热负荷对动物模型慢性心力衰竭血流动力学影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨热负荷对动物模型慢性心力衰竭血流动力学的影响及其可能机制。
     方法:实验分两部分。第一部分:热负荷对动物慢性心力衰竭血流动力学的影响的实验研究。此部分分为两个实验:1.热负荷对动物慢性心力衰竭血流动力学的影响。15只新西兰兔冠状动脉结扎建立慢性心衰模型,随机分为热负荷组(n=5)、对照组(n=5)、假手术组(n=5),8周后测定其血流动力学变化,然后将热负荷组动物放置在42℃高温仓中,待肛温达到42℃,维持15~20min,热负荷结束后,将动物移置到常温环境下,分别测定热负荷终止后的2、4、8、24h的血流动力学变化情况。2.观察热负荷对动物慢性心力衰竭血浆HSP70与血流动力学的关系。10只新西兰兔作冠状动脉结扎(CAL),另外5只仅作开胸,不作结扎。冠脉结扎8周后,10只兔随机分为对照组(n=5)和热负荷组(n=5),并测定血流动力学、血浆HSP70浓度。然后将热负荷组动物放置在环境温度42℃,待肛温达到42℃,维持15~20min,热负荷结束后,将动物移置到常温环境下,分别测定热负荷终止后的2、4、8、24h的血流动力学及血浆HSP70浓度。第二部分:热负荷保护作用的细胞信号转导机制研究。25只新西兰兔作冠状动脉结扎(CAL),另外5只仅作开胸,不作结扎。冠脉结扎8周后,25只兔随机分为对照组(n=5)热负荷组(n=5),热负荷+左旋硝基精氨酸甲酯(L-NAME)组(n=5),常温+L-NAME组(n=5),
    
    常温十左旋精氨酸(L一Arg)组(n=5).并测定血流动力学、血浆NOS、
    。GMP浓度。将心衰动物放置在环境温度42℃,待肛温达到42℃,维持巧一
    20min,热负荷结束后,将动物移置到常温环境下,分别测定热负荷终止后
    的2、4、8、24h的血流动力学及血浆NOS、eGMPO
     结果:第一部分:1.所有手术组动物8周后血流动力学与假手术组
    血流动力学相比出现恶化。2.热负荷组24h后与对照组相比,HR、LVEDP
    出现明显降低,+dp/d tmax有显著增加。3.结扎8周后心衰组血浆HSP70
    浓度高于开胸组高。4.热负荷慢性心衰24h后血浆HSP70比对照组、热
    负荷前都有显著升高。第二部分:1.所有手术组动物血流动力学与假手
    术组血流动力学相比也出现同样恶化。2.热负荷组24h后血流动力学与
    对照组比较有改善作用;热负荷+L一NAME组血流动力学与对照组比较无
    改善作用;常温+L一Arg组血流动力学与对照组比较有改善。3.手术组8
    周后血浆NOS、cGMP比假手术组高。4.热负荷慢性心衰24h后血浆NOS、
    cGMP比对照组、热负荷前显著升高,常温组+L一Arg血浆NOS、cGMP高
    于对照组。
     结论:热负荷对动物慢性心力衰竭有保护作用,主要表现在改善血
    流动力学,升高血浆HSP7O等方面,通过分析我们推断血流动力学的改
    善与升高的HSP7O有关,其次热负荷直接作用血管使血液重新分布,降
    低了心脏的前后负荷。热负荷慢性心衰能明显提高NOS\cGMP血浆浓度,
    cGMP在热负荷慢性心衰有重要意义,它是NOS发挥作用重要中介物质.
    热负荷改善动物慢性心力衰竭血流动力学机制之一,热负荷激活
    NOS一NO一cGMP信号转导通路。另外在本次实验中,我们发现动物出现慢
    性心衰后机体有大量NOS、cGMP表达,他们的生成在一定程度上缓解心
     一6-
    
    衰症状。
Objective:The Observe influence about heat stress on animals of chronic heart failure hemodynamic and their mechanism.
    Method:The experiment consisted of two parts.The first part:the observe heat stress on animal of chronic heart failure hemodynamic.This part included two experiments:1.observe influence of heat stress on animal of chronic heart failure hemodynamic. 15 New Zealand rabbits coyonary artery ligated leads to chronic heart failure,they were randomly divided into 3 groups :heat stress group,normal temperature group and sham group,examinating hemodynamic variation after eight weeks, and then animals of heat stress group were laid in high temperature room(42?), till rectal temperature of animals is 42 centigrade and they were maintained 15~ 20 minutes,animals of heart failure were diverted to normal temperature environment after heat stress finish and examination hemodynamic variation at 2.4.8.24 hour .2.To observe relationship between plasm heat shock protein 70 and hemodynamic after heat stress on animal of chronic heart failure. 10 Zew Zealand rabbits coronary artery were ligated ,5 rabbits coronary artery were no
    t ligated but chest was operated open.After coronary artery ligated 8 weeks, 10 rabbits were randomly divided into normal temperature group(n=5) and heat stress group(n=5), and examination hemodynamic and plasm heat shock protein(HSP70) concentration.Animals of HS group are exposed thermal enviroment(42癈),they are maintained 15~20 minutes till their rectal temperature is 42 centigrade,animals of HS group are diverted normal temperature environment after HS finish,separately examination hemodynamic and plasm HSP70 concentration at 2,4% 8 , 24 hour .The second part:investigation of mechanism of signal transduction during heat stress protective function.25 New Zealand rabbits coronary artery are ligated, 5 rabbits coronary artery were not ligated ,but chest was operated open.After coronary artery ligated eight weeks ,25 rabbits are randomly divided into 5 groups:normal group(n=5),HS group(n=5), HS and NG-nitro-L.arginine methylester(L-NAME)group(n=5),normal temperature and L-NAME
    
    
    group(n=5), normal temperature and left arginine (L-Arg)group(n=5). Determining hemodynamic and dection plasm of nitric oxide synthsise(NOS) and cyclic guanosine monophosphate (cGMP) concentration.Animals of HS are laid hyperthmia environment(42), they are maintained 15~20 minutes till their rectal temperature is 42 centigrade, animals of HS group are placed normal temperature environment after HS finish,separately examination hemodynamic and plasm NOS and cGMP concentration at 2 4,8, 24 hour .
    Result:The first part: 1 .Compared with hemodynamic worse in all operation groups and sham group after eight weeks.2.Compared with heart rate,left ventricular end diastolic pressure(LVEDP) decrease significantly in HS group and normal temperature group after heat exposure 24 hour.+dp/dtmax increased significantly.3.Compared with plasm HSP70 concentration of operation group is more higher than sham group after eight weeks.4.HSP70 concentration of HS group is more increaser than normal temperature group and HS ago after heat stress on CHF 24 hr.The second part: 1. Compared with hemodynamic worse in all operation groups and sham group after eight weeks.2.Compared with hemodynamic improvement significantly in HS group and normal temperature group after heat exposure 24 hr;there is not variation about hemodynamic of HS and L-NAME group and normal temperature group after heat stress;Hemodynamic of normal and L-Arg group is improvement than normal temperature group. 3.Plasm NOS and cGMP concentration of CHF animals are higher than sham groupACompared with NOS and cGMP increased significantly in HS CHF group than normal temperature group and HS ago after HS 24 hr,NOS and cGMP concentration of normal and L-Arg group is higher than normal temperature group.
    Conclusiomthere is protective function about heat stress on animals of CHF,chief show hemodynamic of CHF is improvement ,plasm HSP70 concentration is augument and so on, by analysis w
引文
1 Yamshita N, Hoshida S, Nishida M, et al. Time course of tolerance to ischemia reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart .J Mol Cell Cardiol, 1997, 29:1815-1821.
    2 Hotchkiss R, Nunnally I, Linduist S, et al. Hyperthermia protects mice against the lethal effects of endotoxin.Am J Physiol, 1993, 265: R1447-R1457.
    3 Joyeux M, Godin-Ribuot D, Patel A. Infarct size-reducing effect of heat stress and alphal adrenoceptors in rats. Br J Pharmacol. 1998, 125(4):645-50.
    4 Richard V, Laude K, Artigues C. Heat stress increases endothelium-dependent relaxations and prevents reperfusion-induced endothelial dysfunction. Clin Exp Pharmacol Physiol. 2002, 29(11):956-62.
    5 Kanwar S, Kubes P. Nitric oxide is an antiadhesive molecule for leukocytes.New Horizons, 1995;3(1):93-104.
    6 Patel HH, Hsu A, Gross GJ. Attenuation of heat shock-induced cardioprotection by treatment with the opiate receptor antagonist naloxone. Am J Physiol Heart Circ Physiol. 2002 Jun;282(6):H2011-7.
    7 Schultz JJ, Hsu AK,Gross GJ.Cir Res. 1996,78:1100-1104.
    8 Li YJ, Song QJ, Xiao J. Calcitonin gene-related peptide: an endogenous mediator of preconditioning. Acta Pharmacol Sin. 2000 Oct;21(10):865-9.
    9 Joyeux M, Godin Ribuot D, Ribuot C. Resistance to myocardial infarction induced by heat stress and the effect of ATP-sensitive potassium channel blockade in the rat isolated heart. Br J Pharmacol. 1998 Mar; 123(6): 1085-8.
    10 Knowlton AA, Grenier M, Kirchhoff SR, et al. Phosphorylation at tyrosine-524 influences nuclear accumulation of HSP72 with heat stress.Am J Physiol Heart Circ Physiol.2000 Jun;278(6):H2143-9。
    11 Gray CC, Amrani N, Yacoub MH, et al.Heat stress proteins and myocardial protection: experimental model or potential clinical tool?Int J Biochem Cell Biol. 1999 May ;31(5):559-73.
    12 Arnaud C, Godin-Ribuot D, Bottari S. iNOS is a mediator of the heat stress-induced preconditioning against myocardial infarction in vivo in the rat. Cardiovasc Res. 2003 Apr 1;58(1):118-25.
    13 Arnaud C, Laubriet A, Joyeux M. Role of nitric oxide synthases in the infarct size-reducing effect conferred by heat stress in isolated rat hearts.
    
    Br J Pharmacol. 2001 Apr; 132(8): 1845-51.
    14 Sammut IA, Jayakumar J, Latif N, Heat stress contributes to the enhancement of cardiac mitochondrial complex activity. Am J Pathol. 2001 May; 158(5): 1821-31.
    15 Jayakumar J, Smolenski RT, Gray CC, Effects of heat stress on metabolism of high-energy phosphates. Comparison of normothermic and hypothermic ischemia. J Cardiovasc Surg (Torino). 1999 Aug; 40(4): 481-6.
    16 Tekin D, Xi L, Zhao T, Tejero Taldo MI, et al.Mitogen-activatedprotein kinases mediate heat shock-induced delayed protection in mouse heart.Am J Physiol Heart Circ Physiol. 2001 Aug; 281(2): H523-32.
    17 Tan B, He SY, Deng HW, Li YJ. Effect of quercetin on adhesion of platelets to microvascular endothelial cells in vitro. Acta Pharmacol Sin 2001 Sep;22(9):851-856.
    18 Patel HH, Hsu A, Gross GJ. Cardioprotection is strain dependent in rat in response to whole body hyperthermia. Am J Physiol Heart Circ Physiol. 2001 Mar;280(3):H 1208-14.
    19 Hutter, MM, Sievers RE, Barbosa V, and Wolfe CL. Heat shock protein induction in rat hearts: a direct correlation between the amount of heat-shock protein induced and the degree of myocardial protection. Circulation 89: 355-360, 1994.
    20 Qian YZ, Shipley JB, Levasseur JE, Kukreja RC. Dissociation of heat shock protein expression with ischemic tolerance by whole body hyperthermia in rat hearts. J Mol Cell Cardiol 30:1163-1172, 1998。
    21 Currie, RW, Tanguay RM, and Kingma JG, Jr. Heat-shock response and limitation of tissue necrosis during occlusion/reperfusion in rabbit hearts. Circulation 87:963-971, 1993
    22 Yamashita N, Hoshida S, Nishida M, et al. Time course of tolerance to ischemia-reperfusion injury and induction of heat shock protein 72 by heat stress in the rat heart. J Mol Cell Cardiol. 1997 Jul;29(7): 1815-21.
    23 Kregel KC, Moseley PL. Differential effects of exercise and heat stress on liver HSP70 accumulation with aging. J Appl Physiol 80: 547-551, 1996。
    24 Gowda A, Yang CJ, Asimakis GK, et al. Cardioprotection by local heating: improved myocardial salvage after ischemia and reperfusion. Ann Thorac Surg. 1998 May;65(5):1241-7.
    25 Joyeux M, Arnaud C, Godin-Ribuot D et al. Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress
    
    preconditioning in isolated rat hearts. Cardiovasc Res. 2002 Aug 15;55(3):619-25.
    26 赵卫,董耀荣,胡婉英,张键元。鹿角方对实验性心力衰竭血流动力学影响。中国实验方剂学杂志。1998,8,4(4):3-6.
    27 Vogt S, Troitzsch D, Abdul-Khaliq H, et al. Improved myocardial preservation with short hyperthermia prior to cold cardioplegic ischemia in immature rabbit hearts. Eur J Cardiothorac Surg. 2000 Aug; 18(2):233-40.
    28 Song QJ, Li YJ, Deng HW. Early and delayed cardioprotection by heat stress is mediated by calcitonin gene-related peptide. Naunyn Schmiedebergs Arch Pharmacol. 1999 Jun;359(6):477-83.
    29 Comelussen RN, Gamier AV, van der Vusse GJ,et al. Biphasic effect of heat stress pretreatment on ischemic tolerance of isolated rat hearts. J Mol Cell Cardiol. 1998 Feb;30(2):365-72.
    30 Kontos MC, Shipley JB, Kukreja RC. Heat stress improves functional recovery and induces synthesis of 27- and 70-kDa heat shock proteins without preserving sarcoplasmic reticulum function in the ischemic rat heart. J Mol Cell Cardiol. 1996 Sep;28(9): 1885-94.
    31 Ang D, Liberek K, Akowyra D, et al. Biological role and regulation of universally conserved heat shock protein.J Biol Chem, 1991,266:24233.
    32 CKamradt MC, Chen F, Cryns VL. The small heat shock protein alpha B-crystallin negatively regulates cytochrome c- and caspase-8-dependent activation of caspase-3 by inhibiting its autoproteolytic maturation. J Biol Chem, 2001, 276:16059-16063.
    33 Gabai VL,Kabakov AE.Rise in heat shock protein level confers tolerance to energy deprivation.FEB S Lett, 1993,327:247.
    34 Polla BS,Kantengwa S,Francois D.Mitochondria are selective targets for the protective effects of heat shock against oxidative injury.Proc Natl Acad Sci USA,1996,93:6458.
    35 Dlkeda Y, Biro S, Kamogawa Y, et al. Repeated thermal therapy upregulates arterial endothelial nitric oxide synthase expression in Syrian golden hamsters. Jpn Circ J, 2001,65(5):434-8.
    36 Eells JT, Henry MM, Gross GJ, et al. Increased mitochondrial K~+-ATP channel activity during chronic myocardial hypoxia. Circ Res, 2000, 87:915-921.
    37 Hasegawa T, Matsuzaki A, Ando H, et al. Effect of the depth of water bathing on hemodynamics in patients with myocardial infarction [in Japanese]. Ther Res,. 1989,10:204-210.
    
    
    38 Ewing JF, Raju VS, Maines MD. Induction of heart heme oxygenase-1 (HSP32) by hyperthermia: possible role in stress-mediated elevation of cyclic 3':5'-guanosine monophosphate. J Pharmacol Exp Ther. 1994 Oct;271(1):408-14.
    39 Konopatskaya O, Whatmore J L, Tooke J E, Shore A C. Insulin and lysophosphatidylcholine synergistically stimulate NO-dependent cGMP production in human endothelial cells. Diabet Med. 2003 Oct;20(10): 838-45.
    40 Hosogai N, Takakura S, Manda T, Mutoh S. Enzyme activities of the nitric oxide-cGMP pathway in corpus cavemosum isolated from middle-aged rats. Eur J Pharmacol. 2003 Jul 18;473(1):65-70.
    41 Payne JA, Reckelhoff JF, Khalil RA. Role of oxidative stress in age-related reduction of NO-cGMP-mediated vascular relaxation in SHR. Am J Physiol Regul Integr Comp Physiol. 2003 Sep;285(3):R542-51.
    42 Kobusiak-Prokopowicz M, Swidnicka-Szuszkowska B, Mysiak A. Effect of digoxin on atrial natriuretic peptide (ANP), brain natriuretic peptide (BNP) and cyclic 3', 5'-guanosine monophosphate (cGMP) in patients with chronic congestive heart failure。 Pol Arch Med Wewn. 2001 Jun; 105(6):475-82.
    43 张贵生,金德山,李建华,等。CHF患者cAMP cGMP和NE ANF的变化及临床意义。山西医药杂志1997,10,26(5):399-401
    44 Garbers D I, Lowe D G.. Guanylyl cyclase receptors, J Biol Chem,1994, 269(49):30741.
    45 Balligand SL,Ungureanu-Longrois D, Simmons WW et al. Cytokine inducible nitric oxide synthase (iNOS)expression in cardiac myocytes. J Biol Chem, 1994:269:27580-8.
    46 Hu CM, Kang J J, Lee CC, Li CH, Liao JW, Cheng YW. Induction of vasorelaxation through activation of nitric oxide synthase in endothelial cells by brazilin. Eur J Pharmacol. 2003 May 2;468(1):37-45.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700