岩体结构面力学特性及其锚固效应的数值计算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地质体有别于一般工程材料的一个重要特征就是其中包含有各种具有宏观尺度规模的界面,这种与周围岩体具有显著性质差异的界面在地质上统称为“结构面”,如断层、节理、软弱夹层或岩带、层面等。结构面在很大程度上破坏了岩体的连续性,并控制了岩体的工程地质特性。通过对岩体结构面的力学性质研究,明确岩体在各种荷载作用下结构面变形与强度所产生的力学效应,具有重要意义。
     论文通过收集前人资料、理论分析、现场试验及数值仿真技术,对结构面力学和变形特性,及在锚杆加固情况下结构面的响应特征、岩体边坡稳定性等相关方面进行了系统的研究,为工程实践提供科学指导。
     现有岩体结构面剪切应力和剪切位移描述模型的局限性是只能反映塑性结构面的应力变形特征,本文通过对其进行修正,使其即能描述塑性结构面的应力变形特征也能描述脆性结构面的应力变形特征。
     FLAC3D中锚杆单元只能考虑轴向力和轴向摩擦力的作用,而无法考虑锚杆的横向剪切力作用。在实际节理岩体中,由于节理结构面的错动,往往对锚杆形成横向剪切力,因此,考虑锚杆的横向剪切力特征显得较为重要,本文对FLAC3D的锚杆单元进行修正,通过内置的FISH语言实现更加符合实际情况的锚杆数值单元。
     通过现场锚杆拉拔试验,对不同锚杆锚头位移与锚头拉力之间的关系进行了分析,同时利用修正的FLAC3D的锚杆单元进行数值模拟计算,锚头位移与锚头拉力之间的计算关系曲线与实测的结果基本一致,从而验证了本文所建立的锚杆修正单元的正确性。
     另外,通过自行编制ANSYS-FLAC3D的转换程序,改进以往文献中所编制程序的ANSYS-FLAC3D的数据导入方法,使数据导入速度和建模效率得到大大提高,从而实现了复杂表面形态结构面试样模型的数值建立。
     同时,论文探讨了结构面形态对于剪切强度和应力应变关系以及结构面破坏模式的影响,建立了结构面起伏角与结构面剪切强度之间的关系模型;探讨了硬性结构面的数值实现方法,并研究了法向位移和剪切位移的关系,揭示了结构面剪胀特性,并建立了剪胀理论模型;研究了结构面加载过程中,加载速率对结构面剪切强度的影响,并建立了二者之间的线性拟合模型。
     也探讨了节理试样剪切强度与节理面厚度的关系,并针对不同起伏角,建立二者关系曲线的二次抛物线拟合方程。
     鉴于在加锚条件下结构面的应力和变形特征研究的不足,本文通过数值模拟的方法,并利用第二章所建立的修正的锚杆单元,分别对比了结构面在加锚和无锚情况下的强度特征,应力应变特性,并研究在不同锚杆倾角情况下,结构面的力学和变形行为。
     为了进行节理岩体边坡锚杆加固的优化研究,探讨了锚杆参数,如长度,倾角,间距对于节理边坡稳定性的影响,并建立了它们之间的关系模型,得到的结果可以为工程实践提供重要指导。
Geological material is different from other materials, for it contains many different size interfaces, which are named structure plane like fault, joint, weakness plane and stratified plane etc. They break the continuous of the rock mass, and control the geological characteristic of rock mass. So it is meaningful to study the mechanical characterisitic of rock mass structure plane, and its mechanical effect induced by the different loading.
     The mechanical and deformation characterisitic of structure plane, the response of structure plane with bolt reinforcement, joint rock slope stability and joint rock slope with bolt reinforcement are studied in the present thesis, according to the method of theoretical analysis, insitu-test and the numerical calculation method. The results of the present thesis can give some guidance for the real project.
     The existed model for describing the relationship between shear stress and shear displacement of structure plane can only reflect the type of plastic structure plane, so this model is modified in the present thesis, which can then describe the stress deformation characteristic of both the plastic and brittle stucture plane.
     The bolt element in FLAC3D can only reflect the effect of axial stress and axial friction stress, but in reality, the bolt also sustains the shear stress in the normal direction. So it is important to consider the shear stress in the normal direction of bolt, especially for structure plane reinforced by bolt. The bolt element in FLAC3D is modiefied by the internal FISH language, to make it more close to the real situation.
     According to the insitu-test of bolt with tensile stress, the relationship between the bolt head displacement and the tensile stress are analyzed. Then the bolt tensile test is modelled by the numerical calculation method, in which the modified bolt element is used. The comparisons are done for the results obtained from the insitu-test and the numerical analysis method, which validates the correctness of the modified bolt element done in the present thesis.
     The data transferring program from ANSYS to FLAC3D is compiled, in which the data transferring method is different from those in other papers, the data transferring method can greatly increase the data transffering effeciency, and the complicated suface for structure plane can be modelled by this program.
     The shear strength, stress-strain relationship and the failure mode of structure plane are analyzed. The theoretical models are founded for them. The method useing interface to model the structure plane is analyzed, the relationship between the normal displacement and shear displacement is studied, which shows the shear dilatant characteristic of structure plane, and the shear dilatant theoretical model is founded. The effect of the shear velocity to the shear strength of structure plane is studied, and there fitting model is built.
     The relationsip between the shear strength and the joint thickness is analyzed, the fitting equations are founded for them with different roughness angles.
     The characteristic of stress and deformation of structure plane with bolt reinforcement are seldom studied in the existing material. But in the present thesis, this problem is studied by the numerical simulation method, in which the modified bolt element is used. The strength characteristic and stress-strain characteristic are compared for the situations of structure plane with the without bolt reinforcement of different inclination.
     In order to do the optimal study for the joint rock slope with bolt reinforcement, the effect of bolt parameters like bolt length, bolt inclination and bolt spacing to the stability of joint slope are studied, whose results can give some guidance for the real project.
引文
[1]陈祖煜.岩质边坡稳定分析[M].北京:中国水利水电出版社,2005.
    [2]高大钊.岩土工程的回顾与前瞻[M].北京:人民交通出版社,2001.
    [3]伍法权.中国21世纪若干重大工程地质与环境问题[J].工程地质学报,2001.9(2):115-120.
    [4]车用太等.编著岩体工程地质力学入门[M].北京:科学出版社,1983.
    [5]夏才初,孙宗颀.工程岩体节理力学[M]上海:同济大学出版社,2002.
    [6]王继光.岩体工程地质分析[M].重庆:西南交通大学出版社,1988.
    [7]张强勇,向文.节理岩体能量损伤本构模型与工程应用[J].工程地质学报,1999,7(4):310-314.
    [8]蒋爵光.铁路岩石边坡[M].铁道出版社,1997.
    [9]杜时贵,胡晓飞,王驹,等.甘肃北山地质处置库围岩节理抗剪强度经验估算[J].工程地质学报,2006,14(4):502-507.
    [10]胡波,杨志荣,刘顺桂,等.共面闭合断续节理岩体直剪强度特性研究[J].工程地质学报,2008,16(3):327-331.
    [11]Kwasniewski M A. Mechanical behavior of anisotropic rocks [M]. Oxford: 1993, Pergamon Press.
    [12]凌建明.节理岩体损伤力学及时效损伤特性的研究[D].上海:同济大学博士学位论文,1992.
    [13]杨延毅.节理裂隙岩体损伤断裂力学模型及其在岩体工程中的应用[D].北京:清华大学博士学位论文,1990.
    [14]Evert Hoek. Rock Engineering[M]. North Vancouver:Evert Hoek Consulting Engineering Inc,2000.
    [15]Erik Eberhardt. Rock Slope Stability Analysis Utilization of Advanced Numerical Techniques[M]. ETH zurich, Switzerland:Swiss Federal Institute of Tchnolty,2002.
    [16]赵明阶,何光春,王多垠.边坡工程处治技术[M].北京:人民交通出版社,2003.
    [17]Forest S, Pradel F, Sab K. Asymptotic analysis of heterogeneous Cosserat media[J]. International Journal of Solids and Structures,2001,38:4 585-4 608.
    [18]Dawson E M, Cundall P A. Cosserat plasticity for modeling layered rock[A]. Proceedings of the Conference on Fractured and Jointed Rock Masses [C]. Netherlands:A. A. Balkema,1995.267-274.
    [19]Forest S, Barbe F, Cailletaud G. Cosserat modelling of size effects in the mechanical behaviour of polycrystals and multi-phase materials[J]. International Journal of Solids and Structures,2000,37:7105-7126.
    [20]Bai T, Pollard D D. Fracture spacing in layered rocks:a new explanation based on the stress transition[J]. Journal of Structural Geology,2000,22:43-57.
    [21]林杭,曹平,周正义.FLAC3D模拟全长注浆锚杆的作用效果[J].岩土力学,2005,26(s2):167-170.
    [22]闫莫明,徐祯祥,苏自约.岩土锚固技术手册[M].北京:人民交通出版社,2004.5.
    [23]龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.
    [24]钱家欢,殷宗泽.土工数值分析[M].北京:中国铁道出版社,1991.
    [25]LI C, Stillborg B. Analytical models for rock bolts[J]. Int. J. Rock Mech. Sci. and Geomech.Abstr.,1999,36(8):1013-1029.
    [26]王梦恕.地下工程浅埋暗挖技术通论[M].合肥:安徽教育出版社,2004.
    [27]姚显春,李宁,陈蕴生.隧洞中全长黏结式锚杆的受力分析[J].岩石力学与工程学报,2005,24(13):2272-2276.
    [28]张明义,张健,刘俊伟,等.中风化花岗岩中抗浮锚杆的试验研究[J].岩石力学与工程学报,2008,27(增刊1):2741-2746.
    [29]韩军,丁秀丽,朱杰兵.岩土锚固技术的新进展[J].长江科学院院报,2001,18(5):65-72.
    [30]张乐文,汪稔.岩土锚固理论研究之现状[J].岩土力学,2002,23(5):627-631.
    [31]张乐文,刘传波.新型锚杆及岩土锚固新技术[J].公路交通科技,2004,21(7):26-29.
    [32]杨志法,张路青,祝介旺.四项边坡加固新技术[J].岩石力学与工程学报,2005,24(21):3828-3834.
    [33]张乐文,李术才.岩土锚固的研究与发展[J].岩石力学与工程学报,2003,22(增1):2214-2221.
    [34]孙广忠.岩体力学基础[M].北京:科学出版社,1983.
    [35]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [36]杜守继,朱建栋,职洪涛.岩石节理经历不同变形历史的剪切试验研究[J]. 岩石力学与工程学报,2006,25(1):56-60.
    [37]李海波,冯海鹏,刘博.不同剪切速率下岩石节理的强度特性研究[J].岩石力学与工程学报,2006,25(12):2435-2440.
    [38]Barton N R,The Shear Strength of Rock and Rock Joints [J]. Int J Rock Mech Min Sci Geomech Abstr,1976,13:255-279.
    [39]Barton N R,Bandis S. Strength Deformation and Conductivity Coupling of Rock Joints [J]. Int J Rock Mech Min Sci Geomech Abstr.1985,22:121
    [40]Barton N R,Choubey V.The Shear Strength of Rock Joints in Theory and practice [J]. Rock Mech,1977,10:1-54.
    [41]Gerrard C. Shear Failure of Rock Joints Appropriate Constraint for Empirical Relation [J]. Int J Rock Mech Min Sci&Geomech Abstr,1986,23:401-429.
    [42]许宏发,金丰年.岩体节理剪切变形的幂函数模型[J].岩石力学与工程学报,2000,19(3):314-317.
    [43]Patton F D. Multiple shear modes of rock [C]. Proc 1st Cong ISRM. Lisbon,1966,1:509-517.
    [44]Jafari M K. Hosseini K A, Pellet F, et al. Evaluation of shear strength of rock joints subjected to cyclic loading [J]. Soil Dynamics and Earthquake Engineering,2003,23(7):619-630.
    [45]Lee H S, Park Y J, Cho T F, et al. Influence of asperity degradation on the mechanical behavior of rough rock joints under cyclic shear loading[J]. International Journal of Rock Mechanics and Mining Sciences,2001,38(7): 967-980.
    [46]Fox D J, Kana D D, Hsiung S M. Influence of interface roughness on dynamic shear behavior in jointed rock[J]. International Journal of Rock Mechanics and Mining Sciences,1998,35(7):923-940.
    [47]夏才初,孙宗颀,潘长良.含波纹度的节理的形态特征和剪切性质研究[C].中国岩石力学与工程学会第三次会议论文集.北京:中国科学出版社,1994:34-43.
    [48]夏才初,孙宗颀,潘长良.不同形貌节理的剪切强度和闭合性质研究[J].水利学报,1996.
    [49]Ladanyi B,Archambault G.Simulation of Shear Behaviour of a Jointed Rock Mass [C]. Proc.llth Sympon Rock Mech,1970,105-117.
    [50]沈婷,丰定祥,任伟中等.由结构面和岩桥组成的剪切面强度特性研究[J].岩土力学,1999,20(1):33-38.
    [51]葛修润,刘建武.加锚节理面抗剪性能研究[J].岩土工程学报,1988,10(1): 8-19.
    [52]杨延毅,王慎跃.加锚节理岩体的损伤增韧止裂模型研究[J].岩土工程学报,1995.17(1):9-17.
    [53]王成.层状岩体边坡锚固的断裂力学原理[J].岩石力学与工程学报.2005.24(11):1900-1904.
    [54]叶金汉.裂隙岩体的锚固特性及其机理[J].水利学报,1995,(9).68-74.
    [55]杨松林,朱焕春,刘祖德.加锚层状岩体的本构模型[J].岩土工程学报,2001.23(4):427-430.
    [56]李术才,朱维申.加锚节理岩体断裂损伤模型及其应用[J].水利学报.1998(8):52-56.
    [57]李术才,陈卫忠,朱维申等.加锚节理岩体裂纹扩展失稳的突变模型研究[J].岩石力学与工程学报.2003.22(10):1661-1666.
    [58]伍佑伦,王元汉,许梦国.拉剪条件下节理岩体中锚杆的力学作用分析[J].岩石力学与工程学报,2003.22(5):769-772.
    [59]康天合,郑铜镖,李焕群.循环荷载作用下层状节理岩体锚固效果的物理模拟研究[J].岩石力学与工程学报,2004,23(10):1724-1729.
    [60]邹志晖,汪志林.锚杆在不同岩体中的工作机理[J].岩土工程学报,1993(6):71-79.
    [61]蔡永昌,朱合华,李晓军.一种用于锚杆支护数值模拟的单元处理方法[J].岩石力学与工程学报,2003,22(7):1137-1140.
    [62]冯光明,冯俊伟,谢文兵等.锚杆初锚力锚固效应的数值模拟分析[J].煤炭工程,2005,(7):46-47.
    [63]漆泰岳,陆士良,高波.FLAC锚杆单元模型的修正及其应用[J].岩石力学与工程学报,2004,23(13):2197-2200.
    [64]曹文贵,速宝玉.岩体锚固支护的数值流形方法模拟及其应用[J].岩石力学与工程学报,2001,23(5):581-583.
    [65]薛亚东,张世平,康天合.回采巷道锚杆动载响应的数值分析[J].岩石力学与工程学报,2003,22(11):1903-1906.
    [66]张宏,马光.胶结锚杆的二维有限元分析[J].矿冶工程,1990,10(1):6-10.
    [67]刘波,李先炜,陶龙光.锚拉支架中锚杆横向效应分析[J].岩土工程学报,1998,20(4):36-39.
    [68]杨松林,徐卫亚,黄启平.节理剪切过程中锚杆的变形分析[J].岩石力学与 工程学报,2004,23(9):3268-3273.
    [69]林丽,杨明成,郑颖人.基于力平衡的安全系数统一求解格式[J].岩土力学,2005,26(增):279-282.
    [70]杨明成.基于力平衡求解安全系数的一般条分法[J].岩石力学与工程学报,2005,24(7):1216-1221.
    [71]张鲁渝.一个用于边坡稳定分析的通用条分法[J].岩石力学与工程学报,2005,24(3):496-501.
    [72]陈昌富,杨宁.边坡稳定性分析水平条分法及其进化计算[J].湖南大学学报,2004,31(3):72-75.
    [73]邹广电,蒋婉莹.边坡稳定性分析的一个改建条分法[J].岩石力学与工程学报,2003,22(12):1953-1959.
    [74]陈友根,朱大勇.土压力计算中条间力函数的选取[J].金属矿山,2001,(11):12-13.
    [75]宋飞,闫彭旺,孙万禾等.土坡稳定及地基承载力的精确解的工程力学推导方法[J].中国港湾建设,2004,(4):28-31.
    [76]郑颖人,时卫民.不平衡推力法与Sarma法的讨论[J].岩石力学与工程学报,2004,23(17):3030-3026.
    [77]朱大勇,李焯芬.对3种著名边坡稳定性计算方法的改进[J].岩石力学与工程学报,2005,24(2):183-194.
    [78]徐青,陈士军,陈胜宏.滑坡稳定分析剩余推力法的改进研究[J].岩土力学,2005,26(3):465-470.
    [79]边树兴,李克民,朱玉生.Sarma法中稳定性检验的分析及改进[J].矿冶,2004,13(2):14-16.
    [80]简文彬,姚环,焦述强等.漳州—龙岩高速公路石崆山高边坡稳定性评价[J].岩石力学与工程学报,2002,21(1):43-47.
    [81]张奇华,邬爱清,石根华.关键块体理论在百色水利枢纽地下厂房岩体稳定性分析中的应用[J].岩石力学与工程学报,2004,23(15):2609-2614.
    [82]谢全敏,朱瑞赓,程康.可疑关键块体成为真正关键块体的概率分析[J].武汉工业大学学报,1998,20(3):98-100.
    [83]肖诗荣.三峡工程地下厂房围岩关键块体研究[J].水文地质工程地质,2005,(3): 15-18.
    [84]张思俊,张广健.隧洞三维最大关键块体边界的求解[J].河海大学学报,1994,22(4):111-113.
    [85]李育超,凌道盛,陈云敏等.蒙特卡洛法与有限元相结合分析边坡稳定性[J]. 岩石力学与工程学报,2005,24(11):1933-1941.
    [86]王均星,王汉辉,吴雅峰.土坡稳定的有限元塑性极限分析上限法研究[J].岩石力学与工程学报,2004,23(11):1867-1873.
    [87]王汉辉,王均星,王开治.边坡稳定的有限元塑性极限分析[J].岩土力学,2003,24(5):733-738.
    [88]李爱兵.边坡中地下水渗流的边界元分析[J].矿业研究与开发,1994,14(1):29-35.
    [89]孙秀山,黄立新,刘应华等.二维正交各向异性结构弹塑性问题的边界元分析[J].复合材料学报,2005,22(3):156-161.
    [90]周焕林,牛忠荣,王秀喜等.正交各向异性位势问题边界元法中几乎奇异积分的解析算法[J].应用力学学报,2005,22(2):193-197.
    [91]郑书彦,李占斌,李甲平等.滑坡侵蚀离散元分析研究[J].岩石力学与工程学报,2005,24(12):2124-2128.
    [92]王涛,盛谦,陈晓玲.基于直接法节理网络模拟的三维离散单元法计算[J].岩石力学与工程学报,2005,24(10):1649-1653.
    [93]鲍鹏,姜忻良,崔奕.可变形体离散元模型[J].天津大学学报,2005,38(6):552-555.
    [94]Belytschko T, Lu Y Y, Gu L. Element-free Galerkin method[J]. Int J Num Meth Eng,1994,37:229-256.
    [95]Belytschko T,Krongauz Y,Organ D. Meshless methods:An overview and recent developments [J]. Comput Meth Appl Mech Eng,1996,139:3-7.
    [96]Sukumar N, Moran, Belytschko T. The nature element method in solid mechanics[J]. Int J Num Meth Eng,1998,43:839-887.
    [97]Cueto E, Doblare M, Gracia L. Imposing essential boundary conditions in the natural element method by means of density-scaled-Shapes [J]. Int J Num Meth Eng,2000,49:519-546.
    [98]Braun J, Sambridge M. A numerical method for solving partial differential equations on highly irregular evolving grids[J]. Nature,1995,376:655-660.
    [99]T.G.Sitharam,G.Madhavi Latha.Simulation of excavations in jointed rock masses using a practical equivalent continuum approach[J]. International Journal of Rock Mechanics and Mining Sciences,2002,39:517-525.
    [100]李仲奎,戴荣,姜逸明.FLAC-(3D)分析中的初始应力场生成及在大型地下洞室群计算中的应用[J].岩石力学与工程学报,2002,21(2):2387-2392.
    [101]朱继良,黄润秋.某水电站坝前堆积体稳定性的三维数值模拟分析[J].岩土 力学,2005,26(8):1318-1322.
    [102]华渊,朱赞成,周太全等.基于有限差分法的隧道新型支护结构稳定性分析[J].岩石力学与工程学报,2005,24(15):2718-2722.
    [103]F.Kirzhner, GRosenhouse. Numerical Analysis of Tunnel Dynamic Response to Earth Motions[J].SEISMIC ANALYSIS,2000,15 (3):249-258.
    [104]H.Hakami. Rock characterisation facility (RCF) shaft sinking - numerical computations using FLAC[J].International Journal of Rock Mechanics and Mining Sciences,2001,38:59-65.
    [105]WHITE D J, TAKE W A, BOLTON M D. Soil deformation measurement using particle image velocimetry(PIV)and puotogrammery [J]. Geotechnique, 2003,53(7):619-631.
    [106]OHSHIMA A, TAKADA N, MIKASA M. Strength anisotropy of clay in slope stability [C]. International Conference on Centrifuge Modeling. Taylor& Fran cis,1991,591-598.
    [107]MITECHELL R J. Matrix, suction and difusive transport in centrifuge models[J]. Canadian Geotechnical Journal,1994, (31):357-363.
    [108]FRYDMAN S, WEISBERG E. A study of centrifuge modeling of swelling soil[C]. Intemational Conference on Centrifuge Modeling. Taylor& Francis, 1991:113-120.
    [109]KIM M M, KO H Y Centrifugal testing of soil slope models[J]. Transport Research Record,1991, (2):7-14.
    [110]MARK C, GEMPERLINE D, HON Y Centrifuge model tests for ultimate bearing capacity of footing on step slopes in cohesionless soils[C].Proceedings of International Conference on Centrifuge Modeling. Taylor& Fran cis.1988: 203-221.
    [111]MU ZHANG & ZHANG J M. Centrifuge modeling of progressive failure of soil slope[C]. International Conference on Physical Modeling. Taylor& Francis,2006, (1):373-377.
    [112]STACEY T R. The stresses surrounding open-pit mine slopes[C]. Planning Open Pit M ines. Amsterdam:A. A Balkema,1970:199-207.
    [113]袁大祥,朱子龙,朱乔生.高边坡节理岩体地质力学模型研究[J].三峡大学学报,2001,23(3):193-212.
    [114]车新觉,邹竹荪,郭春茂.三峡工程船闸开挖高边坡稳定问题的静力地质力学模型实验研究[J].长江科学院院报,1986,(1):54-61.
    [115]潘亨永,何江达,张林强度储备法在岩质高边坡稳定性分析中的应用[J].四川联合大学学报(工学版),1998,2(1):13-18.
    [116]周维垣,杨若琼,杨强,等.锦屏一级水电站拱坝整体稳定仿真破坏分析和加固地基地质力学模型试验研究[R].北京:清华大学,2003.
    [117]陈欣,周维垣.锦屏双曲拱坝整体稳定分析[J].华北水利水电学院学报,2001,22(3):31-34.
    [118]周维垣,林鹏,杨强,等.锦屏高边坡稳定三维地质力学模型试验研究[J].岩石力学与工程学报,2008,27(5):893-901.
    [119]张嘎,王爱霞,牟太平,等.边坡破坏过程离心模型试验的应力位移场研究[J].岩土力学,2008,29(10):2637-2641.
    [120]朱维申,任伟中.船闸边坡节理岩体锚固效应的模型试验研究[J].岩石力学与工程学报,2001,20(5):720-725.
    [121]Vidar Kveldsvik, Amir M. Kaynia, Farrokh Nadim, et al. Dynamic distinct-element analysis of the 800 m high Aknes rock slope [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46 (4):686-698.
    [122]A. Giacomini, O. Buzzi, B. Renard, G.P. Giani. Experimental studies on fragmentation of rock falls on impact with rock surfaces [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):708-715.
    [123]Jae-Joon Song. Distribution-free method for estimating size distribution and volumetric frequency of rock joints [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):748-760.
    [124]W. Lawrence. A method for the design of longwall gateroad roof support [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4): 789-795.
    [125]L.A. Mihai, Mark Ainsworth. An adaptive multi-scale computational modelling of Clare College Bridge [J]. Computer Methods in Applied Mechanics and Engineering,2009,198(21):1839-1847.
    [126]Bruce D. Marsh, Neil M. Coleman. Magma flow and interaction with waste packages in a geologic repository at Yucca Mountain, Nevada [J]. Journal of Volcanology and Geothermal Research,2009,182 (1):76-96.
    [127]C. Callari, A. Abati. Finite element methods for unsaturated porous solids and their application to dam engineering problems [J]. Computers & Structures, 2009,87(7):485-501.
    [128]Amilton R. da Silva, Joao Batista M. Sousa Jr. A family of interface elements
    for the analysis of composite beams with interlayer slip [J]. Finite Elements in Analysis and Design, Volume 45, Issue 5, April 2009, Pages 305-314.
    [129]Guro Groneng, Bjorn Nilsen, Rolf Sandven. Shear strength estimation for Aknes sliding area in western Norway [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(3):479-488.
    [130]Mehmet Sari. The stochastic assessment of strength and deformability characteristics for a pyroclastic rock mass [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(3):613-626.
    [131]A. Taheri, K. Tani. Use of down-hole triaxial apparatus to estimate the mechanical properties of heterogeneous mudstone [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(8):1390-1402.
    [132]Ahad Bagherzadeh-Khalkhali, Ali Asghar Mirghasemi, Soheil Mohammadi. Micromechanics of breakage in sharp-edge particles using combined DEM and FEM [J]. Particuology,2008,6(5):347-361.
    [133]GW. Ma, X.M. An. Numerical simulation of blasting-induced rock fractures [J]. International Journal of Rock Mechanics and Mining Sciences,2008,45(6): 966-975.
    [134]Ana Ivanovi, Richard D. Neilson. Modelling of debonding along the fixed anchor length [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4):699-707.
    [135]W. Lawrence. A method for the design of longwall gateroad roof support [J]. International Journal of Rock Mechanics and Mining Sciences,2009,46(4): 789-795.
    [136]M.A. Meguid, H.K. Dang. The effect of erosion voids on existing tunnel linings [J]. Tunnelling and Underground Space Technology,2009,24(3): 278-286.
    [137]L. Cantieni, G Anagnostou. The interaction between yielding supports and squeezing ground [J]. Tunnelling and Underground Space Technology,2009, 24(3):309-322.
    [138]Thai Son Quang, Hassen Ghazi, Buhan de Patrick. A multiphase approach to the stability analysis of reinforced earth structures accounting for a soil-strip failure condition [J]. Computers and Geotechnics,2009,36(3):454-462.
    [139]Ernesto Villalba, Andrej Atrens. Hydrogen embrittlement and rock bolt stress corrosion cracking [J]. Engineering Failure Analysis,2009,16 (1):164-175.
    [140]Sheng-Hong Chen, Cheng-Hua Fu, Shahrour Isam. Finite element analysis of jointed rock masses reinforced by fully-grouted bolts and shotcrete lining [J]. International Journal of Rock Mechanics and Mining Sciences,2009, 46(1):19-30.
    [141]周维垣.高等岩石力学[M].北京:水利电力出版社,1990.
    [142]Goodman R E. Methods of Geological Engineering in Discontinuous Rocks [M]. West, New York:1976.
    [143]Bandis S C,Lumden A C,Baton N R.Fundamentals of Rock Joint Deformation [J]. Int J Rock Mech MinSci Geomech Abstr,1983,22:121-134.
    [144]朱伯芳.有限单元法原理与应用[M].北京:水利电力出版社,1979.
    [145]Brown E T. Strength models of rock with intermittent joints[J]. J. Soil Mech. Fonds D iv., Soc. Civ. Engrs.,1970,96 (9):1935-1949
    [146]Hungr D,Coates D F, Deformatility of Joints and its Relation to Rock Fundation Settlement [J]. Can.Geotech.J.1978,115:239-249.
    [147]王刚,李术才,王书刚,等.节理岩体大型地下洞室群稳定性分析[J].岩土力学,2008,29(1):261-268.
    [148]李术才.加锚断续节理岩体断裂损伤模型及其应用[博士学位论文D].武汉:中国科学院武汉岩土力学研究所,1996.
    [149]Farmer A. Stress distribution along a resin grouted anchor[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12:681-686.
    [150]何思明,李新坡.预应力锚杆作用机制研究[J].岩石力学与工程学报,2006,25(9):1876-1880.
    [151]Farmer I W, Holmberg A. Stress distribution along a resin grouted rock anchor[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1975,12:347-351.
    [152]Cai Y, Esaki T, Jiang Y J. An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J]. Tunnelling and Underground Space Technology,2004,19:607-618.
    [153]Steen M, Valles J L. Interface bond conditions and stress distribution in a two-dimensionally reinforced brittle-materix composite[J]. Composites Science and Technology,1998,58:313-330.
    [154]Mylonakis G Winkler modulus for axially loaded pile[J]. Geotechnique,2001, 51(5):455-461.
    [155]李万喜,刘建民.全长黏结式注浆锚杆抗拔力分析[J].探矿工程,2004,(6):6-8.
    [156]尤春安.全长黏接式锚杆的受力分析[J].岩石力学与工程学报,2000,19(3):339-341.
    [157]刘明贵,岳向红.基于小波神经网络的锚杆锚固质量分析[J].岩石力学与工程学报,2006,25(1):119-125.
    [158]Windsor C R. Rock reinforcement systems[J]. International Journal of Rock Mechanics and Mining Sciences,1997,34(6):919-951.
    [159]Freeman T J. The behavior of fully-bonded rock bolts in the fielder experimental tunnel[J]. Tunnels and Tunneling,1978, (7):37-40.
    [160]朱焕春,荣冠,肖明,等.张拉荷载下全长黏结锚杆工作机制试验研究[J].岩石力学与工程学报,2002,21(3):379-384.
    [161]朱浮声,郑雨天.全长黏结式锚杆的加固作用机制分析[J].岩石力学与工程学报,1996,15(4):333-337.
    [162]岳向红,刘明贵,李祺.锚杆检测技术研究进展[J].土工基础,200519(3): 83-85.
    [163]姚显春,李宁,陈蕴生.隧洞中全长黏结式锚杆的受力分析[J].岩石力学与工程学报,2005,24(13):2271-2274.
    [164]曾华明,李祺,岳向红.张拉荷载下砂浆锚固岩石锚杆的力学分析[J].岩石力学与工程学报,2006,25(S2):3983-3987.
    [165]Sun X. Grouted rock bolt used in underground engineering in soft surrounding rock or in highly stressed regions [A]. In:Stephansson ed. Proceedings of the International Symposium on Rock Bolting[C]. Rotterdam:A. A. Balkema, 1984.93-99.
    [166]蒋宇静,王刚,李博,等.岩石节理剪切渗流耦合试验及分析[J].岩石力学与工程学报,2007,26(11):2254-2259.
    [167]刘远明,夏才初.非贯通节理岩体直剪试验研究进展[J].岩土力学,2007,28(8):1719-1724.
    [168]许万忠,彭振斌,胡毅夫,等.岩体边坡锚注加固模拟试验研究[J].中国铁道科学,2006,27(4):6-10.
    [169]杨松林,张建民,黄启平.节理岩体蠕变特性研究[J].岩土力学,2004,25(8):1225-1228.
    [170]白世伟,任伟中,丰定祥,等.共面闭合断续节理岩体强度特性直剪试验研究[J].岩土力学,1999,20(2):10-16.
    [171]尹显俊,王光纶,张楚汉.岩体结构面切向循环加载本构关系研究[J].工程力学,2005,22(6):97-104.
    [172]T H Huang, C S Chang, C Y Chao. Experimental and mathematical modeling for fracture of rock joint with regular asperities [J]. Engineering Fracture Mechanics,2002,69:1977-1996.
    [173]J G Wang, Y Ichikawa, C F Leung. A constitutive model for rock interfaces and jonts [J]. International Journal of Rock Mechanics and Mining Sciences, 2003,40:41-53.
    [174]G Grasselli, P Egger. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters [J]. International Journal of Rock Mechanics and Mining Sciences,2003,40:25-40.
    [175]M Souley, F Homand, B Amadei. An extension to the Saeb and Amadei constitutive model for rock joints to include cyclic loading paths [J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,32(2):101-109.
    [176]M M Zaman, C S Desai, E C Drumm. Interface model for dynamic soil-structure interaction [J]. Journal of Geotechnical Engineering,1984, 110(9):1257-1273.
    [177]GANGI A F. Variation of whole and fractured porous rock permeability with confining pressure[J]. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts,1978,15(5):249-257.
    [178]周枝华.岩石单一节理剪切过程应力与渗流特性数值模拟[硕士学位论文][D].上海: 上海交通大学,2005.
    [179]杜守继,职洪涛,周枝华.岩石节理剪切过程中应力与渗流特性的数值模拟[J].岩石力学与工程学报,2008,27(12):2473-2481.
    [180]DU S J, ESAKI T, MITANI Y, et al. A numerical simulation and visualization of shear process of rock masses by using geographic information system[C]. Proceedings of the 38th U.S. Rock Mechanics Symposium. Washington, D. C., USA:2001:895-900.
    [181]Itasca Consulting Group. Theory and Background [Z].Minnesota:Itasce Consulting Group,2002.
    [182]Itasca Consulting Group. User's Mannal [Z]. Minnesota:Itasce Consulting Group,2002.
    [183]Itasca Consulting Group. Command Reference [Z]. Minne-sota:Itasce Consulting group,2002.
    [184]沈金瑞,林杭.多组节理边坡稳定性FLAC3D数值分析[J].中国安全科学学报,2007,17(1):29-33.
    [185]蓝航.基于FLAC-(3D)的边坡单元安全度分析及应用[J].中国矿业大学学报,2008,37(4):570-574.
    [186]宋克勇,王延军,刘保松.基于FLAC_3D_的路基边坡稳定性数值分析[J].水利科技,2008,(1):37-40.
    [187]苗胜军,李长洪,佟慧超.水厂铁矿边坡开挖FLAC_3D_数值模拟与分析[J].有色金属,2008,60(1):29-34.
    [188]华渊,朱赞成,周太全,等.基于有限差分法的隧道新型支护结构稳定性分析[J].岩石力学与工程学报,2005,24(15):2718-2722.
    [189]N. Benmebarek, S. Benmebarek, R. Kastner. Numerical studies of seepage failure of sand within a cofferdam [J]. Computers and Geotechnics,2005, 32(4):264-273.
    [190]C. B. Kooi, A. Verruijt. Interaction of circular holes in an infinite elastic medium [J]. Tunnelling and Underground Space Technology,2001,16 (1): 59-62.
    [191]X. Chen, C. P. Tan, C. M. Haberfield. Numerical evaluation of the deformation behaviour of thick-walled hollow cylinders of shale [J]. International Journal of Rock Mechanics and Mining Sciences,2000,37 (6):947-961.
    [192]F. Kirzhner, G Rosenhouse. Numerical analysis of tunnel dynamic response to earth motions [J]. Tunnelling and Underground Space Technology,2008,15 (3):249-258.
    [193]廖秋林,曾钱帮,刘彤等.基于ANSYS平台复杂地质体FLAC3D模型的自动生成[J].岩石力学与工程学报,2005,24(6):1010-1013.
    [194]郭映龙,叶金汉.节理岩体锚固效应研究[J].水利水电技术,1992,(7):23-28.
    [195]孙建生,涌井哲夫,樱井春辅.一个新的节理岩体力学分析模型及其应用[J].岩石力学与工程学报,1994,13(3):193-204.
    [196]朱维申,邱祥波,李术才等.损伤流变模型在三峡船闸高边坡稳定分析的初步应用[J].岩石力学与工程学报,1997,16(5):6-12.
    [197]国家自然科学基金委员会工程与材料科学部,学科发展战略研究报告(2006年-2010年)建筑、环境与土木工程(土木工程卷)[M],科学出版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700