基于GIS技术的区域滑坡分形特征分析与危险性评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
滑坡是一种常见的地质灾害,具有区域性、群发性、多发性、危害性极大的特点,常常毁坏工矿、城镇、村庄、农田及交通通讯设施,甚至阻断江河或毁坏已建的水利工程,造成重大的人员伤亡和财产损失。我国是一个多山区的国家,滑坡地质灾害广泛存在且发生频繁。因此滑坡灾害问题与人们的生存环境息息相关,提高滑坡灾害防治研究水平,对工程安全、环境保护和减灾防灾具有重要的理论和工程实际意义。
     三峡库区地形地质条件复杂,年降雨量大且集中,滑坡发生频率高,灾情严重,具有区域性、群发性和多发性特点。尤其是20世纪80年代以来,大规模滑坡进入活跃期,造成人民生命财产的重大损失。三峡库区地质灾害不仅危及居民的生命财产安全,而且破坏房屋、道路、供水供电管网、桥涵、码头等各类建筑物,毁坏耕地和植被,影响各项工程建设。有的滑坡快速入江造成涌浪,危及附近的船只和村镇,堵塞航道。由此可见,以滑坡为主的地质灾害已成为影响三峡水库移民工程、航道与生态环境安全的重大问题。因此,很有必要深入开展三峡库区滑坡危险性评价研究工作,最大限度地减少库区滑坡灾害造成的损失,保护人民生命财产、航运及移民工程安全,保障水库正常运行,更好地促进社会经济可持续发展。
     滑坡的形成和活动过程存在着复杂的非线性的相互作用。研究滑坡动态演化的非线性特征,传统的理论和方法受到极大限制。近年来,分形理论的发展为研究自然界的复杂现象带来了新的方法,特别是在地震研究领域得到了较快的发展,但在滑坡地质灾害研究领域中的应用才刚刚起步。在滑坡分形研究方面还存在以下问题需要进一步研究解决:
     (1)目前的研究主要集中于滑坡边界轨迹及空间分布的分形特征方面,对于滑坡的形成条件和诱发因素(如地形地貌、水系、断裂构造等)的分形特征方面的研究则明显不足,而对滑坡的形成条件和诱发因素的研究将有助于更好地揭示滑坡的形成条件和演化规律,从而更好地指导防灾减灾工作。
     (2)目前的研究还基本上局限于对滑坡分形特征的简单描述,缺乏对滑坡分形特征与滑坡稳定性之间关系的深入研究,滑坡分形特征方面的研究结果还不能有效地应用于区域滑坡危险性评价研究工作。
     区域滑坡灾害危险性评价一直是国际上倡导和推广的减灾防灾有效途径之一,近年来成为滑坡灾害研究的热点之一。但是,由于滑坡的孕育发生受控于多种自然与人为因素的影响,确定这些因素与滑坡危险性之间的因果关系比较复杂,且单一的定量化评价方法的局限性直接影响到评价结果的可靠性和准确性,从而限制了它们在区域滑坡危险性分析方面进一步的推广应用。因此,科学、有效地实现区域滑坡危险性分析的关键技术和方法是目前滑坡研究的热点,也是难点之一,在区域滑坡危险性评价研究还存在以下两个主要问题需要进一步研究解决:
     (1)区域滑坡危险性评价指标体系的确定方法。在区域滑坡危险性分析评价研究中,发现识别导致斜坡失稳、引起滑坡的因素是一项非常重要的基础性工作,合理选择评价指标对评价结果的准确性具有决定性控制作用。但是,目前采用的方法都没有很好地解决评价指标的定量选取问题,没有定量分析评价各影响因素优劣的指标和方法,只能靠评价者的经验选取,具有较大的主观随意性,相应地影响了区域滑坡危险性分析评价结果的客观正确性;同时,整个评价模型是否最优也无法检验。因此,如何客观定量地选取确定合理的评价指标体系,仍然是一个亟待解决的关键问题。
     (2)区域滑坡危险性评价指标的权重取值。在区域滑坡危险性分析研究中,评价指标权重的确定也是非常重要的基础工作,它同样直接关系到区域滑坡危险性分析评价质量的好坏以及评价精度的高低。评价指标既有定量指标,也有定性指标,并且评价指标数量往往较大,这就给评价指标的权重的确定带来了很大困难。因此,滑坡系统评价指标权重的确定也一直是困扰区域滑坡危险性分析研究的一个难题。
     本文的主要研究成果和获得的主要研究结论有以下几个方面:
     (1)研究了滑坡体的几何形态和空问分布等方面的分形特征,研究了地形地貌、水系及断裂构造等滑坡影响因素的分形特征。
     (2)利用变维分形方法研究了滑坡分布与影响因素的关系。
     利用变维分形方法研究了滑坡分布与影响因素的关系。研究表明,滑坡的空间分布具有变维分形的特征。滑坡的空间分布与坡度、地层、高程及河流缓冲区均呈二阶累计和分形分布,说明滑坡的空间分布与这四个影响因素的变维分形特征比较复杂,坡度、地层、高程及河流缓冲区这四个因素对于滑坡发育的影响程度较高。滑坡的空间分布与坡向呈一阶累计和分形分布,且其分维值较小,说明滑坡的空间分布与坡向因素的变维分形特征相对比较简单,坡向对于滑坡发育的影响较小。这从分形的角度揭示了滑坡发育分布与各影响因子之问的定量关系,为进一步进行区域滑坡危险性分析评价因子的选取提供了分形学依据。
     (3)综合考虑岩石类型和构造(地层岩性、断裂构造)、地形地貌(坡度、坡向、高程、沟壑分布等)、水文地质条件(归一化植被指数)及破坏动力(河流缓冲区)等影响因素,并结合滑坡影响因素的分形特征(小流域地形地貌分维值),建立了研究区区域滑坡危险性评价指标体系。
     (4)采用证据权法对研究区进行了区域滑坡危险性评价研究。
     采用证据权法客观定量地分析评价了各种影响因子对滑坡发育的影响程度,并据此进行了区域滑坡危险性评价因子(证据因子)的选择及区域滑坡危险性定量评价。计算结果表明,研究区内比较重要的滑坡影响因素包括河流缓冲区、高程、岩性、断裂交汇部位缓冲区、沟壑分布及小流域地形地貌分维值等。
     研究区内不同证据因子的权重值存在较大的差异,例如,地层和断裂交汇部位的权重值虽然较大,但是比河流缓冲区的权重值小。河流缓冲区的权重值最大,说明在研究区内河流侵蚀作用对滑坡的发育起最主要作用,这与研究区内滑坡主要沿长江两岸分布这一事实相吻合。高程对滑坡的发育也有一定的影响。坡向及植被的发育程度对滑坡的发育也有一定的影响,但影响相对较小。
     同一种证据因子的权重值也会因其分级(分类)不同也存在较大的差异。例如,在不同地层中,三叠系下统嘉陵江组(Tjs)、三叠系中统巴东组(Tb)、侏罗系下统桐竹园组(Jt)、侏罗系中统聂家山组(Jn)及二叠系与石炭、泥盆、志留系的分界线取500m的缓冲区的权重值较大,这与宏观地质调查的研究结果是一致的。又如,计算结果表明,在其它条件相同的情况下,距离河流越近,河流对边坡的侵蚀作用就越明显,滑坡越发育,这与目前滑坡的分布规律是一致的。
     采用证据权法对研究区进行了区域滑坡危险性评价研究。研究结果表明,在研究区内主要有三个区域发生滑坡的危险性较大。一个区域为泄滩-黄腊石沿长江一带,该区域有黄腊石滑坡、大坪滑坡和范家坪滑坡等重要滑坡。该段广泛发育有三叠系中统巴东组砂泥岩互层,软硬岩石之间的界面是地下水活动的场所,为滑坡发育提供了良好的物质基础。另外,地表平均坡度25-37°,也为滑坡发育提供了良好的地貌临空条件。另一个区域为香溪一带,该区域有香溪滑坡等重要滑坡,该地段为香溪和长江交汇处,断裂构造比较发育,且发育软硬相间的岩石,为滑坡发育提供了良好的物质基础。第三个区域为新滩-链子崖一带,在该区域有新滩滑坡、链子崖崩塌危岩体、野猫面滑坡及猴子岭滑坡等大型滑坡。滑坡直接受九湾溪、仙女山断裂的控制。
     研究区区域滑坡危险性评价分析结果与现有滑坡的分布情况比较吻合,说明分析结果具有较好的精度和质量。研究结果表明,证据权法作为一种数据驱动方法,可以较好地避免区域滑坡危险性评价因子选择及权重赋值的主观性,因此具有较高的评价精度。
     (5)运用逻辑回归法、模糊逻辑方法及模糊证据权法对研究区进行了区域滑坡危险性评价研究。分析结果与现有滑坡的分布情况比较吻合。采用几种不同的数学模型的分析结果都取得较好的应用效果,并可以相互补充和印证。
     本文创新点主要体现在:
     (1)采用多种分形方法,从滑坡体的几何形态、空间分布以及地形地貌、水系及断裂构造等滑坡影响因素等方面,系统研究了区域滑坡分形特征。
     (2)利用变维分形方法研究了滑坡分布与影响因素的关系,从分形的角度揭示了滑坡发育分布与各影响因子之间的定量关系,为进一步建立区域滑坡危险性评价指标体系提供了分形学依据。
     (3)综合考虑岩石类型和构造(地层岩性、断裂构造)、地形地貌(坡度、坡向、高程、沟壑分布等)、水文地质条件(归一化植被指数)及破坏动力(河流缓冲区)等影响因素,并结合滑坡影响因素的分形特征(小流域地形地貌分维值),建立了研究区区域滑坡危险性评价指标体系。
     (4)分别运用数据驱动模型(逻辑回归法、证据权法)、知识驱动模型(模糊逻辑方法)及数据与知识驱动模型(模糊证据权法)对研究区进行了区域滑坡危险性评价研究。分析结果与现有滑坡的分布情况比较吻合。采用几种不同的数学模型的分析结果都取得较好的应用效果,并可以相互补充和印证,从而提高区域滑坡危险性评价的精度。
Landslide is a common geological disaster occurring regionally and frequently. It usually produces serious damages to factories, mines, cities and towns, villages, farmlands, transportation, communication, and even blocks rivers and destroys the water conservancy projects It occurred regionally and frequently in the mountainous areas of China. Therefore, it is of importance and significance to study the landslide so as to improve the landslide prevention and control, and to guarantee the engineering safety and the environmental protection.
     Landslide is be prone to occur and to cause natural hazards in the Three Gorges reservoir region, where there have varied topographies, complicated geological structures, and heavy annual rainfall. Especially since 1980's, the landslides occur more frequently to cause serious damages to the local communities. The landslide hazards often destroy houses, road, hydraulic supply lines, power-supply systems, bridges, docks, factories, mines, cities and towns, villages, farmlands, and vegetations. Some landslides swell damages to boats and villages nearby and even block up the rivers. In this way, the landslide hazards are the important issue to influence the settlement project, shipping and ecological environment in the Three Gorges reservoir region. It is thus important to study the landslide susceptibility assessment in the area to reduce the landslide hazards, and to ensure the reservoir safety.
     The landslide is a kind of complicated phenomenon with nonlinear inter-reaction. The traditional theories and methods are difficult to study the uncertainty characteristics of dynamic evolution of the landslide. Recently, the fractal theory has become a new method to study such complicated phenomenon as earthquake and landslide. However, there are still some key issues as below needed to further study.
     (1) The previous studies mainly focused on the fractal characteristics of geometric shape and spatial distribution of the landslide, but the knowledge in occurring conditions and inducing factors (landform, drainage network, and fault, etc.) of landslide are still unclear. Such knowledge is quite important to help to indicate the occurring conditions and evolution regulation to prevent and control the landslide hazards.
     (2) The previous studies are limited to simple description of the fractal characteristics of the landslide and have not obtained full understanding of the relationship between the fractal characteristics and the stability of the landslide. Their research results on the fractal characteristics of the landslide are unable to be applied to landslide susceptibility assessment effectively.
     The landslide susceptibility assessment is one of the effective approaches applied worldwide to prevent and reduce the landslide disasters, and it becomes one of the hot spots in research on landslide in recent years. But the occurrence of the landslide is controlled by lots of natural and man-made factors, and the relationship between the factors and the stability of the landslide is quite complicated. And the limitation of a single assessment method influences directly the reliability and accuracy. So the key technology and method to assess the landslide susceptibility effectively is the hot spot and difficulty in landslide study. There are still some issues as below needed to further study.
     (1) To determine the index system of landslide susceptibility assessment. It's quite important to identify and select the occurring factors of the landslide in landslide susceptibility assessment. But the previous methodology selects the assessing factors only with researcher's experience subjectively, without evaluating the assessing factors objectively and quantitatively, which makes the assessing results contain much more wrong conclusions. So it is a key issue needed to solve to determine the index system of landslide susceptibility assessment objectively and quantitatively.
     (2) To determine the weights of the assessing factors of landslide susceptibility assessment. It is also important for the assessment results to determine the weight of the assessing factors of the landslide in landslide susceptibility assessment. There are lots of quantitative and qualitative assessing factors, which are difficult to deal with the weights of the assessing factors. So it is a difficulty needed to solve to determine the weights of the assessing factors of landslide susceptibility assessment.
     The main study contents and conclusions in this dissertation are as follows:
     (1) Detailed studies are on the fractal characteristics of geometric shape and spatial distribution of the landslide, the occurring conditions and inducing factors as landform, drainage network and fault.
     (2) The relationship between the distribution of the landslides with the theory of the variable dimension fractal is studied.
     The study results indicate that the distribution of the landslides and slope, lithology and elevation and the cumulative distance from the river are in second-order cumulative total fractal distribution, and that the distribution of the landslides and aspect is in first-order cumulative total fractal distribution. The results show that slope, lithology and elevation and the cumulative distance from the river are more important to contribute to the occurrence of landslides than aspect, which provides the fractal basis to establish the index system of landslide susceptibility assessment.
     (3) The index system of landslide susceptibility assessment in the study area involves rock types and structure (lithology and fault), valley slope geometry and landform (aspect, slope, elevation and drainage network), hydrogeological conditions (Normal Different Vegetation Index, NDVI), dynamical factors (distance to river) and the fractal characteristics of the inducing factors (the fractal dimension of the small watershed).
     (4) Landslide susceptibility assessment based on weights of evidence modeling was involved.
     The weights of evidence model has been used for evaluating the contribution of the inducing factors to the occurrence of landslide to determine the assessing factors, and for landslide susceptibility assessment. According to the calculated weight values, the most important factors determining susceptibility are distance from river, elevation, lithology, distance from faults interface, drainage network and the fractal dimension of the small watershed. However, it is the combination of two or more classes of factors, which has the strongest influence on susceptibility and is not one single factor alone.
     The weights of evidence vary widely with different factors of evidence. The weights of evidence for lithology and for cumulative distance from faults interface are relatively very large, but they are smaller than those for cumulative distance from the Yangtze River. The weights of evidence for cumulative distance from the Yangtze River are the largest, which indicates that the river erosion is the most important factor controlling the occurrence of landslides in the study area, which is coincident with the actual fact that the landslides in the study area are mostly located along the banks of the Yangtze river. The calculated results show that the elevation is also an important factor controlling the occurrence of landslides in the study area. The calculated results show that the aspect and NDVI have certain influences on the occurrence of landslides, but the influence is relatively very small.
     There have differences in the weights of evidence among the different classes of the same factors of evidence. For example, the calculated results show that the weights of evidence for lithology of the Jialingjiang Formation (Tjs) of lower Triassic, the Badong Formation (Tb) of middle Triassic, the Tongzhuyuan Formation (Jt) of lower Jurassic, the Niejiashan Formation (Jn) of middle Jurassic and the 500m distance from interface between Permian and Carboniferous, Devonian and Silurian periods are much higher than any other lithology, which is coincident with the actual fact that the landslides are mostly located in the above lithology in the study area. The calculated results indicate that the river erosion becomes more and more violent and the slope becomes more and more unstable while the distance from the river is nearer and nearer, which is coincident with the occurrence of the already known landslides.
     According to the landslide hazards zonation mapping, there are three potentially dangerous areas with landslides in the study area. The first one is the region between Xietan and Huanglashi, where there exist such famous landslides as Huanglashi landslide, Fanjiaping landslide and Daping landslides. The second one is the region around Xiangxi town with the important Xiangxi landslides. And the third area is located in the region from Xintan to Lianzhiya with the famous Xintan landslide and Lianzhiya landslip. The study result is very coincident with the occurrence of the known landslides in the study area, which shows that the methodology is very useful and accurate and that the approach is appropriate for zonation of the landslide hazards.
     The study results are quite coincident with the occurrences of the known landslides, which show that the results are very accurate and have good quality. As a data-driven model, the weights of evidence model could help choose the main factors and calculate the weight values well and truly, avoiding man-made subjectivity. So the methodology is very useful and accurate and the approach is appropriate for zonation of the landslide hazards.
     (5) Logistic regression, fuzzy logic and fuzzy weights of evidence are used for landslide susceptibility assessment in the study area. The research results are very coincident with the occurrences of the known landslides.
     The main innovations of this thesis are as follows:
     (1) The fractal characteristics of geometric shape and spatial distribution of the landslide, the occurring conditions and inducing factors as landform, drainage network and fault are integratively studied.
     (2) The theory of the variable dimension fractal was used for evaluating the relationship between the inducing factors and the occurrence of the landslide to provide the fractal basis to establish the index system of landslide susceptibility assessment.
     (3) The index system of landslide susceptibility assessment in the study area involves rock types and structure (lithology, fault), valley slope geometry and landform(aspect, slope, elevation and drainage network), hydrogeological conditions(NDVI), dynamical factors(distance to river) and the fractal characteristics of the inducing factors(the fractal dimension of the small watershed).
     (4) The data-driven model (logistic regression and weights of evidence), the knowledge-driven model (fuzzy logic) and data-knowledge-driven model (fuzzy weights of evidence) were applied for landslide susceptibility assessment in the study area. The research results are very coincident with the occurrences of the known landslides.
引文
[1]周萃英.斜坡岩体复杂性特征及其预测新认识.岩石力学与工程学报.2000,19(1):34-38.
    [2]吴树仁,梅应堂.长江三峡黄腊石和黄土坡滑坡分形分维分析.地球科学:中国地质大学学报,2000,25(1):61-65.
    [3]Ohmori, H., Hirano, M., Magnitude, frequency and geomorphological significance of rocky mud flows, landcreep and the collapse of steep slopes, Z. Geomorph. Suppl.67(1988) 55-65.
    [4]Sugai,T., Ohmori.H., Hirano,M., Rock control on magnitude frequency distributions of landslides, Trans. Jpn.Geomorph. Union 15 (1994) 233-251.
    [5]Sasaki,Y., Abe, M., Hirano, I., Fractals of slope failure size-number distribution, J. Jpn. Soc. Eng.Geol.32(1991) 1-11.
    [6]Hovius, N., Stark, C.P., Allen, P.A., Sediment flux from a mountain belt derived by landslide mapping, Geology 25 (1997) 231-234.
    [7]Yokoi,Y., Carr,J.R., Watters,R.J., Fractal character of landslides, Enviormental & Engineering Geoscience,1995,1 (1),75-81.
    [8]易顺民,唐辉明.滑坡分维特征及其预测意义.工程地质学报,1994,2(2):48-53.
    [9]易顺民,张首丽.滑坡活动时空结构的信息维特征及其工程地质意义.水文地质工程地质,1998,25(5):48-51.
    [10]谢嘉琼,易顺民.滑坡活动空间分布的多重分形特征及其预测意义.四川大学学报:工程科学版.2000,32(6):4-6.
    [11]Klinkenberg,B., Fractals and morphometris measures:Is there a relationship? Geomorphology,1992,5(1-2):5-20.
    [12]Klinkenberg,B., Goodchild,M.F., The fractal properties of topography:a comparison of methods. Earth Surface Processes and Landforms,1992,17:217-234.
    [13]杨玉荣.基于分形理论的地貌表达.武汉测绘科技大学学报,1996,21(2):154-158.
    [14]邹宁,柳健,周曼丽.基于分形的地形分类技术及其在导航中的应用.华中理工大学学报,1999,27(5):21-25.
    [15]肖高逾,周源华.基于分形插值的地貌生成技术.上海交通大学学报,2000,34(5):705-707.
    [16]Hack,J.T., Studies of longitudinal profiles in Virginia and Maryland.U.S Geol. Surv Prof Pap,1957:294-298.
    [17]Mandelbort,B.B., The Fractal Geomotry of Nature,New York:Freeman,1982.
    [18]Laverty,M., Fractals in karst.Earth Surface Processes and Landform,1987,12(5):475-480.
    [19]Robert,A., Roy,A., On the fractal interpretation of mainstream,length drainage area relationship. Water sources Research,1990,26:839-842.
    [20]Tarboton,D.G., The Fractal Nature of River Networks. Water Resources Research,1988,(24): 1317-1322.
    [21]Cheng, Q.M., Ping, Q., Kenny, F., Statistical and fractal analysis of surf ace stream patterns in the Oak Ridges Moraine, Ontario, Canada.Proceedings of the International Association of Mathematica 1 Geology Meeting, Barcelona,1997, Vol.1, pp.280-286.
    [22]Cheng,Q.M.,Russellb,H.,Sharpeb,D.,Kennyc,F.,Ping,Q., GIS-based statistical and fractal/ multifractal analysis of surface stream patterns in the Oak Ridges Moraine. Computers & Geosciences,2001,27:513-526.
    [23]Cheng,Q.M., Agterberg,F.P., Fuzzy Weights of Evidence Method and Its Application in Mineral Potential Mapping [J]. Natural Resources Research,1999,8(1):27-35.
    [24]Cheng.Q.M., Non-Linear Theory and Power-Law Models for Information Integration and Mineral Resources Quantitative Assessments [J]. Mathematical Geosciences,2008,40(5): 503-532.
    [25]Agterberg,F.P., Systematic Approach to Dealing with Uncertainty of Geoscience Information in Mineral Exploration; proceedings of the Proceedins 21st APCOM Symposium, Las Vegas, F March,1989 [C]. Society of Mining Engineers,Inc.:Littleton,Colorado,1989.
    [26]Agterberg,F.P., Combining indicator patterns in weights of evidence modeling for resource evaluation [J]. Natural Resources Research,1992,1(1):39-50.
    [27]Agterberg,F.P., Bonham-Carter,G.F., Deriving Weights of Evidence from Geoscience contour Maps for the Prediction of Discrete Events; proceedings of the Proceedings 22nd APCOM Symposium, Berlin, F September,1990 [C]. Tech. Univ. Berlin.
    [28]Agterberg,F.P., Bonham-Carter,G.F.,Cheng,Q., et al., Weights of Evidence Modelling and Weighted Logistic Regression for Mineral Potential [M]//Davis J C, Herzfeld U C. Computers in Geology,25 Years of Progress. Oxford University Press.1993:13-32.
    [29]Agterberg,F.P., Bonham-Carter,G.F.,Cheng,Q., et al., Weights of evidence modeling and weighted logistic regression for mineral potential mapping [J]. International Association for Mathematical Geology Studies in Mathematical Geology,1993(5):13-32.
    [30]Agterberg,F.P., Bonham-Carter,G.F., Wright,D.F., Statistical pattern integration for mineral exploration; proceedings of the Proceedings COGEODATA Symposium on "Computer Applications in Resource Exploration", Espo,Finland, F July,1988 [C]. Pergamon Press, 1990.
    [31]Bonham-Carter,G.F., Geographic Information Systems for Geoscientists:Modelling with GIS [M]. Pergamon,1994.
    [32]Bonham-Carter,G.F., Agterberg,F.P., Application of a Microcomputer-based Geographic Information System to Mineral-Potential Mapping [M]//Hanley T T, Merriam D F. Microcomputer Applications in Geology. Pergamon Press.1990.
    [33]Bonham-Carter,G.F., Agterberg,F.P., Wright,D.F., Integration of geological datasets for gold exploration in Nova Scotia [J]. Photogrammetric Engineering and Remote Sensing,1988, 54(11):1585-1592.
    [34]Bonham-Carter,G.F., Agterberg,F.P., Wright,D.F., Weights of evidence modelling:a new approach to mapping mineral potential [M]//Agterberg F P, Bonham-Carter G F. Statistical applications in the earth sciences. Geological Survey of Canada.1989:171-183.
    [35]成秋明,陈志军,ALI K.模糊证据权方法在镇沅(老王寨)地区金矿资源评价中的应用[J].地球科学,2007,32(2):175-184.
    [36]Carranza,E.J.M., Weights of Evidence Modeling of Mineral Potential:A Case Study Using Small Number of Prospects, Abra, Philippines [J]. Natural Resources Research,2004,13(3): 173-187.
    [37]Cheng,Q.M., Application of Weights of Evidence Method for Assessment of Flowing Wells in the Greater Toronto Area, Canada [J]. Natural Resources Research,2004,13(2):77-86.
    [38]Nyknen,V., Ojala,V., Spatial Analysis Techniques as Successful Mineral-Potential Mapping Tools for Orogenic Gold Deposits in the Northern Fennoscandian Shield, Finland [J]. Natural Resources Research,2007,16(2):85-92.
    [39]Arthur,J., Wood,H., Baker A, et al. Development and Implementation of a Bayesian-based Aquifer Vulnerability Assessment in Florida [J]. Natural Resources Research,2007,16(2): 93-107.
    [40]Masetti,M., Poli,S., Sterlacchini,S., The Use of the Weights-of-Evidence Modeling Technique to Estimate the Vulnerability of Groundwater to Nitrate Contamination [J]. Natural Resources Research,2007,16(2):109-119.
    [41]Poli,S., Sterlacchini,S., Landslide Representation Strategies in Susceptibility Studies using Weights-of-Evidence Modeling Technique [J]. Natural Resources Research,2007,16(2): 121-134.
    [42]Reid,B.A., Developing GIS-Based Weights of Evidence Predictive Model of Pre-Columbian Sites in Trinidad [D]. Florida, America; University of Florida,2003.
    [43]Joseph,A.F.M., Crime Potential Modelling:A GIS Based Method Using Weights-of-Evidence [D]. Ottawa,Canada; Carleton University,2005.
    [44]Cheng,Q.M., Agterberg,F.P., Bonham-Carter,F.,et al., Artifical intelligence model for integrating spatial patterns for mineral potential estimation with incomplete information; proceedings of the Proceedings of 6th Canadian Conference on GIS, Ottawa, F June 6-10, 1994 [C].
    [45]Cheng,Q.M., Agterberg,F.P., Bonham-Carter,G.F., Fractal pattern integration for mineral potential estimation [J]. Natural Resources Research,1996,5(2):117-130.
    [46]Porwal,A., Carranza,E., Hale,M., A Hybrid Fuzzy Weights-of-Evidence Model for Mineral Potential Mapping [J]. Natural Resources Research,2006,15(1):1-14.
    [47]张生元,武强,成秋明等.基于模糊预测对象的证据权方法及其在土地沙漠化评价中的应用[J].地球科学,2006,31(3):289-393.
    [48]Cheng,Q.M., GIS based fractal/multifractal anomaly analysis for modeling and prediction of mineralization and mineral deposits [M]//Harris J, Wright D F. GIS for Geosciences. Geological Association of Canada.2007:285-296.
    [49]Zhang,S., Cheng,Q., Chen,Z., Omnibus weights of evidence method implemented in GeoDAS GIS for information extraction and integration [J]. Journal of China University of Geosciences,2008,19(4):404-409.
    [50]张生元,成秋明,张素萍等.加权证据权模型和逐步证据权模型及其在个旧锡铜矿产资源预测中的应用[J].地球科学,2009,34(2):281-286.
    [51]Kemp,L.D., Bonham-Carter,G.F., Raines,G.L., et al., Arc-SDM:Arcview extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis [J].2001.
    [52]Agterberg,F.P., Cheng,Q., Conditional Independence Test for Weights-of-Evidence Modeling [J]. Natural Resources Research,2002,11(4):249-55.
    [53]Thiart,C., Bonham-Carter,G.F., Agterberg,F.P., et al., An Application of the New Omnibus Test for Conditional Independence in Weights-of-Evidence Modeling [M]//Jeff H. GIS applications in earth sciences. Geological Association of Canada.2006:131-142.
    [56]Sawatzky,D.L., Raines,G.L., Bonham-Carter,G.P., et al., ARCSDM3.1:ArcMAP extension for spatial data modelling using weights of evidence, logistic regression, fuzzy logic and neural network analysis [J]. http://www.ige.unicamp.br/sdm/ArcSDM31/,2004.
    [57]Caumon,G., Ortiz,J.M., Rabeau,O., A comparative study of three data-driven Mineral Potential Mapping techniques; proceedings of the IAMG'06, Belgium, F,2006 [C].
    [58]Zhao,J., Chen,S., Gao,S., Application of Weights of Evidence Method for Mineral Potential Assessment Based on GIS:A Case Study on Prediction of Copper Deposits in Qilian Mountains Area; proceedings of the Proceedings of IAMG'07:Geomathematic and GIS analysis of resources,environment and hazards, Beijing,China, F August 26-31,2007 [C]. China University of Geosciences Printing House,Wuhan.
    [59]Zhang,Z., Mao,H.,Cheng,Q.M., Fractal geometry of element distribution on mineral surfaca. Math. Geol.,2001,33(2):217-228.
    [60]Gulbin,Y.L., Evangulova,E.B., Morphometry of quartz aggregates in granities:Fractal images referring to nucleation and growth processes. Math.Geol.,2003,35(7):819-833.
    [61]Wang,Z,. Cheng,Q.M., Xia,Q.L., The P-A fractal model characterizing microstructure of minerals. In:Cheng, Q.M., et al,.eds., Proceedings of IMAG'05:GIS and spatial analysis. China university of Geosciences Press, Wuhan,317-322.
    [62]王志敬,成秋明.P-A分形模型定量度量糜棱岩变形过程中石英微结构的变化.地球科学-中国地质大学学报,2006,31(3):361-365.
    [63]冯平,冯众.河流形态特征的分维计算方法.地理学报,1997,52(4):324-329.
    [64]王协康.方绎流域地貌系统定量研究的新指标.山地研究,1998,16(1):8-12.
    [65]何隆华,赵宏.水系的分形维数及其含义.地理科学,1996,16(2):124-128.
    [66]李后强,艾南山.分形地貌学及发育的分形模型.自然杂志,1991,15(7):516-519.
    [67]艾南山,李后强.从曼德布罗特景观到分形地貌学.地理学与国土研究,1993,9(1):13-17.
    [68]邹谨敞,邵顺妹.甘肃中部及邻区水系分形研究结果与滑坡分布的关系.地震研究,1994,17(4):383-388.
    [69]郑明新,王兰生.分形理论在区域地质灾害预测中的应用.地质灾害与环境保护,1998,9(3):1-4,9.
    [70]孙凡臣,丁国瑜.线性构造分数维值含义[J].地震,1991,(5):33-37.
    [71]易顺民,唐辉明.活动断裂的分形结构特征.地球科学,1995,20(1):58-62.
    [72]胡道功,吴树仁,殷秀兰.仙女山断裂带断层泥分维值与断裂活动研究[J].地球学报,1999,20(2):137-141.
    [73]沈忠民,马祖钧,周光甲,等.断裂体系分维与油田分布[J].地球科学,1995,20(1):73-78.
    [74]周新桂,孙宝珊,荆金红.辽河科尔康油田断裂分形特征与油气关系[J].地质力学学报,1997,3(1):81-87.
    [75]刘顺生,谭凯旋.开放体系成矿动力学-水口山矿田成矿机理探讨[M].北京:地震出版社,1996,99-102.
    [76]金章东,卢新卫,张传林.江西德兴斑岩铜矿田断裂分形研究[J].地质论评,1998,44(1):57-62.
    [77]卢新卫,马东升.湘中断裂体系分维与锑矿分布[J].地质论评,1998,44(5):542-546.
    [78]朱晓华,间国年.地质灾害中的分形研究进展.中国地质灾害与防治学报,2000,11(1):11-14.
    [79]Guzzetti, F., Malamud, B. D., Turcotte,D. L., Reichenbach,P.,Power-law correlations of landslide areas in central Italy. Earth and Planetary Science Letters 195 (2002):169-183.
    [80]Fell,R., Ho,KKS., Lacasse,S., Leroi,E,. A framework for landslide risk assessment and management. In:Hungr O et al.(eds.), Landslide Risk Management. A. A. Balkema Publishers,2005:3-26.
    [81]Leroi,E., Bonnard,Ch.,Fell,R., McinnesR. Risk assessment and management. In:Hungr O et al. (eds.), Landslide Risk Management. A. A. Balkema Publishers,2005:159-198.
    [82]Wong,H.N., Landslide risk assessment for individual facilities. In:Hungr O et al. (eds.), Landslide Risk Management.A. A. Balkema Publishers,2005:237-296.
    [83]黄润秋,向喜琼,巨能攀.我国区域地质灾害评价的现状及问题.地质通报,2004,23(11):1078-1082.
    [84]吴益平,唐辉明,葛修润.BP模型在区域滑坡灾害风险预测中的应用.岩土力学,2005,26(9):1409-1413
    [85]吴益平,唐辉明.滑坡空间预测研究[J].地质科技情报,2001,20(2):87-90.
    [86]丛威青,潘懋,李铁锋等.基于GIS的滑坡、泥石流灾害危险性区划关键问题研究.地学前缘,200613(1):185-190.
    [87]柳源.中国地质灾害(以崩、滑、流为主)危险性分析与区划.中国地质灾害与防治学报,2003,14(1):95-99.
    [88]Wang,W.D., Xie, C.M., DU,X.G, Landslides susceptibility mapping in Guizhou province based on fuzzy theory.Mining Science and Technology (China),2009,19,399-404.
    [89]Tangestani,M.H., A comparative study of Dempster-Shafer and fuzzy models for landslide susceptibility mapping using a GIS:An experience from Zagros Mountains, SW Iran. Journal of Asian Earth Sciences,2009,35,66-73.
    [90]Saboya, F., Alves, M.G., Pinto, W.D., Assessment of failure susceptibility of soil slopes using fuzzy logic. Engineering Geology,2006,86:211-224.
    [91]Ercanoglu, M., Gokceoglu, C., Use of fuzzy relations to produce landslide susceptibility map of a landslide prone area (West Black Sea Region, Turkey). Engineering Geology,2004, 5,229-250.
    [92]Tangestani, M.H., Landslide susceptibility mapping using the fuzzy gamma operation in a GIS, Kakan Catchment Area, Iran.Proc. of Map India Conference,2003.
    [93]朱阿兴,裴韬,乔建平,陈永波,周成虎,蔡强国.基于专家知识的滑坡危险性模糊评估方法.地理科学进展,2006,25(4):1-11.
    [94]谭儒蛟,胡瑞林,刘衡秋,曾如意,梁辉FCJ-GIS动力区划模型及其在斜坡灾害空间预测中的应用.岩石力学与工程学报,2006,25(12):2552-2558.
    [95]唐川,朱静等.云南滑坡泥石流研究[M].北京:商务印书馆,2003:49-87.
    [96]谢全敏,夏元友.岩体边坡治理决策的模糊层次分析方法研究[J].岩石力学与工程学报,2003,22(7):1117-1120.
    [97]郑明新.京九铁路赣南段滑坡及路在病害的评估和预测[J].华东交通大学学报,2000,17(3):1-5.
    [98]王建锋.区域斜坡不稳定空间预测.地球科学-中国地质大学学报,1999,24(1):105-110.
    [99]李东山,黄润秋,许强等.三峡库区滑坡综合预报系统的设计与实现.中国地质灾害与防治学报,2003,14(2):24-27.
    [100]高克昌,崔鹏,赵纯勇等.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为.岩石力学与工程学报,2006,25(5):991-996.
    [101]石菊松,张永双,董诚,吴树仁.基于GIS技术的巴东新城区滑坡灾害危险性区划.地球学报,2005,26(3):275-282.
    [102]张桂荣,殷坤龙,刘传正,唐灿.基于GIS的陕西省旬阳地区滑坡灾害危险性区划.中国地质灾害与防治学报,2003,14(4):39-43.
    [103]殷坤龙.滑坡灾害预测预报[M].武汉:中国地质大学出版社,2004
    [104]阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用.成都理工学院学报,2001,28(1):89-92.
    [105]殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究[J].地学前缘,2001,8(2):279-284.
    [106]Das, I., Sahoo, S., Westen, C., Stein, A., Hack, R., Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India).Geomorphology,2010,114,627-637
    [107]Bai, S.B., Wang, J., Lu,G.N., Zhou, P.G., Hou, S.S., Xu,S.N., GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology,2010,115,23-31.
    [108]Suzen, M.L., Doyuran, V., Data driven bivariate landslide susceptibility assessment using geographical information systems:a method and application to Asarsuyu catchment, Turkey. Engineering Geology,2004,71,303-321.
    [109]Suzen, M.L. and Doyuran,V., A comparison of the GIS based landslide susceptibility assessment methods:multivariate versus bivariate. Environmental Geology,2004,45: 665-679.
    [110]Dai, EC. and Lee, C.F. A spatiotemporal probabilistic modelling of storm-induced shallow landsliding using aerial photographs and logistic regression. Earth Surface Processes and Landforms,2003,28:527-545.
    [111]司康平,田原,汪大明等.滑坡灾害危险性评价的3种统计方法比较——以深圳市为例.北京大学学报(自然科学版),2009,45(4):639-646.
    [112]闫满存,王光谦.基于GIS的澜沧江下游区滑坡灾害危险性分析.地理科学,2007,27(3):365-370.
    [113]李雪平,唐辉明.基于GIS的分组数据Logistic模型在斜坡稳定性评价中的应用.吉林大学学报(地球科学版),2005,35(3):361-365.
    [114]兰恒星,伍法权,王思敬.基于GIS的滑坡CF多元回归模型及其应用.山地学报,2002,20(6):723-737.
    [115]张梁,张业成,罗元华等.地质灾害灾情评估理论与实践[M].北京:地质出版社,1998.
    [116]乔建平.滑坡减灾理论与实践[M].北京:科学出版社,1997.
    [117]Melchiorre, C. et al., Artificial neural networks and cluster analysis in landslide susceptibility zonation.Geomorphology (2007), doi:10.1016/j.geomorph.2006.10.035.
    [118]Wang, H.B. and Sassa, K., Rainfall-induced landslide hazard assessment using artificial neural networks. Earth Surface Processes and Landforms,2006,31(2):235-247.
    [119]Gomez, H., Kavzoglu, T.,, Assessment of shallow landslide susceptibility using artificial neural networks in Jabonosa River Basin, Venezuela. Engineering Geology,2005,78,11-27.
    [120]Olden, J.D., Joy, M.K., Death, R.G., An accyrate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model,2004, 178,389-397.
    [121]Ohlmacher, G.C., Davis, J.C., Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology,2003,69, 331-343.
    [122]Gorsevski, P.V., Gessler, P., Foltz, R.B., Spatial prediction of landslide hazard using logistic regression and GIS. Proc.4th International Conference on Integrating GIS and Environmental Modelling (GIS/EM$):Problems, Prospect and Research Needs.Banff, Alberta, Canada,2000.
    [123]单新建,叶洪,李焯芬,陈国光.基于环境因子AI-GIS方法的天然滑坡危险性预测-以香港大屿山岛为例.地质科技情报,2004,23(3):109-112.
    [124]向喜琼,黄润秋.基于GIS的人工神经网络模型在地质灾害危险性区划中的应用[J].中国地质灾害与防治学报,2000,11(3):23-27.
    [125]赵建华,陈汉林,杨树锋,马志江.基于决策树算法的滑坡危险性区划评价.浙江大学学报(理学版),2004,30(1):465-470.
    [126]戴福初,姚鑫,谭国焕.滑坡灾害空间预测支持向量机模型及其应用.地学前缘,2007,14(6):153-159.
    [127]马志江,陈汉林,杨树锋.基于支持向量机理论的滑坡灾害预测[J].浙江大学学报(理学版),2003,30(5):592-596.
    [128]Gorsevski,P.V., Jankowski,P., Discerning landslide susceptibility using rough sets.Computers, Environment and Urban Systems,2008,32,53-65.
    [129]Brideau,M.A., Stead, D., Roots, C., Orwin,J.,Geomorphology and engineering geology of a landslide in ultramafic rocks, Dawson City, Yukon. Engineering Geology,2007,89,171-194.
    [130]Gorsevski,P.V., Jankowski,P., Discerning landslide susceptibility using rough sets, Computers, Environment and Urban Systems (2007), doi:10.1016/.
    [131]长江水利委员会.三峡工程地质研究[M].武汉:湖北科技出版社,1997.
    [132]田陵君,王兰生,刘世凯等.长江三峡工程库岸稳定性[M].北京:中国科学技术出版社,1992.
    [133]地质矿产部成都水文地质工程地质中心,地质矿产部环境地质研究所.长江三峡工程环境地质评价与预测[M].北京:中国科学技术出版社.
    [134]杜榕恒,刘新民,袁建模,李天池.长江三峡工程库区滑坡与泥石流研究[M].成都:四川科学技术出版社,1991.
    [135]湖北省地质矿产局.中华人民共和国地质图说明书(泄滩幅),1995年4月
    [136]湖北省地质矿产局.中华人民共和国地质图说明书(秭归幅),1995年4月
    [137]湖北省地质矿产局.中华人民共和国地质图说明书(新滩西半幅、过河口西半幅),1995年4月
    [138]湖北省地质矿产局.中华人民共和国地质图说明书(巴东幅),1995年4月
    [139]Mandelbrot,B. B., The fractal geometry of nature. W.H. Freeman, New York,1982,468.
    [140]Falconer K. Fractal Geometry-Mathematical Foundations and Applications [M]. New York: John Wile y and Sons,1990:5-8.
    [141]Cheng,Q.M., The perimeter-area fractal model and its application to geology. Math.Geol.,1995,27(1):69-82.
    [142]Gulbin, Y. L, Evangulova, E. B., Morphometry of quartz aggregates in granites. Fractal images reference to nucleation and growth processes. Math. Geol.,2003,35(7):819-833.
    [143]Lovejoy,S., Area-Perimeter relation forr rain and cloud areas. Science,216(4542): 185-187.
    [144]Mandelbrot,B.B., Passoja,D.E., Paullay,A.J., Fractal character of fracture surface of metals,Nature,1984,308(5961):721-722.
    [145]Googchild,M.F., Lakes on fractal surfaces:A null hypothesis for lake-rich landscapes. Math.Geol.,1998,20(6):615-630.
    [146]冯平,冯炎.河流形态特征的分维计算方法[J].地理学报,1997,52(4):324-329.
    [147]朱晓华,蔡运龙.中国水系的盒维数及其关系[J].水科学进展,2003,14(6):731-735.
    [148]王林,陈兴伟.基于DEM的流域水系分维计算与结果分析[J].地球信息科学,2007,9(4):13-137.
    [149]朱嘉伟,赵云章,闫振鹏,等.黄河下游河道地貌分形分维特征研究[J].测绘科学,2005,30(5):28-30.
    [150]崔灵周,李占斌,肖学年.岔巴沟流域地貌形态分形特征量化研究[J].水土保持学报,2004,18(2):41-44.
    [151]崔灵周,李占斌,朱永清,等.流域地貌分形特征与侵蚀产沙定量耦合关系试验研究[J].水土保持学报,2006,20(2):1-4.
    [151]李锰,朱令人,龙海英.不同类型地貌的各向异性分形与多重分形特征研究[J].地球学报,2003,24(3):237-242.
    [152]Dubuc,B.,Quinious,J., Tricot,C., et al., Evaluating the fractal dimension of profiles[J].Phys. Rev. A.,1989,9(3):1500-1512.
    [153]Spanos,L., Irene,E.A., Investigation of roughened silicon surfaces using fractal analysis. I.Two-dimensional variation method[J]. J Vac Sci Technol,1994,12(5):2646-2652.
    [154]孙霞,吴自勤.规则表面形貌的分形和多重分形描述[J].物理学报,2001,50(11):2126-2131.
    [155]付昱华.风浪流参数的分形分析预测.港工技术,1996,3:6-9.
    [156]付昱华.变换形成的分形与海洋环境数据分析预测闭.海洋通报,2000,19(1):79-88.
    [157]何高文.富钻结壳分布的分形特征闭.海洋地质与第四纪地质,2001,21(2):89-92.
    [158]杨克红,胡光道等.富钻结壳资源量评估参数的分形特征研究.地质科技情报,2004,23(4)88-93.
    [159]付安捷.用分形方法预测2010年前人民币汇率.化工经济技术,2002(2).
    [160]杜鹃,范玉妹.私人汽车购买热潮的分析与预测.交通运输系统工程与信息.2004,4(4)
    [161]薛天放,杨庆,栾茂田.基于GIS技术的滑坡空间分布的分形特征研究.岩土力学,2007,28(2):347-354.
    [162]Zuyle,P.V.,2000, Using Weights of Evidence (WofE) in a GIS for the Prediction of Tuberculosis Cases:Application of a New ArcView Extension. In:Proceedings of the Twentieth Annual ESRI User Conference, San Diego,United states, http://campus.esri.com/ campus/library/Bibliography/RecordDetail.cfm?ID=8958&hidpage=1&browseonly=0&CFI D=410773&CFTOKEN=77045010.(Accessed On May.82004)
    [163]Zimmermann,H.J., Fuzzy set theory-and its applications(2rd edn.):Kluwer Acad. Publ.Dordrecht,1991,299p.
    [164]An,P.,Moon,W.M.,Rencz,A., Application of fuzzy set theory for integration of geological, geophysical and remote sensing data:Can.Jour.Exploration Geophysics,1991, V.27,no.1,p.1-11.
    [165]Alok,P., Knowledge-driven and Data-driven Fuzzy Models for Predictive Mineral Potential Mapping[J].Natural Resources Research.2003,12:1-25.
    [166]Kwang-Hoon,Chi., Fuzzy Logic integration for Landside Hazard Mapping Using Spatial Data from Boeun,Korea. Symposium on Geospatial Theory,Processing and Application, Ottawa,2002.
    [167]刘希林,唐川.泥石流危险性评价[M].北京:科学出版社,1995.
    [168]Horton,R.E., Erosional development of streams and the drainage basins:Hydtphysieal approach to quantitative morphology[J]. Bulletin of the Geological Society of America,1945, 56:275-370.
    [169]Pradhan, B., Lee, S., Buchroithner,M.F.,A GIS-based back-propagation neural network model and its cross-application and validation for landslide susceptibility analyses.Computers, Environment and Urban Systems, In Press, Corrected Proof, Available online 8 February 2010.
    [170]Pradhan,B., Lee,S., Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modeling. Environmental Modelling & Software,2010,25, 747-759.
    [171]Komac, M., A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology,2006,74:17-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700