailed analysis of the fault sample of cored nearby Linnan subsag respectively, the lithologic docking, mudstone daub, diagenesis, deep fluids as well as dynamic metamorphismis studied to learn about the mechanism of the fault sealing ability. The key are microscopic mechanism such as deep fluids as well as dynamic metamorphism which were studied less before.
     By casting body chip, scanning electron microscope, clay mineral, full rock mineral, carbonate content, isotope analysis and porosity, permeability and pressure mercury and other test of coring wells, the influence of diagenesis on fault sealing ability, and texted row-flooding pressure and porosity, permeability were analysed to explain the fault sealing ability under the high sandstone content circumstances. Fault is the channel of fluid migration and different temperature, pressure conditions form different diagenetic authigenic mineral assemblage so that the porosity, permeability are obvious different. Therefore, compared with normal sandstone, the authigenic mineral assemblage near the fault are markedly different and the property become worse because of carbonate cementation, clay mineral cementation, bituminous and iron such diagenesis cemented have destroy the reservoir. In addition, the corresponding layer in the footwall which is compared to the purpose in the upper plate are old layers, the degree of compaction in the two plates is different and the porosity and permeability is not identical.They also can influence the sealinga ability.
     The deep fluids of different terms could effect the diagenesis in the sedimentary basin especially near the fault. Deep fluids mainly contains CO2, CO, H2, K+, Na+, halogen and so on. Because the existence of K+, Mg2+, both clastic rocks and mudstone extensively choritization and illitization; Carbonatite develop dolomitisation and parankerite in the presence of CO2 fulid. All the chemical reaction happened in high temperatures. The CO2 fluid associate with deep fluids participate in the diagenetic process and the molten rock magma move along the fault, releasing CO2 into water and forming HCO3-, H+. So it increase the acidity and caused feldspar mineral to disslove and the fluid of HCO3-, Ca2+, Mg3+, Fe3+ combined and ankerite is formed. Deep fluids cause the fillings sensitive to temperature to redistribute, which greatly reduce the petrophysics and increased the fault sealing capacity.
     Dynamical metamorphism is occurred on both sides of the cross section under high stress generated by the fluctuation two plates during fault activity. Such as quartz, sericite and feldspar mineral grains are split and disconnected, formed the chessboard format structure, and the sandstone near section is mylonitization mylonitized and so on. In the early stage of fracture development, fault zone shows brittle deformation with tension fissure development and its property is good, at this time the fault has vertical translocation to the oil and gas. Along with the further strengthen of fault activities, it happens mylonitization near the fracture surface, and so the particle changes into the miliolite because of broken, grinding and crushing; while the porosity gradually decreases from the normal formation to near the mylonite; so in this situation the fault plays lateral sealing effective to oil and gas; Thenceforward, with the death of fault activity, cracks in the cemented rock pack are filled by carbonate, and make pore have the bad connectivity,and so the fault has the good sealing capacity in vertical and lateral direction.
     On the basis of comprehensive consideration of the influnce of mudstone content of the belt, regional stress, fluid pressure, the shape of cross section, the fault sealing coefficient and fuzzy evaluation method are used to evaluate the sealing ability. The higher of oil column, the better of the sealing ability.The relationship between oil column height, SGR, pore throat radius porosity, permeability and flooding discharge pressure are figured out according to the large quantities of measured data in the studied area. Shale content is positively correlated with displacement pressure and radius of pore throat, porosity are negatively correlated with discharge pressure.
     Whether faults having sealing ability lies in the configuration between the fault activity period and hydrocarbon migrating period. The starting of the hydrocarbon migration of Huimin sag was at the end of Ed and since Nm. If the fault is static after hydrocarbon migration, faults are enclosed in the vertical,so oil and gas will migrate in the parallel direction;On the contary, vertical hydrocarbon are often open, then oil gas will move from the deep to the shallow along the fault, forming a series of oil formations in the vertical in shallow appropriate trap.
引文
[1]Smith D A. Theoretical consideration of sealing and nonsealing faults[J]. AAPG,1966,50:363-371.
    [2]Smith D A. Sealing and nonsealing faults in Louisiana gulf coast salt basin[J]. AAPG,1980,61: 145-172.
    [3]Knipe R J. Faulting processes and fault seal[A]. in:Larsen RM, eds. Structural and tectonic modelling and its application to petroleum geology[C]. Norwegian Petroleum Society Special Publication,1992: 325-342.
    [4]Watts N. Theoretical aspects of cap rock and fault seals for single and two-phase hydrocarbon columns[J]. Maine and Petroleum Geology,1987,4(2):274-307.
    [5]吕延防,李国会,王跃文,等.断层封闭性的定量研究方法[J].石油学报,1996,17(3):39-46.
    [6]付广,李玉喜.断层垂向封闭油气性研究方法及其应用[J].天然气工业,1997,17(6):31-34.
    [7]马洪.地震资料在断层封闭性评价中的应用与探讨[J].勘探地球物理进展,2008,31(1):48-53.
    [8]程军林.定量评价断层封堵性[J].断块油气田,1999,8(15):14-17.
    [9]王奎,杨静,侯光宗,等.断层封闭性研究现状及其发展趋势[J].断块油气田,2008,15(3):43-45.
    [10]Bouvier JD, Kaars-sijpesteijn CH, Van derpal R C. Three-dimensional seismic interpretation and fault sealing investigations, Nun River Field, Nigeria[J]. AAPG Bulletin,1989,73(11):1394-1414.
    [11]Lindsay N C, Murphy F C. Outcrop studies of shale smear on fault-surface[J]. International Association of Sedimentologist Special Publication,1993,15:113-123.
    [12]Yielding G, Freeman B, Needham D T. Quantitative fault seal prediction[J]. AAPG,1997,81:897-917.
    [13]Allan U. S. Model for hydrocarbon migration and entrapmentwithin faulted structures [J]. AAPG Bulletin,1989,73(4):803-811.
    [14]付晓飞,方德庆,吕延防,等.从断裂带内部结构出发评价断层垂向封闭性的方法[J].地球科学:中国地质大学学报,2005,30(3):328-336.
    [15]刘泽容等.断块群油气藏形成机制和构造模式[M].北京:石油工业出版社,1998,23-26.
    [16]周新桂,孙宝珊.现今地应力与断层封闭效应[J].石油勘探与开发,2000,27(5):127-131.
    [17]王志欣,信荃麟.关于地下断层封闭性的讨论—以东营凹陷为例[J].高校地质学报,1997,3(3):293-300.
    [18]沈传波,梅廉夫.基于三维古构造应力场数值模拟的断层封闭性研究[J].石油实验地质,2004,26(1):103-107.
    [19]宋胜浩.从断裂带内部结构剖析油气沿断层运移规律[J].大庆石油学院学报,2006,30(3):17-20.
    [20]杜春国,郝芳,邹华耀,等.断裂输导体系研究现状及存在的问题[J].地质科技情报,2007,26(1):51-56.
    [21]陈伟,吴智平,侯峰,等.断裂带内部结构特征及其与油气运聚关系[J].石油学报,2010,31(5):774-780.
    [22]吴智平,陈伟,薛雁,等.断裂带的结构特征及其对油气的输导和封堵性[J].地质学报,2010,84(4):570-578.
    [23]Doweny M.W.Faulting and hydrocarbon entrapmen[J]. Geophysics. Leading Edge,.1990,1:20-22.
    [24]童亨茂.断层开启与封闭的定量分析[J].石油与天然气地质,1998,19(3):45-50.
    [25]Srivastava R M. An overview of stochastic methods for reservoir characterization [A].Yarus J M, Chambers R L (eds.). Stochastic Modeling and Geostatistics [C].AAPG Computer Applications in Geology, No.3,1995,3-16.
    [26]Deutsch C V, Journel A G.GSLIB:Geostatistical Software Library and User's Guide [M].New York: Oxford University Press,1992.
    [27]Jamison W R, Stearns D W. Tectonic deformation of Wingate Sandstone, Colorado National Monument [J].AAPG,1982,66(12):2583-2608.
    [28]Lomando A J. The influence of solid reservoir bitumen on reservoir quality [J]. AAPG,1992,76(8): 1137-1152.
    [29]Hooper E C D. Fluid migration along growth faults in compaction sediments [J]. Journal of Petroleum Geology,1991,14(2):161-180.
    [30]Harding T P, Tuminas A C. Structural interpretation of hydrocarbon traps sealed by basement normal fault blocks at stable flank of foredeep basin and at rift basin [J]. AAPG,1989,73 (7):812-840.
    [31]Magara K. Pressure sealing:an important agent for hydrocarbon entrapment[J]. Journal of Petroleum Science and Engineering,1993, (9):67-80.
    [32]Purcell W R. Capillary pressures-theirmeasurements usingmercury and the calculation of permeability theretrom[J]. AIME Petroleum Transactions,1949,186(3):39-48.
    [33]吕延防,马福建.断层封闭性影响因素及类型划分[J].吉林大学学报:地球科学版,2003,33(2): 163-166.
    [34]王平.论断层封闭的广泛性、相对性和易变性—复杂断块油田形成条件系列论文之二[J].断块油气田,1994,1(1):3-10.
    [35]丁健民.水压致裂、孔壁崩落应力测量及其在油田开发中的应用.见张德元等主编《油田开发工程与地震减灾》[M].北京:石油工业出版社,1994.
    [36]邓俊国,李亚辉.崔庄—西园复杂断块油田断层封闭性综合研究[J].断块油气田,1998,5(2):10-14.
    [37]Fisher Q J, Knipe R J. Fault Sealing Processes in Siliclastic Sentiments, in Faulting, Fault Sealing and Fluid Flow inHydrocarbon Reservoirs[C]. Geological Special Publication, London,1998,147: 117-134.
    [38]MairK, Main I, Elphick S. Sequential Growth of Deformation Bands in the Laboratory[J]. Journal of Structural Geology,2000,22 (1):25-42.
    [39]Storti F, Salvini F. The Evolution ofA Model Trap in Central Apennines, Italy:Development of Cataclastic Rocks in Carbonates at the NamiAnticline[J]. Journal ofPetroleum Geology,2001,24 (2): 171-190.
    [40]Labaume P, Moretti I. Diagenesis dependence of Cataclastic ThrustFault Zone Sealing in Sandstones, Example from the Bolivian Sub-Andean Zone[J]. Journal of Structure Geology,2001,23(11): 1659-1675.
    [41]WeberK J, MandlG, PilaarW F, Lehner F, Precious R G. The role of faults in hydrocarbon migration and trap-ping in Nigerian growth fault structures[M]. Society of Petroleum Engineers,10th Annual offshore Technology Conference Proceedings,1978:2643-2653.
    [42]Watts N L. Theoretical aspects of cap- rock and fault seals for single-and two-phase hydrocarbon columns[J]. Marine and Petroleum Geology,1987,4(4):274-307.
    [43]AntonelliniM, Aydin A. Effect of faulting on fluid flow in porous sandstones: petrophysical properties[J]. AAPG Bulletin,1994,78(3):355-377.
    [44]王来斌,徐怀民.断层封闭性的研究进展[J].新疆石油学院学报,2003,15(1):11-15.
    [45]赵密福.断层封闭性研究现状[J].新疆石油地质,2004,25(3):333-336.
    [46]陈善宝,刘志宏,王孔伟,等.塔里木盆地阿南二背斜AN2F0断层封闭性研究[J].大庆石油地质与开发,2003,22(2):7-15.
    [47]刘志宏,王孔伟,张立国,等.塔里木盆地巴东构造与油气[J].吉林大学学报(地球科学版),2005,35(1):27-32.
    [48]吕延防,陈章明,陈发景.非线性映射分析判断断层封闭性[J].石油学报,1995,16(2):31-36.
    [49]曹瑞成,陈章明.早期探区断层封闭性评价方法[J].石油学报,1992,13(1):33-37.
    [50]钟宏平,傅康英,黄仙英.含油气盆地断层封闭性研究进展论述[J].地质科技情报,1991,10(2):51-55
    [51]孙宝珊,周新桂,邵兆刚.油田断裂封闭性研究[J].地质力学学报,1995,1(2):21-27.
    [52]刘伟.复杂断块油气田断层封闭性综合分析方法[J].断块油气田,2002,9(1):25-29
    [53]邓俊国,刘泽容,杨少春.断块油藏中的断层封闭性模糊综合评判[J].地质论评,1993,39:47-54.
    [54]李焕鹏,吕世全,李文克,等.复杂断块油田中的断层封堵性研究[J].特种油气藏,2001,8(1):68-71.
    [55]王朋岩.利用灰色关联分析法评判断层的封闭性[J].大庆石油学院学报,2003,23(1):4-7.
    [56]杨勇,邱贻博,查明.用模糊综合评判方法研究断层封闭性—以高邮凹陷陈堡地区为例[J].新疆石油地质,2005,26(1):102-104.
    [57]王东晔,查明.运用模糊综合评判方法定量研究断层封闭性[J].断块油气田,2006,13(4):5-7.
    [58]田辉,查明,石新璞,等.断层紧闭指数的计算及其地质意义[J].新疆石油地质,2003,24(6):530-532.
    [59]于明德,王璞埔,杨德彬,等.断裂封堵综合分析技术在孔雀河地区的应用[J].地学前缘,2007,14(4):282-289.
    [60]曾涛,徐宏节,佘小宇,等.地震层速度在断层封堵性研究中的应用[J].石油与天然气地质,2000,21(2):161-163.
    [61]付广,孟庆芬.断层封闭性影响因素的理论分析[J].天然气地球科学,2002,13(3-4):40-44.
    [62]侯读杰,朱俊章,唐友军,等.应用地球化学方法评价断层的封闭性[J].地球科学:中国地质大学学报,2005,30(1):97-101.
    [63]朱轶,蔡正旗.利用地球化学方法判断断层封闭性—以四川黄泥堂构造为例[J].中国石油勘探,2007,12(1):67-75.
    [64]李振生.断层封闭性的波速和品质因子评价方法[J].科学通报,2005,50(13):1365-1369.
    [65]赵密福,李亚辉,信荃麟,等.吐哈盆地鲁克沁构造带断层封堵性评价[J].新疆石油地质,2001,22(2):110-115.
    [66]刘伟,窦齐丰,王韶华.断层封闭性综合分析方法—以永安油田沙二下油藏为例[J].新疆石油地质,2003,24(4):289-291.
    [67]李储华,刘启东,陈平原,等.高邮凹陷瓦庄东地区断层封闭性多方法对比研究[J].中国西部油气地质,2007,3(1):65-69.
    [68]付广,刘洪霞.乌尔逊凹陷北部大一段断层封闭性[J].大庆石油地质与开发,2005,24(5):9-13.
    [69]付广,殷勤,杜影.不同填充形式断层垂向封闭性研究方法及其应用[J].大庆石油地质与开发,2008,27(1):1-5.
    [70]刘玉梅,于兴河,李胜利.模糊法综合评价垦东断裂带断层封闭性[J].重庆科技学院学报(自然科学版),2009,11(2):11-15.
    [71]王清斌,臧春艳,赖维成,等.渤中坳陷古近系中、深部碎屑岩储层碳酸盐胶结物分布特征及成因机制[J].石油与天然气地质,2009,30(4):439-443.
    [72]金振奎,刘春慧.黄骅坳陷北大港构造带储集层成岩作用定量研究[J].石油勘探与开发,2008,35(5):581-587.
    [73]王春梅,黄思静,裴昌蓉,等.西湖凹陷古近系碳酸盐阴极发光特征分析[J].断块油气田,2008,15(2):1-3.
    [74]张艳,李建明,徐论勋.鄂尔多斯盆地华庆地区三叠系长层碳酸盐胶结物及形成机理[J].石油地质与工程,2010,24(1):21-26.
    [75]刘昊年.新场地区须家河组砂岩中碳酸盐胶结物研究[D].成都理工大学,2009,1-57.
    [76]刘传联.东营凹陷沙河街组湖相碳酸盐岩碳氧同位素[J].沉积学报,1998,16(3):110-114.
    [77]谢小敏,胡文,王小林,等.新疆柯坪地区寒武纪奥陶纪碳酸盐岩沉积旋回的碳氧同位素研究[J].岩石矿物学杂志:地球化学,2009,38(1):75-88.
    [78]李龙,郑永飞,周根陶,等.硅酸盐岩石中微量碳酸盐的碳氧同位素分析及其应用[J].矿物岩石地球化学通报,2001,20(4):434-438.
    [79]丁悌平.激光探针稳定同位素分析技术的现状及发展前景[J].地学前缘,2003,10(2):264-268.
    [80]徐伟彪.离子探针测试方法及其在矿物微区微量元素和同位素分析中的应用[J].高校地质学报,2005,11(2):239-252.
    [81]李军亮.渤海湾盆地东营凹陷深层砂砾岩储层成岩演化特征[J].石油实验地质,2008,30(3):253-256.
    [82]顾家裕,贾进华,方辉.塔里木盆地储层特征与高孔隙度、高渗透率储层成因[J].科学通报,2002, 47:9-15.
    [83]钱一雄,陈跃,陈强路,等.塔中西北部奥陶系碳酸盐岩埋藏溶蚀作用[J].石油学报,2006,27(3):48-52.
    [84]刘立,孙晓明,董福湘,等.大港滩海区沙一段下部方解石脉的地球化学与包裹体特征[J].吉林大学学报,2004,34(1):50-54.
    [85]邹海峰,高福红,徐学纯,等.大港探区中区下第三系砂岩碳酸盐岩胶结物与填隙物的成因机理[J].吉林大学学报,2002,32(1):35-38.
    [86]邢宇.东风港油田沙四上亚段成岩作用研究[D].中国石油大学(华东),2009,1-78.
    [87]张永旺,曾溅辉,高霞,等.东营凹陷古近系储层碳酸盐胶结物分布特征及主控因素[J].吉林大学学报,2009,39(1):17-22.
    [88]刘宁,张守鹏,王伟庆,等.东营凹陷沙河街组三段地层特征及典型成岩矿物组合研究[J].地层学杂志,2007,31(2):586-591.
    [89]郑荣才,陈洪德,方艳兵,等.鄂尔多斯盆地白豹—华池地区长6砂岩储层特征[J].石油学报,2007,28(4):47-51.
    [90]胡宗全.鄂尔多斯盆地上古生界砂岩储层方解石胶结物特征[J].石油学报,2003,23(4):41-43.
    [91]覃利娟.惠民凹陷古近系深层储层成岩作用及其对储层性质的影响[D].中国海洋的大学,2007,1-140.
    [92]叶瑛,沈忠悦,彭晓彤,等.塔里木盆地下第三系储层砂岩自生碳酸盐碳氧同位素组成及流体来源讨论[J].浙江大学学报,2001,28(3):322-326.
    [93]邵龙义,窦建伟,张鹏飞.西南地区晚二叠世氧、碳稳定同位素的古地理意义[J].地球化学,1996,25(6):576-580.
    [94]叶瑛,沈忠悦,郑丽波,等.塔里木盆地中新生界储层砂岩自生矿物组合与两种成岩环境[J].浙江大学报,2000,27(3):308-314.
    [95]郑浚茂,赵省民,陈纯芳.碎屑岩储层的两种不同成岩序列[J].地质论评,1998,44(2):207-212.
    [96]卢焕勇,陈景维,邱世祥.内蒙乌兰格尔地区上古生界砂岩的成岩作用[J].石油实验地质,1991,13(1):41-52.
    [97]姚合法,林承焰,侯建国,等.苏北盆地粘土矿物转化模式与古地温[J].沉积学报,2004,22(1):29-35.
    [98]朱占平.火山碎屑岩中粘土矿物的成岩作用特征[D].吉林大学,2005,1-78.
    [99]吴素娟.丽水凹陷古近系储层砂岩中的碳酸盐胶结物及成因研究[D].成都理工大学,2006,1-69
    [100]董福湘,刘立,马艳萍.大港滩海地区沙一段下部砂岩储层方解石胶结物碳氧同位素研究[J].石油实验地质,2004,26(4):591-593.
    [101]张敏强,黄思静,吴志轩,等.东海盆地丽水凹陷古近系储层砂岩中碳酸盐胶结物及形成机制[J].成都理工大学学报,2007,34(3):260-266.
    [102]黄思静,石和,林金辉,等.鄂尔多斯盆地中南部延长组主要油层组有利储集体特征及展布研究[R].成都理工大学,长庆油田公司勘探开发研究院,内部资料,2001.
    [103]黄思静,覃建雄,张萌,等.鄂尔多斯盆地上古生界次生孔隙形成机制的实验模拟研究[R].成都理工大学,中国石油长庆油田分公司勘探开发研究院,2004.
    [104]黄思静,武文慧,刘洁,等.大气水在碎屑岩次生孔隙形成中的作用—以鄂尔多斯盆地三叠系延长组为例[J].地球科学:中国地质大学学报,2003,28(4):419-424.
    [105]黄思静,杨俊杰,张文正,等.不同温度条件下乙酸对长石溶蚀过程的实验研究[J].沉积学报,1995,13(1):7-17.
    [106]王芙蓉,何生,何治亮,等.准噶尔盆地腹部永进地区砂岩储层中碳酸盐胶结物特征及其成因意义[J].岩石矿物学杂志,2009,28(2):170-117.
    [107]廖静,董兆雄,翟桂云,等.渤海湾盆地歧口凹陷沙河街组一段下亚段湖相白云岩及其与海相白云岩的差异[J].海相油气地质,2008,13(1):19-24.
    [108]Hardie L A. Dolomitization:A Critical View of Some Current Views[J]. J.Sediment. Petrol.,1987,7: 66-183.
    [109]Warren J. Dolomite:Occurrence, Evolution and Economically Important Associations[J]. Earth-Science Review,2000,52:1-81.
    [110]刘淑春,章玉旭,郝梓国,等.白云鄂博赋矿白云岩成因研究历史、问题及新进展[J].地质论评,1999,45(5):477-486.
    [111]Zenger D H, Dunham J B, Ethington R L. Conceptsand Models of Dolomitization[M].[S.l.]:Society Economic Paleontologists Mineralogists, Special Publication,1980.
    [112]Sun S Q. Dolomite Reservoirsr:Porosity Evolution and Reservoir Characteristics[J]. Am. Assoc. Petrol. Geol. Bull.,1995,79(2):186-204.
    [113]张学丰,胡文瑄,张军,涛.白云岩成因相关问题及主要形成模式[J].地质科技情报,2006,25(5):32-40.
    [114]Adam J E, Rhodes M L. Dolomitization by seepage reflux[J]. AAPG Bulletin,1960,44(12): 1912-1920.
    [115]Badiozamani K. The dorag dolomitization model,application to the middle Ordovician of Wisconsin[J]. Journal of Sedimentary Research,1973,43(4):965-984.
    [116]Zenger D H. Burial dolomitization in the Lost Burro Formation(Devonian), east-central California, and the significance of late diagenetic dolomitization[J]. Geology,1983,11(9):519-522.
    [117]何莹,鲍志东,沈安江,等.塔里木盆地牙哈-英买力地区寒武系—下奥陶统白云岩形成机理[J].沉积学报,2006,24(6):806-818.
    [118]Davies G R, Smith L B. Structurally controlled hydrothermal dolomite reservoir facies:An overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [119]David W M. Dolomitization for explorationists:A historical perspective[C]//Anon.75th Anniversary—Past, Present & Future. [S.l.]:[s.n.],2002:1-3.
    [120]John A L. Evidence against the Dorag (mixing-zone) model for dolomitization along the Wisconsin arch:A case for hydrothermal diagenesis[J]. AAPG Bulletin,2006,90(11):1719-1738.
    [121]Lavoie D, Chi G, Alpert P B,et al. Hydrothermal dolomitization in the Lower Ordovician Romaine Formation of the Anticosti basin:Significance for hydrocarbon exploration[J]. Bulletin of Canadian Petroleum Geology,2005,53 (4):454-471.
    [122]Lavoie D, Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in north Gaspe-Matapedia (Quebec):Constraint on timing of porosity and regional significance for hydrocarbon reservoirs[J]. Bulletin of Canadian Prtroleum Geology,2004,52(3):256-269.
    [123]Lonnee J, Hans G M. Pervasive dolomitization with subsequent hydrothermal alteration in the Clarke Lake gas field, Middle Devonian Slave Point Formation, British Columbia, Canada[J]. AAPG Bulletin,2006,90(11):1739-1761.
    [124]John A L, William B H, Williams N S. Fractured hydrothermal dolomite reservoirs in the Devonian Dundee Formation of the central Michigan basin[J]. AAPG Bulletin,2006,90(11):1787-1801.
    [125]Aasm I A. Origin and characterization of hydrothermal dolomite in the western Canada sedimentary basin[J]. Journal of Geochemical Exploration,2003,78-79:9-15.
    [126]David A K, Eberli G P, Swart P K, et al. Tectonic-hydrothermal brecciation associated with calcite precipitation and permeability destruction in Mississippian carbonate reservoirs, Montana and Wyoming[J]. AAPG Bulletin,2006,90(11):1803-1841.
    [127]Wierzbicki R, Dravis J J, Aasm I A, et al. Burial dolomitization and dissolution of Upper Jurassic Abe-nakiplatform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J]. AAPG Bulletin,2006, 90(11):1843-1861.
    [128]Swart P K, Cantrell D L, Westphal H, et al. Origin of dolomite in the Arab-D reservoir from the Ghawar field, Saudi Arabia:Evidence from petrographic and geochemical constraints[J]. Journal of Sedimentary Research,2005,75(3):476-491.
    [129]Hurley N F, Budros R. Albion-Scipio and Stoney Point fieldsU.S.A. Michigan Basin[M]//Beaumont E A, Foster N H. Structural traps I:AAPG treatise of petroleum geology.[S.l.]:Atlas of Oil and Gas Fields,1990:1-37.
    [130]Boreen T, Colquhoun K, Harrington J. Ladyfern N.E.B.C.:Major gas discovery in the Devonian Slave Point formation[C]//Anon.Canadian Society of Petroleum Geologists Annual Convention Abstracts.[S.l.]:[s.n.],2001:1-5.
    [131]李荣,焦养泉,吴立群,等.构造热液白云石化—一种国际碳酸盐岩领域的新模式[J].地质科技情报,2008,27(3):36-39.
    [132]Phillips W J. Hydraulic fracturing and mineralization [J]. Journal of the Geological Society, London, 1972,128(4):337-359.
    [133]Knipe R J, Jones G, Fisher Q J. Faulting, fault sealing and fluid flow in hydrocarbon reservoirs:An introduction[C]//Jones G, Fisher O J, Knipe R J.Faulting, fault sealing and fluid flow in hydrocarbon reservoirs. London:Geological Society Special Publication,1998,147(1):ⅶ-ⅹⅹⅰ.
    [134]解习农,成建梅,孟元林.沉积盆地流体活动及其成岩响应[J].沉积学报,2009,27(5):864-870.
    [135]毛景文,李晓峰.深部流体及其与成矿成藏关系研究现状[J].矿床地质,2004,23(4):520-532.
    [136]金之钧,张刘平,杨雷,等.沉积盆地深部流体的地球化学特征及油气成藏效应初探[J].地球科学,2002,27(6):659-665.
    [137]刘国勇,张刘平,金之钧.深部流体活动对油气运移影响初探[J].石油实验地质,2005,27(3):269-275.
    [138]DaviesG R, Smith L B. Structurally controlled hydrothermaldolomite reservoir facies:An overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [139]刘立,于均民,孙晓明,等.热对流成岩作用的基本特征与研究意义[J].地球科学进展,2000, 15(5):583-585.
    [140]White D E. Thermalwaters of volcanic origin[J]. Geological Society ofAmerica Bulletin,1957,68: 1637-1658.
    [141]Radke B M, MathisR L. On the formation and occurrence of saddle dolomite[J]. Journal of Sedimentary Petrology,1980,50(4):1149-1168.
    [142]Kretz R. Carouselmodel for the crystallization of saddle dolomite[J]. Journal ofSedimentary Petrology, 1992,62(2):190-195.
    [143]彭晓蕾.含油气盆地中岩浆活动对砂岩的影响[D].吉林大学,2006,1-132.
    [144]朱占平.鸡西盆地张新地区辉绿玢岩侵入对碎屑岩的改造作用[D].吉林大学,2009,1-82.
    [145]于志超.歧口凹陷古近纪热流体活动及其对碎屑岩领导的影响[D].吉林大学,2010,1-121.
    [146]赵国祥,刘立,曲希玉,等.砂岩中自生绢云母的成因及意义[J].吉林地质,2010,29(1):13-17.
    [147]金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-253.
    [148]朱东亚,金之钧,胡文瑄,等.塔里木盆地深部流体对碳酸盐岩储层影响[J].地质评论,2008,54(3):348-354.
    [149]金之钧,胡文瑄,张刘平,等.深部流体活动及油气成藏效应[M].北京:科学出版社,2007:1-150
    [150]吕修祥,杨宁,解启来,等.塔中地区深部流体对碳酸盐岩储层的改造作用[J].石油与天气地质,2005,26(3):285-289.
    [151]吕修祥,解启来,杨宁,等.塔里木盆地深部流体改造型碳酸盐岩油气聚集[J].科学通报,2007,52(增刊Ⅰ):142-148.
    [152]魏宽义.河南临汝韧性断层中的显微构造和石英的组构特征[J].西安地质学院学报,1986,8(3):19-27.
    [153]王亮,赵均海,张骏,等.秦岭地段断裂显微构造及岩组特征研究[J].广西大学学报(自然科学版),2007,32(2):204-207.
    [154]申俊峰,申旭辉,曹忠全,等.断层泥石英微形貌特征在断层活动性研究中的意义[J].矿物岩石,2007,27(1):90-96.
    [155]刘俊来,俞保祥,K. Weber.浅成断层带的低温脆-韧性破裂共生机制[J].科学通报,1999,44(8):864-869.
    [156]张秉良,方仲景,李建国,等.根据断层泥的微观特征探讨断层的活动性[J].地质力学学报,1996,2(2):41-46.
    [157]胡玲,胡道功,何登发,等.准噶尔盆地南缘霍尔果斯和吐谷鲁断裂带断层泥分形特征与断裂活动关系[J].地学前缘:中国地质大学(北京),2004,11(4):519-525.
    [158]吴树仁.长江三峡仙女山断层带微构造及变形环境探讨[J].地质科学,1994,29(3):220-227.
    [159]张秉良,刘瑞殉,向宏发,等.红河断裂带中南段断层岩FT测年及其地质意义[J].地震地质,2009,31(1):44-56.
    [160]姚大全,汤有标.柔性断层错动产物的微观研究方法初探[J].地震研究,1992,15(1):63-69.
    [161]孙岩,杜定全.断裂带中岩石硅化的微束研究[J].贵州工学院学报,1988,17(3):85-91.
    [162]孙岩,朱文斌,郭继春,等论糜棱岩研究[J].高校地质学报,2001,7(4):369-378.
    [163]张桂林.韧性剪切带中S-C(C')组构的成因及其运动学意义[J].桂林工学院学报,1996,16(4):338-343.
    [164]李月,颜世永.流体包裹体技术在断裂构造分析中的应用[J].特种油气藏,2010,17(4):25-28.
    [165]何绍勇,马凤良.断层带结构特征及其封堵性[J].西部探矿工程,2009,1:51-53.
    [166]肖毓祥,龚幸林,贺向阳.SGR断层封堵性分析及断层圈闭烃柱高度估算—以中国东部G断块为例[J].海相油气地质,2005,10(4):51-58.
    [167]刘宝珺,1980.沉积岩石学[M].北京:地质出版社.
    [168]刘宝珺,张锦泉等,1992.沉积成岩作用[M].北京:科学出版社.
    [169]胡文瑄,金之钧,张义杰,等.油气幕式成藏的矿物学和地球化学记录[J].石油与天然气地质,2006,27(4):443-450.
    [170]Guo Yi Dong, Subhash Jaireth, Gregg Morrison昆士兰浅成热液金矿脉中石英结构的分类、成因及意义[J]Economic Geology,1995,90:151-155.
    [171]刘立,曲希玉,董林森,等.东北及邻区中生代盆地片钠铝石的分布、产状及其油气地质意义[J].吉林大学学报(地球科学版),2009,39(1):1-8.
    [172]刘立,彭晓蕾,高玉巧,等.东北及华北含油气盆地岩浆活动对碎屑岩的改造与成岩作用贡献[J].世界地质,2003,22(4):319-325.
    [173]高玉巧,刘立,曲希玉.片钠铝石的成因及其对CO2天然气运聚的指示意义[J].地球科学进展,2005,20(10):83-89.
    [174]高玉巧,刘立.自生片钠铝石的碳氧同位素特征及其成因意义[J].高校地质学报,2006,12(4): 522-529.
    [175]Smith L B, Davies G R. Structurally controlled hydrothermal alteration of carbonate reservoirs: Introduction[J]. AAPG Bulletin,2006,90(11):1635-1640.
    [176]牛贺才,陈繁荣.岩浆成因重晶石、萤石的稀土元素地球化学特征[J].矿物学报,1996,16(4):382-388.
    [177]刘树根,黄文明,陈翠华,等.四川盆地震旦系—古生界热液作用及其成藏成矿效应初探[J].矿物岩石,2008,28(3):41-50.
    [178]王吉平,胡墨田,周建民,等.论华蓥山地区天青石矿石的两种成因[J].地质学报,2000,74(4):325-333.
    [179]胡受权,张寿庭.云南宁蒗地区巴打湾沉积—热液改造型重晶石矿床地质特征[J].地质与勘探,1998,34(5):23-27.
    [180]周建民,王吉平,杨清堂,等.华蓥山地区天青石矿稀土元素地球化学特征[J].化工矿产地质,2004,26(1):19-22.
    [181]冯胜斌,邢矿,周洪瑞,等.北秦岭二郎坪群重晶石岩热水沉积地球化学证据及其成矿意义[J].世界地质,2007,26(2):199-207.
    [182]唐永忠,侯满堂.南秦岭古生代沉积盆地沉积-构造事件与热水沉积成矿[J].矿产与地质,2006,20(2):102-108.
    [183]柳忠泉,韩立国,徐佑德,等.济阳坳陷新生代热演化特征研究[J].地质学报,2008,82(5):664-669.
    [184]韩立国,柳忠泉,徐佑德,等.济阳坳陷新生代地温场特征研究[J].海洋石油,2008,28(1):19-26.
    [185]郭兴伟,施小斌,丘学林,等.济阳坳陷新生代构造沉降特征[J].中国石油大学学报(自然科学版),2006,30(3):6-11.
    [186]Jaeger J C, Cook N G. Fundamentals of r ock mechanics [M]. London:Chapman and Hall,1979,593
    [187]罗晓容.断裂开启与地层中温压瞬态变化的数学模型[J].石油与天然气地质,1999,20(1):1-6.
    [188]Luo X R, DongW L, Yang J H, et al. Over pressuring mechanicsms in the Yinggehai Basin, South China Sea [J]. AAPG Bulletin,2003,87 (4):629-645.
    [189]罗晓容,杨计海,王振峰.盆地内渗透性地层超压形成机制及钻前压力预测[J].地质论评,2000,46(1):22-31.
    [190]张立宽,罗晓容,廖前进,等.断层连通概率法定量评价断层的启闭性[J].石油与天然气地质,2007,28(2):181-190.
    [191]徐守余,李学艳.胜利油田东营凹陷中央隆起带断层封闭模式研究[J].地质力学学报,2005,11(1):19-25.
    [192]周勇,潘裕生.茫崖-肃北段阿尔金断裂右旋走滑运动的确定[J].地质科学,1998,33(1):9-16.
    [193]周建波,郑永飞,李龙,等.大别-苏鲁超高压变质带内部的浅变质岩[J].岩石学报,2001,17(1):39-48.
    [194]孙斌,赵庆波,李五忠.中国煤层气资源及勘探策略[J].天然气地球科学,1998,9(6):1-10.
    [195]寿建峰,朱国华.砂岩储层孔隙保存的定量预测研究[J]Scientia Geologica Sinica,1998,32(2):244-250.
    [196]史卜庆,郑凤云,周瑶琪,等.济阳坳陷济阳运动的动力学成因试析[J].高校地质学报,2002,8(3):357-262.
    [197]杨品荣,陈洁,蔡进功,等.济阳坳陷构造转型期及其石油地质意义[J].油气地质与采收率,2001,8(3):6-7.
    [198]任建业.济阳坳陷新生代褶皱—冲断构造的厘定及其动力学背景分析[J].地质科技情报,2004,23(3):2-5.
    [199]高玉巧.岩浆成因中CO2气藏中储集砂岩中热对流成岩作用[D].吉林大学,2007,1-139.
    [200]高玉巧,刘立.岩浆侵入活动对砂岩的改造作用研究简介[J].地质科技情报,2003,22(2):14-16.
    [201]孙永传,李忠,李蕙生,等.中国东部含油气断陷盆地的成岩作用[M].北京:科学出版社,1996,1-22.
    [202]朱家祥,李淑贞.超深井成烃成岩体系研究[M].上海:同济大学出版社,1995,120-167.
    [203]Chnudhary R N, Bondre S A. Regional sandstone porosity-maturity trend and hydrocarbon entrapment time in Gandhar field of Cambay basin,2ND OIL NAT Gas[J]. Comm petrol Basins of India Seminar proc.,1993,2:111-120.
    [204]Jansa L F, Urrea V H N. Geology and diagenetic history of overpressured sandstone reservoirs, Venture gas field, offshore Nova Scotia, Canada, AAPG,Bull,74. Maxwell J C.1964. Influence of depth,temperature,and geologic age on porosity of quartzose sandstone[J]. AAPG,1990,48(5): 697-709.
    [205]Schmoker J W, Gautier D L. Sandstone porosity as function of thermal maturity-an approach to porosity comparision and prediction[J], Geology,1988,16(11):1697-1703.
    [206]Scherer M. Parameters influencing porosity in sandstones:A model for sandstone porosity prediction[J], AAPQ 1987,71(5):485-491.
    [207]高先志,杜玉民,张宝收.夏口断层封闭性及对油气成藏的控制作用模式[J].石油勘探与开发,2003,3(3):76-78.
    [208]吴富强,鲜学福.胜利油区渤南洼陷热液型硬石膏的存在[J].华南地质与矿产,2004,2:53-55.
    [209]陶明信,徐永昌,韩文功,等.中国东部幔源流体的活动特征与成藏效应[J].大地构造与成矿学,2001,25(3):266-270.
    [210]何生,杨智,何治亮,等.准噶尔盆地腹部超压顶面附近深层砂岩碳酸盐胶结作用和次生溶蚀孔隙形成机理[J].中国地质大学学报,2009,34(5):760-798.
    [211]杨智,邹才能,何生,等.准噶尔盆地腹部超压顶面附近碳酸盐胶结带的成因机理[J].地球科学,2010,40(4):439-451.
    [212]韩天佑,漆呆福,林会喜.惠民凹陷西南缓坡带新生代构造演化与油气成藏特征[J].石油与天然气地质,2003,24(3):245-248.
    [213]王古升,付金华,何瑞武,等.惠民凹陷临南斜坡带资源评价及勘探潜力研究[J].油气地质与采收率,2001,8(5):18-22.
    [214]赵密福,刘泽容,信荃麟,等.惠民凹陷临南地区断层活动特征及控油作用[J].石油勘探与开发,2000,27(6):9-13.
    [215]刘超英.惠民凹陷南斜坡油气运移及聚集规律研究[D].中国石油大学,2007,4.
    [216]许君玉.惠民凹陷北部油气成藏动力系统与资源潜力研究[D].中国地质大学(北京),2008,5.
    [217]郑德顺,吴智平,李凌,等.惠民凹陷中生代和新生代断层发育特征及其对沉积的控制作用[J].石油大学学报:自然科学版,2004,28(5):6-12.
    [218]罗群,庞雄奇.海南福山凹陷顺向和反向断裂控藏机理及油气聚集模式[J].石油学报,2008,29(3):363-367.
    [219]杨万芹,蒋有录.惠民凹陷西部油气成藏期分析[J].油气地质与采收率,2004,11(1):20-23.
    [220]董艳蕾,罗群,边树涛,等.纯化油田纯东地区断裂控烃成藏机理及模式[J].大庆石油学院学报,2007,31(4):6-10.
    [221]宁方兴.夏口断层活动性分析及其控藏作用[J].工业技术,2008,8:116-117.
    [222]刘艳,徐健,廖应志.盘河断块断层封闭性研究[J].内蒙古石油化工,2009,8:181-182.
    [223]刘苏,王伟锋,马喜斌.盘1块断层封闭性研究[J].断块油气田,2001,11(6),10-13.
    [224]刘建国,刘延峰,黎有炎,等.惠民凹陷西部断层活动性研究[J].石油天然气学报(江汉石油学院学报),2009,31(4):195-201.
    [225]赵蕾,倪金龙,隋岩刚,等惠民凹陷临商断层封闭性特征[J].山东科技大学学报,2010,29(2):20-25.
    [226]李响.钱官屯地区断层封闭性研究[J].内蒙古石油化工,2008,9:159-162.
    [227]王东哗,查明,吴孔友.有关断层封闭性若干问题的探讨[J].新疆石油地质,2007,28(4):513-516.
    [228]朱志强,高先志,曾溅辉.惠民凹陷西南缓坡带断层的封闭性[J].中国石油大学学报(自然科学版),2009,33(4):1-5.
    [229]姜素华,许新明,康恒茂,等.惠民凹陷新生代构造沉降史及波动旋回性分析[J].石油天然气学报(江汉石油学院学报),2007,29(5):1-8.
    [230]孟元林,黄文彪,王粤川,等.超压背景下粘土矿物转化的化学动力学模型及应用[J].沉积学报,2006,24(4):461-467.
    [231]刘长龄,王双彬.论晋北石炭二叠系紫色高岭石粘土的成因[J].岩石学报,1987,5(2):25-37.
    [232]谭先锋,田景春,李祖兵,等.碱性沉积环境下碎屑岩的成岩演化—以山东东营凹陷陡坡带沙河街组四段为例[J].地质通报,2010,29(4):535-543.
    [233]蔡春芳,梅博文,李伟.塔中古生界油田水化学与流体运移和演化[J].石油勘探与开发,1997,24(1):18-22.
    [234]贺训云,姚根顺,贺晓苏,等.桂中坳陷桂中1井沥青成因及油气成藏模式[J].石油学报,2010,31(3):420-426.
    [235]刘玉祥,张金功,王永诗,等.断层输导封闭性能及其油气运移机理研究现状[J].兰州大学学报,2008,44(7):54-57.
    [236]Alberto Castellarin, Gian Battista Vai, Luigi Cantelli. The Alpine evolution of the Southern Alps around the Giudicarie faults:A Late Cretaceous to Early Eocene transfer zone[J]. Tectonophysics, 2006,414(1-4):203-223.
    [237]Ali. O. Oncel, Tom Wilson. Evaluation of earthquake potential along the Northern Anatolian Fault Zone in the Marmara Sea using comparisons of GPS strain and seismotectonic parameters [J]. Tectonophysics,2006,418(3-4):205-218.
    [238]Antonio Ravaglia, Claudio Turrini, Silvio Seno. Mechanical stratigraphy as a factor controlling the development of a sandbox transfer zone:a three- dimensional analysis[J]. Journal of Structural Geology,2004,26:2269-2283.
    [239]Antonio Ravaglia, Silvio Seno, Giovanni Toscani, Roberto Fantoni. Mesozoic extension controlling the Southern Alps thrust front eometry under the Po Plain, Italy:Insights from sandbox models[J]. Journal of Structural Geology,2006,28:2084-2096.
    [240]Barrell J. Rhythms and the measurement of geologic time [J]. Geological Society of American Bulletin,1917,23:377-446.
    [241]Bates R L. Glossary of Geology [M]. American Geological Institute,1980.
    [242]Bloch, S. Lander, R.H., etc. Anomalously high porosity and permeability in deeply buried sandstones reservoirs:origin and predictability[J]. American Association of Petroleum Geologist Bulletin,2002, 86:301-328.
    [243]Bohacs K M, et al. Lake-basin type, source potential, and hydrocarbon character; an integrated sequence stratigraphic-geochemical framework [A] In:Gierlowski E H, Kordesch, Kelts K R. Lake Basins Through Space and Time[C]. AAPG,2000,46:3-34.
    [244]Bond G C. Evidence for orbital forcing of Middle Cambrian peritidal cycles:sedimentary modeling [J]. Kansas Geological Survey Bulletin,1991,233.
    [245]Brown L F Jr, Benson J M et al. Sequence stratigraphy in offshore South African divergent basins-an atlas on exploration for Cretaceous lowstand traps. AAPG Studies in Geology [J].Tulsa, Oklahoma, U.S.A:Published by AAPG,1995:1-182.
    [246]Cross T A, Baker M R, Chapin M A et al. Applications of high-resolution sequence stratigraphy to reservoir analysis [A]. In Eschard R and Doligez (eds.). Subsurface Reservoir Characterization from Outcrop Observation[C]. Proceedings of the 7th IFP Exploration and Production Research Conference:Paris, Technip,1993:11-33.
    [247]Cross T A. Stratigraphic controls on reservoir attributes in continental strata[J]. Earth Science Frontiers,2000,7(4):322-350.
    [248]Peacock D. C. P. The post-Variscan development of the British Isles within a regional transfer zone influenced by orogenesis[J]. Journal of Structural Geology,2004,26:2225-2231.
    [249]Demaison G J, Bourgeois. Environment of deposition of middle Miocene (Alcamar) carbonate source beds, Cassblance field, Tarragona basin, offshore Spain [A].In:Palacas J G (eds.). Tectonics and Sedimentation [C]. SEPM Special Publication,1984,22:1-27.
    [250]D. Franke, S. Nebena, S. Ladagea, B. Schreckenbergera, K. Hinza. Margin segmentation and volcano-tectonic architecture along the volcanic margin off Argentina/Uruguay, South Atlantic[J]. Marine Geology,2007,244(1-4):46-67.
    [251]金之钧,张刘平,曾溅辉,等.东营凹陷与幔源富CO2流体有关的复合成因烷烃[J].科学通报,2002,47(16):1276-1280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700