用户名: 密码: 验证码:
大跨度斜拉桥索塔锚固区结构行为与模型试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,超大跨径斜拉桥在我国各地大量兴起。索塔锚固区是斜拉桥中的关键部位,受力比较复杂。随着跨度的增加,斜拉索的设计吨位已达到了“千吨”级的水平,使得索塔锚固区的受力越来越大。因此,斜拉桥索塔锚固区节段受力性能分析的探讨一直以来受到桥梁界的瞩目。本文在收集国内外相关资料和深入分析已有研究成果的基础上,以金塘大桥索塔锚固区为背景,结合模型试验,对斜拉桥索塔锚固区钢混组合结构剪力键选型、拉索锚固结构传力机理、实用计算方法展开研究,主要研究内容如下:
     1、首次提出在索塔锚固区钢混组合结构使用新型PBL剪力键(带孔钢板剪力连接件),采用试件中部设计加载梁传力装置的方法代替传统的推出试验方法,对两类共计6组钢混组合结构剪力键模型(栓钉和PBL)进行破坏试验。研究了两者的抗剪承载力、破坏形态及其内力分布规律,通过本文定义的方法获得了两类剪力连接件的抗剪刚度,并与日本钢结构协会(JSSC)定义的方法进行了对比,考察了试件在荷载作用下的位移响应。试验结果表明,PBL剪力键比栓钉在钢混组合结构之间具有更高的抗剪承载力。
     2、在弹塑性变形理论基础上,对钢混组合结构结合面粘结应力分布函数进行了推导,建立了索塔锚固区钢混组合结构剪力键的荷载-滑移本构方程。基于最小二乘法的基本原理编制了相应的MATLAB程序,对实测数据曲线拟合得到剪力连接件非线性剪切刚度,同时给出了相应的计算公式。提出了如何模拟剪力键滑移效应的详细方法,在此基础上,对不同混凝土强度、栓钉间距、PBL孔洞直径、贯通钢筋直径和钢肋条厚度下的剪力键试件进行单因素的拓展参数分析,研究各影响因素对索塔锚固区钢混组合结构剪力键受力性能的影响。
     3、以金塘大桥索塔锚固区首次采用的拉索锚固结构为背景,对其进行足尺模型试验研究。在加载系统上,设计拉索锚固台座加载系统,克服了以往反力架对加载空间要求大的困难。对索塔锚固区钢锚梁-钢牛腿组合传力结构在设计荷载、断索和超载等多种状态下进行了模拟,揭示了不同工况下塔壁混凝土和拉索锚固结构的应力变化规律。试验结果表明钢锚梁-钢牛腿组合结构有很大的安全贮备,同时验证了在索塔锚固区钢混组合结构应用新型PBL剪力键的可行性。
     4、基于钢混组合结构剪力键荷载-滑移本构方程,对索塔锚固区拉索锚固结构受力行为进行了数值模拟,研究了塔壁混凝土、钢锚梁、钢锚箱及钢牛腿各部位应力分布规律,数值结果与试验结果吻合良好,理论计算模式能够反映结构实际受力状态,并根据数值结果和试验结果对钢锚梁-钢牛腿组合结构的传力机理进行了分析。
     5、为了便于工程应用和设计方便,及时修改调整索塔及锚固结构方案,提出了索塔锚固区拉索锚固结构简化分析方法。通过与塔壁混凝土、钢锚梁和钢牛腿控制测点的实测应力对比,验证了简化实体模型方法的正确性。最后结合索塔锚固区模型试验以及实桥钢锚梁的安装工艺流程,编制了具体的施工工法,为推广钢锚梁结构在斜拉桥方面的应用以及今后其它类似结构的施工方案选择、施工过程控制提供参考或借鉴。
At present, large span cable-stayed bridges have sprang up over the country. The anchorage zone on pylon is the key parts for cable-stayed bridge and the forces acting on the zone are complicated. With the increase of span, the anchorage zone on pylon bear more heavy load because of the increase cable force. Study on the structural behavior of anchorage zone of cable-stayed bridge has attracted much attention in bridge circles. Based on the domestic and international research results, the Jintang bridge as a case, it has made the study on experimental research of different shear connectors for steel-concrete joint section of bridge pylon, transfer mechanism and utility computed methods of the anchorage structure. The main research work covers the following aspects:
     1、It is suggested that the Perfobond Leiste(PBL) shear connector could be applied for steel-concrete joint section of bridge pylon for the first time. In order to improve the reality of the experimental data, the loading device is fixed in the middle of the specimen instead of the push-out test. A new type of connector and traditional stud connector models for the joint section with different structural forms are put forward, and 3D FEM analysis and contrastable model experiments are carried out for models. The principal results of the simulation calculation, comparison of the results to the measurement values in the tests are provided, and some important conclusions in relation to the calculation and tests are generalized. Base on tests of these specimens, relation between load and slip, shear rigidity, ultimate bearing capacity, failure pattern etc. of shear connectors are discussed. The analysis results show that the calculating results coincide with the experimental results, and the PBL shear connector has much higher bearing capacity than stud connector for steel-concrete joint section of bridge pylon.
     2、The distribution function of bond stress on joint surface of the composite structures is derived based on elasticity and deformation plasticity theories.According to constitutive model of shear connectors, a constitutive equation of load-slip is established from statistical analysis of test data at different loads. The nonlinear shear rigidity is developed based on MATLAB program language and a calculation equation is provided. The methods to simulate the slip of connectors is suggested. Then a configuration algorithm based on the model is presented. A series of extending parametric analysis are carried out on models with different concrete strengthes, spacing interval of stud connector, size of the holes, diameter of the perforated rebar for PBL shear connector and thickness of the steel ribs by means of numerical simulation combining with full-scale experimental verification. Some useful conclusions are obtained by the parametric study.
     3、Taking the composite structure of steel anchor beam and steel corbel as project background,which is firstly used in the anchorage zone of Jintang bridge, a full scale segmental model test is performed. The pedestal loading system is designed to overcome the disadvantage of the reaction frame for loading in this paper. The stress redistribution of concrete and the anchor structure is obtained under many different situations. The structural performance satisfies the design requirement. The results show that the composite structure of steel anchor beam and steel corbel has enough safety tolerance and the PBL shear connector is feasible for steel-concrete joint section of bridge pylon.
     4、Based on the load-slip constitutive equation of the steel-concrete composite structure, stress analysis of the pylon cable anchor zone is simulated numerically. Through a series of analysis including stress distribution of tower wall concrete, steel anchor beam, steel anchor box and steel corbel, the numerical result shows good agreement with the experimental result, and the theoretical calculation model can reflect the real stress states. The composite structure transfer mechanism about steel anchor beam and steel corbel is analyzed according to these results.
     5、For the engineering convenience and convenient design, a new simplified analytical method of the anchor-hold structure is put forward. By means of that, the structural concept can be adjusted timely. Compared to the measured stress of the tower wall concrete, steel anchor beam and steel corbel, the conclusion is that the simplification of the physical model is visible. In combination with the model test and installation technological process of the steel anchor beam, the construction methods in detail are established. This article can provide information about the popularization and application of the steel anchor beam structure, construction scheme selection and construction process control.
引文
[1]陈明宪.斜拉桥建造技术.人民交通出版社,2003.
    [2]范立础.桥梁工程.人民交通出版社,1997.
    [3]范立础.大型桥梁设计与施工新理念-发展与问题,同济大学桥梁工程高级研修班讲义,2002.
    [4]严国敏.现代斜拉桥.西南交通大学出版社,1996.
    [5]林元培,斜拉桥.北京:人民交通出版社.2004.
    [6]Allam Said M.,Datta T.K.Seismic Behaviour of Cable-Stayed Bridges and Multi-Component Random Ground Motion.Engineering Structures.1999,21(1):62-74.
    [7]Das Animesh,Dutta Anjan,Talukdar Sudip.Efficient Dynamic Analysis of Cable-Stayed Bridges under Vehicular Movement using Space and Time Adaptivity.Finite Elements in Analysis and Design.2004,40(4):407-424.
    [8]刘士林,梁智涛,侯金龙,孟凡超.斜拉桥.北京:人民交通出版社.2002.
    [9]王伯惠.斜拉桥结构发展和中国经验(上册)(索桥类).北京:人民交通出版社.2003:1-10
    [10]王伯惠.斜拉桥结构发展和中国经验(下册)(索桥类).北京:人民交通出版社.2004:1-6
    [11]李兴华等.芜湖长江大桥索塔锚固区模型试验研究.中国铁道科学.2001年10月,第22卷,第5期.
    [12]项贻强等.鄱阳湖口大桥索塔节段足尺模型试验与分析研究.中国公路学报.2000(4),第13卷,第4期.
    [13]董明,李新乐,李睿,王时越.景洪澜沧江斜张桥索塔顶端空心段的测试分析.昆明理工大学学报.2000年8月,第25卷第4期.
    [14]郑纲.沈阳市富民桥索塔锚固区足尺节段模型试验研究.桥梁建设.2004年增刊.
    [15]项贻强等.南京长江二桥南汉桥斜拉索塔节段足尺模型的研究.土木工程学报.2000(1).
    [16]东南大学华东预应力技术联合开发中心.南京长江二桥南汉斜拉桥索塔锚固区足尺模型试验研究报告.南京:东南大学华东预应力技术联合开发中心.2001.
    [17]东南大学华东预应力技术联合开发中心.润扬长江公路大桥北汉斜拉桥索塔锚固区足尺模型试验研究报告.南京:东南大学华东预应力技术联合开发中心,2002.
    [18]刘钊,孟少平,刘智,吉林,欧庆保,王强.润扬大桥北汉斜拉桥索塔节段足尺模型试验研究.土木工程学报.2004,37(6):35~40.
    [19]东南大学华东预应力技术联合开发中心.五河口斜拉桥索塔锚固区足尺模型试验研究报告.南京:东南大学华东预应力技术联合开发中心.2004.
    [20]张望喜,易伟建,陈建阳,刘丽.武汉军山长江公路大桥索塔锚固区带锚块足尺节段模型试验研究.中南公路工程.2001,26(4):33~35.
    [21]李雄晖.军山长江大桥索塔锚固区足尺节段模型试验研究.交通科技.2001,(2):24~27.
    [22]彭苗,陈升平,余天庆等.巴东长江大桥索塔锚固区节段模型试验与空间应力分析.武汉理工大学学报(交通科学与工程版).2004(10).
    [23]刘应贵.环向预应力体系在索塔中的应用及其试验研究.成都:西南交通大学硕士学位论文.2003年.
    [24]桌卫东,房贞正.预应力混凝土桥塔斜索锚固区空间应力分析.同济大学学报.1999,27(2).
    [25]王锋君,项贻强.斜拉桥索塔节段足尺模型试验与分析研究.桥梁建设.2001,(2).
    [26]单炜等.异形截面斜拉桥索塔锚固区节段足尺模型试验研究.中国公路学报.2005(7).
    [27]李立峰,邵旭东,曾田胜.斜拉桥小尺寸预应力索塔的布束设计及试验研究.公路.2000(10).
    [28]ZhenjunYang.Fully automatic modelling of cohesive discrete crack propagation in conerete beams using local arc-length methods,International Journal of solids and Structures 41(2004).
    [29]陈多.锚箱式索塔锚固结构竖向静力传力机理及模型试验研究.同济大学工学硕士学位论文.2008.
    [30]苏庆田,斜拉桥混凝土索塔钢锚箱受力计算[J].结构工程师,2005(6).
    [31]陈开利.大跨度斜拉桥斜拉索锚固结构的实验研究.世界桥梁.2004(1).
    [32]陈向阳,史方华.金塘大桥索塔钢锚梁和钢牛腿组合结构设计.中国公路学会桥梁和结构工程分会2008年全国桥梁学术会议论文集,2008.
    [33]刘玉擎.组合结构桥梁.北京:人民交通出版社,2005.
    [34]Joint Committee IABSE/CEB/FIP/ECCS.Composite Structures(Model Code)[S]. London: Construction Press,1981.
    [35]Eurocode No.4:Composite Steel and Concrete Structures[S].Report EUR 9886, Commission of the Eu-ropean Communities,1985.
    [36]DIN V ENV 1994 Teil 1-1.Bemessung und Konstruktion von Verbundtragwerken aus Stahl and Beton-Teil 1-1:Allgemeine Bemessungsregeln,Bemessungsregeln fur den Hochbau[S]. Berlin:Beuth Verlag,Februar,1994.
    [37]薛伟辰,汪基伟,周氏.现代组合结构的研究与应用[J].工程力学,增刊.1996:34-37.
    [38]钟新谷,郑玉国,阳国锋,袁帅华,邹中权.钢箱-混凝土组合截面梁的力学性能的初步试验研究[J].湘潭矿业学院学报,2002,27(4):46-49.
    [39]Furlong,R.W.Strength of steel-encased beam columns[J]. Journal of Structural Engineering Division,1967,93(5):113-124.
    [40]Gander,J.and Jacobson,R. Structural behaviors of concrete-filled steel tubes. ACI Structural Journal,1967,64(38):404-413.
    [41]Furlong,R.W.Design of steel-encased conerete beam-columns[J]. Journal of Structural Engineering Division,1968,94(1):267-281.
    [42]Knowles,R.B,and Park,R.Strength of conerete filled steel tubular columns[J].Journal of Structural Engineering Division,1969,95(12):2565-2587.
    [43]Neogi etal,Concrete-filled tubular steel columns under eccentric loading[J].Journal of Structural Engineering Division,1969,47(5):187-295
    [44]Knowles,R.B.,and Park,R.Axial load design for conerete filled tubes[J]. Journal of Structural Engineering Division,1970,96(10):2125-2153.
    [45]聂建国,孙国良.钢-混凝土组合梁槽钢剪力连接件的试验研究[J].郑州工学院学报,1985,6(2):10-17.
    [46]朱聘儒,李铁强,陶悬治.钢与混凝土组合梁弯筋连接件的抗剪性能[J].工业建筑,1985(10):17-22.
    [47]聂建国,沈聚敏,余志武.考虑滑移效应的钢-混凝土组合梁变形计算的折减刚度法[J].土木工程学报,1995,28(6):11-17.
    [48]胡少伟,聂建国,罗玲.钢-混凝土组合梁的抗扭特性研究[J].建筑结构,1999(4):38-40.
    [49]朱聘儒,高向东.钢-混凝土组合梁塑性铰特性及内力重分布研究[J].建筑结构学报,1990,11(6):17-22.
    [50]聂建国,张眉河.钢-混凝土组合梁负弯矩区混凝土板裂缝的研究[J].清华大学学报(自然科学版),1997,37(6):95-99.
    [51]王明忠,陈世鸣.负弯矩区预应力混凝土组合梁的力学性能[J].工业建筑,1997,(27):19-22.
    [52]聂建国,樊健生.组合梁在负弯矩作用下的刚度分析[J].工程力学,2002,8(4):33-36.
    [53]陈世鸣.钢-混凝土连续组合梁负弯矩区的局部失稳[J].建筑结构学报,1995,12(6):30-37.
    [54]美国各州公路和运输工作者协会,辛济平等译.美国公桥梁设计规范(AASHTO)[S].北京:人民交通出版社,1994.
    [55]GBJ 17-88钢结构设计规范[S].北京:中国计划出版社,1988.
    [56]BODE H,HU Xia-min.Untersuchungen zur Schubtragfa.higkeit von Kopfbolzendubeln,Bericht zum DFG-Vorschungsvorhaben[R]. Kaiserslautern:
    Universitat Kaiserslautern,1993.
    [57]聂建国,樊健生,《钢结构设计规范》(GB50017-2003)钢-混凝土组合梁修订内容介绍[J].建筑结构学报,2003,24(1):34-39.
    [58]刘玉擎,曾明根,陈艾荣.连接件在桥梁结构中的应用与研究.哈尔滨工业大学学报.2003,VOl.35(AI):272-275.
    [59]狄谨,周绪红等.钢箱梁斜拉桥索塔锚固区的受力性能.中国公路学报,2007(4).
    [60]冯凌云,苏庆田,吴冲.大跨度斜拉桥混凝土索塔钢锚箱的计算模型研究.现代交通技术,2005(4).
    [61]严少波,裴丙志.斜拉桥索塔拉索锚固区空间应力分析模型,国外公路,2000(3).
    [62]卓卫东,房贞政.预应力混凝土桥塔斜索锚固区空间应力分析.同济大学学报,1999(2).
    [63]Breen, J. E., Fenves, G., Sanders, D. H., and Burdet, O. L.Anchorage zone reinforcement for post-tensioned concrete girders.National Cooperative Highway Research Program Interim Rep.10-29,University of Texas, Austin, Tex.
    [64]Saif Haroon,Nur Yazdani,and Kamal Tawfiq. Posttensioned Anchorage Zone Enhancement with Fiber-Reinforced Concrete. Journal of bridge engineering. Sep./Oct. 2006.
    [65]K.Lundgren,and J. Magnusson.Three-dimensional Moseling of Anchorage Zones in Reinforced Concrete. Journal of Engineering Mechanics.Jul.2001.
    [66]Okada J.,Lebet J. P. Strength and behavior of grouped stud connectors.Composite and hybrid structures:Proceedings of the sixth International Association for Cooperation and Research of Steel-Concrete Composite Structures international conference on steel-concrete composite structures,Los Angeles, USA.2000,Vol 1:321-330.
    [67]Okubo Nobuhito, Kurita Akimitsu, Komatsu Keiichi. etal.Experimental study on static and fatigue characteristics of grouped stud.Japanese Journal of Structure Engineering[J], Japan.2002,Vol 48(A):1391-1398.
    [68]叶梅新,罗如登.群钉钢-混凝土组合件栓钉受力状态研究[J].钢结构,1999(3):39~42.
    [69]陈金刚.斜拉桥索塔锚固区焊钉连接件模型试验研究[D].同济大学硕士学位论文,2004.
    [70]日本土木学会.钢-混凝土组合结构设计手册.1989.
    [71]Slutter R G,Driscoll G C.Flexural Strength of Steel-Concrete Composite Beams. Journal of the Structural Division,ASCE,1965,91(2):71-99.
    [72]Ollgaard J,Slutter R G,Fisher J W.The Strength of Stud Shear Connection in Lightweight and Normal-Weight Concrete. AISC,Engineering Journal,1971,8(2):55-64.
    [73]聂建国,沈聚敏,袁彦声.钢-混凝土组合梁中剪力连接件实际承载力的研究.建筑结构学报,1996,17(2):21-29.
    [74]宗周红,车惠民.剪力连接件静载和疲劳试验研究.福州大学学报(自然科学版),1999,27(6):61-66.
    [75]Chapman J C,Balakrishman S.Experiments on Composite Beams[J].The Structural Engineer,1964,42(11),369-383.
    [76]胡夏闽.欧洲规范4.钢-混凝土组合梁设计方法(6)-剪力连接件[J].工业建筑,1996,26(2):50-55.
    [77]聂建国,刘明.钢-混凝土组合结构[M].中国建筑工业出版社,2001.
    [78]山寺德明,伊东升,森河久.鹤见航路桥の设计概要(下).桥梁と基础,93-2.
    [79]Leonhardt.Development and testing of a new shear connector for steel concrete composite bridges[A].Fourth international bridge engineering conference[C].1995, volume 2:137-145.
    [80]Valente I,Paulo J S.Cruz.Experimental analysis of Perfobond shear connection between steel and lightweight concrete [J].Journal of Constructional Steel Research, 2004,60:465-479.
    [81]Nam J H,Yoon S J,et al.Perforated FRP shear connector for the FRP-concrete composite bridge deck[J].Key Engineering Materials,2007, V334-335:381-384.
    [82]胡建华,叶梅新,黄琼.PBL剪力连接件承载力试验[J].中国公路学报,2006,19(6):65~72.
    [83]胡建华,侯文崎,叶梅新.PBL剪力键承载力影响因素和计算公式研究[J],铁道科学与工程学报,2007,4(6):12-18
    [84]胡建华,蒲怀仁.PBL剪力键钢混结合段设计与试验研究[J],钢结构,2007,22(2):62-68.
    [85]周浩.南京长江三桥桥塔钢—混结合段剪力键选型试验研究[D].西南交通大学硕士生学位论文,2004.
    [86]蒋彪,邵华英.组合结构中栓钉与PBL键的比较[J].山西建筑,2006,32(11):41-42.
    [87]刘玉擎,周伟翔,蒋劲松.开孔板连接件抗剪性能试验研究.桥梁建设,2006(6).
    [88]SLUTTER R G,DRISCOLL G C.Flexural strength of steel-concrete composite beams [J].Journal of the Structural Division,ASCE,1965,91(2):71-99.
    [89]VIEST IM.Investigation of stud shear connectors for composite concrete and steel T-beams [J].Journal of American Concrete Institute,1956,27(2):875-891.
    [90]CHA PMAN J C,BALAKRISHMANS. Experiments on composite beams [J]. The Structural Engineer,1964,42(11):369-383.
    [91]朱聘儒等.组合梁的连接件与设计承载力.工业建筑.1985.
    [92]美国各州公路和运输工作者协会.辛济平,等译.美国公路桥梁设计规范(AASHTO)[S].北京:人民交通出版社,1994.
    [93]Joint Committee IABSE/CEB/FIP/ECCS. Composite Structures (Model Code) [S]. London:Construction Press,1981.
    [94]Eurocode No.4:Composite Steel and Concrete Structures[S].Report EUR9886, Commission of the European Communities,1985.
    [95]Eurocode 4:Design of composite steel and concrete structures [S],Part 2:Bridge.ENV 1994-2:2001.
    [96]聂建国,谭英,王洪全.钢-高强混凝土组合梁栓钉剪力连接件的设计计算[J].清华大学学报,1999,39(12):94-97.
    [97]胡夏闽,刘子彤,赵国藩.钢与混凝土组合梁栓钉连接件的设计承载力.南京建筑工程学院学报[J],2000,4:1-10.
    [98]Leonhardt F.et al.Neues,Vorteilhaftes Vebundmittel Fur Stahlverbund-Tragwerke Mit Hoher Dauerfestigkeit,Beton-und Stahlbetonbau,No.12,1987.
    [99]Nishiumi K.et al.Shear Strength of Perfobond Rib Shear Connector under the Confinement. Journal of the Japan Society of Civil Engineers,No.633,1999.
    [100]Hosaka T,et al.Study on Shear Strength and Design Method of Perfobond Strip [J]. Japanese Journal of Structural Engineering,Vol.48A,2002.
    [101]Oguejiofor,E·C.,and Hosain,M.U.,1996, Numerical analysis of Push-Out Specimens with Perfobond rib connectors,Journal of Computer and structure,Vol.62(4),pp617-24.
    [102]Valente,I.,and Cruz,P.J.S.,2004,Experimental analysis of Perfobond shear connection between steel and lightweight concrete,Journal of Constructional Steel Researeh,Vol.60, pp465-479.
    [103]白玲,史永吉.复合结构桥梁的特性.中国铁道科学,2003,24(1),80-87.
    [104]徐芝纶.弹性力学.北京:高等教育出版社,1985:36-47.
    [105]郑山锁,邓国专,杨勇等.型钢混凝土结构粘结滑移性能试验研究.工程力学,2003,20(5):63-69.
    [106]Roeder C W. Composite and mixed construction [M].Published by ASCE,1984.
    [107]Bryson J O,Mathey R G. Surface condition effect on bond strength of steel beams embeded in concrete [J].J.of ACI.1962,59(3):397-406.
    [108]薛立红,蔡绍怀.钢管混凝土柱组合界面的粘结强度.建筑科学,1996,4.
    [109]杨勇,赵鸿铁,薛建阳.型钢混凝土粘结-滑移本构关系理论分析.工业建筑,2002, 32(6):60-63.
    [110]过镇海.钢筋混凝土原理.北京:清华大学出版社,1999.
    [111]过镇海.混凝土的强度和变形,试验基础和本构关系.北京:清华大学出版社.1997:1-86.
    [112]江见鲸.钢筋混凝土结构非线性有限元分析.西安:陕西科技出版社.1994:1~23.
    [113]陈惠发.土木工程材料的本构方程.余天庆,王勋文刘再华.武汉:华中科技大学出版社.2001:192~204.
    [114]陈惠发,A.F.萨里普.混凝土和土的本构方程.北京:中国建筑工业出版社,2004.
    [115]康清梁.钢筋混凝土有限元分析.北京:中国水利水电出版社,1996.
    [116]金芷生,朱万福,庞同和.钢筋与混凝土粘结性能试验研究.南京工学院学报,1985.
    [117]胡少伟.组合梁抗扭分析与设计.北京:人民交通出版社,2004.
    [118]Buttry K E,Behaviour of stud shear connectors in lightweigh and normal-weight concrete,Msc thesis,University of Missouri,1965.
    [119]Ollgaard H G,Slutter R G, Fisher J G.Shear strength of stud connectors in lightweight and normal weight-concrete[J]. AISC-Journal,1971,8(2):55-64.
    [120]李庆扬.数值计算原理.北京:清华大学出版社.2000.
    [121]西南交通大学结构试验工程试验中心.索塔锚固区钢混组合结构剪力键选型试验研究报告[R].2008.
    [122]白光亮,蒲黔辉,袁万城,杨永清.栓钉在斜拉桥索塔锚固区中的试验研究与非线性分析[J].铁道学报.2009,3(31).
    [123]白光亮,蒲黔辉,杨永清.袁万城.桥塔钢混结合段剪力连接件承载力试验研究.第六届全国土木工程研究生学术论坛论文集.2008.
    [124]中华人民共和国国家标准.钢结构设计规范(GB50017-2003),中国计划出版社,2003,10.
    [125]PU Qian-hui,BAI Guang-liang.Study on Internal Force Distribution in Steel-concrete Composite Structure for Pylon of Cable-stayed Bridge. Journal of Southwest Jiaotong University. (English Edition).2009,(4).
    [126]陆新征,江见鲸.用ANSYS Solid65单元分析混凝土组合构件复杂应力.建筑结构,2003.
    [127]ANSYS User's Manual for Revision 5.7[M].ANSYS Inc.,2001.
    [128]司炳君,孙治国,艾庆华.Solid65单元在混凝土结构有限元分析中的应用[J].工业建筑,2007,37(1):87-92.
    [129]Park R,Paulay T:Reinforced Concrete Structures.New York:A Wiley lnterscience Publication,1975.
    [130]Bangash M Y H.Numerical modeling of bond and bond-slip.Concrete and Concrete Structures:Numerical Modeling and Applications.London,New York:Elsevier Applied Scienee,1985.
    [131]Bazant Z P,et.al..Task Committee on Finite Element Analysis of Reinforced Concrete Structures. State-of-the Art Report on Finite Element Analysis of Reinforced Concrete, NewYork:Published by ASCE,1982.
    [132]K.J.Willam,E.D.warnke.Constitutive model for the triaxial behavior of conerete. Proceedings international association for bridge and structural engineering,ISMES, Bergamo, Italy,1975,19:174
    [133]李黎明..ANSYS有限元分析实用教程.北京:清华大学出版社,2005.
    [134]Zienkiewicz O.C.,Too J.and TaylorR.L.,Reduced integration technique in general analysis of plates and shells.International Journal for Numerical Methods in Engineering. 1971,3:275-290.
    [135]Pawsey S.F and Clough R.W.,improved numerical integration of thick slab finite elements.International Journal for Numerica Methods in Engineering,1971,3:575-586.
    [136]Pawsey S.F.,The Analysis of Moderately Thick to Thin Shells by the Finite Element Method, PhD dissertation,Department of Civil Engineering,University of California,Berkeley,CA,1970.
    [137]TooJ.J.M.Two-Dimensional,plate,Shell and Finite prism Isoparametric Elements and their Application,PhD thesis,Department of Civil Engineering,University of Wales, Swansea,1970.
    [138]BatheK.J.,DvorkinE.N.A formulation of general shell elements-the use of mixed interpolation of tensorial components[J].International Journal for Numerical Methods in Engineering.1986,22(6):697-722.
    [139]庄茁等.ABAQUS非线性有限元分析与实例.北京:科学技术出版社,2004.
    [140]占玉林.预应力矩形钢箱混凝土梁的结构行为研究.成都:西南交通大学博士学位论文.2007.
    [141]赵鸿铁.钢与混凝土组合结构.北京:科学出版社,2001.
    [142]白国良,秦福华著.型钢钢筋混凝土原理与设计.上海:科学技术出版社,2000.
    [143]中华人民共和国经济贸易委员会.钢-混凝土组合结构设计规程(DL/T-5085-1999).北京,中国计划出版社,1999.
    [144]中华人民共和国行业标准.型钢混凝土组合结构技术规程(JGJ138-2001).中国.建筑 工业出版社,2001,12.
    [145]杨勇.型钢混凝土粘结滑移基本理论及应用研究.西安:西安建筑科技大学博士学位论文.2003:128-176.
    [146]王满生,周锡元,胡聿贤.桩土动力分析中接触模型的研究.岩土工程学报,2005,27(6):616-620.
    [147]连续体和结构的非线性有限元[M].庄茁译.北京:清华大学出版社,2002.
    [148]陆新征,江见鲸.世界贸易中心飞机撞击后倒塌过程的仿真分析.土木工程学报,2001,34(6).
    [149]余勇,吕西林..三向受压混凝土的三维本构关系.同济大学学报.1998,26(6):622-6.26.
    [150]Petersson,P.E.Crack growth and development of fracturezones in plane concrete and similar materials.Lund Institute of Technology,1981.
    [151]Hillerborg,A.Modeer,M.and Petersson,P.E.,Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements.Cement and Concrete Researeh,Vol.6,1976.
    [152]Sargin,M.,Stress-strain relationship for concrete analysis of structural concrete section.Study No.4,Solid Meehanics Division,University of Waterloo,Ontario,Canada,1971.
    [153]Darwin,D.And Pecknold,D.A.Analysis of RC shear panels under cyclic loading.Journal of Structural Division,Vol.102,No.ST2,Feb.1976.
    [154]Nilsson,Arthur H.,Nonlinear analysis of reinforced concrete by the finite element method. ACI Journal, Vol.65,Sept.1968.
    [155]W.F.Chen,余天庆等译,土木工程材料的本构方程(第二卷塑性与建模).武汉:华中科技大学出版社,2001.
    [156]王勖成.有限元法基本原理与数值方法[M].北京:清华大学出版社,2000.
    [157]朱伯芳.有限单元法原理与应用中国水利水电出版社,1998.
    [158]金奕山,李琳.随机振动载荷作用下结构Von Mises应力过程的研究.应用力学学报,2004,21(3):13-16.
    [159]徐有邻.变形钢筋混凝土粘结锚固性能的试验研究.[博士论文],北京:清华大学,1990.
    [160]郑山锁,邓国专,杨勇等.型钢混凝土结构粘结滑移性能试验研究.工程力学,2003,20(5):63-69.
    [161]杨勇.混凝土粘结滑移基本理论及应用基础研究[D].西安:西安建筑科技大学,2004.
    [162]CharlesW R, Robert C. Shear connector requirements for embedded steel sections[J]. Journal of Structural Engineering, ASCE,1999,125(2):142-151.
    [163]Roeder C W. Composite and mixed construction[M].New York:Published by ASCE,1984.
    [164]Bryson J O, Mathey R G. Surface condition effect on bond strength of steel beams embeded in concrete[J].J.of ACI,1962,59(3):397-406.
    [165]张誉.钢骨高强混凝土结构的粘结性能研究[J].建筑结构,1999,29(7):3-5.
    [166]李方元.不同混凝土基体与变形钢筋的粘结滑移特性[J].工业建筑,2002,32(10):31-33.
    [167]肖汝诚,项海帆.斜拉桥索力的优化及其工程应用.计算力学学报,1998,15.
    [168]范立础,杜国华.斜拉索索力优化及非线性理想倒退分析,重庆交通学院学报,1992,3.
    [169]徐君兰.大跨度桥梁施工控制.北京:人民交通出版社,2000.
    [170]张奇志.杭州湾跨海大桥通航孔桥索塔锚固区节段模型试验研究.中国公路学会桥梁和结构工程分会2005年全国桥梁学术会议,2005年
    [171]张奇志.斜拉桥钢-混组合索塔锚固区节段模型试验研究.桥梁建设,2006年,03期.
    [172]陈开利.钢锚箱索塔锚固区受力机理研究.中国钢结构协会第五次全国会员代表大会暨学术年会论文集,2007年.
    [173]周伟翔.连续组合梁桥钢与混凝土连接试验研究,同济大学硕士学位论文,2007.3.
    [174]寥崇庆.钢-混凝土连续组合梁群钉连接件抗剪承载力试验研究,同济大学硕士学位论文,2007.3.
    [175]西南交通大学.金塘大桥索塔锚固区钢混结合段剪力键选型试验研究报告[R].成都.西南交通大学结构工程试验中心,2008.
    [176]白光亮,王昌将,蒲黔辉,杨永清.舟山金塘大桥主通航孔桥索塔锚固区足尺模型试验研究[C].十八届全国桥梁学术会议论文集.北京:人民交通出版社,2008:1375-1382.
    [177]白光亮,蒲黔辉,夏招广.大跨度斜拉桥混凝土索塔钢锚箱空间有限元分析研究.公路交通科技.2008,(08).
    [178]王锦.考虑接触面特性球型支座有限元分析与试验研究[D].同济大学,2007.
    [179]中交集团第二航务工程局有限公司.金塘大桥钢锚梁安装施工总结[R].2008,8.
    [180]付欣,宋莉莉.灌河大桥索导管及钢锚梁施工的几点经验.预应力技术,2007(1).
    [181]上海建工集团东海大桥工程项目经理部.东海大桥工程总体施工组织设计[R].上海,2003.
    [182]林文体,陈儒发.杭州湾跨海大桥北航道桥钢锚箱施工技术.桥梁建设,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700