固相再生ZM6耐热镁合金组织和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁合金是目前工程应用的最轻的金属结构材料,它具有密度低,比强度和比刚度高,且尺寸稳定,易于机械加工,阻尼性能好等优点。目前广泛应用于航空、航天、汽车、计算机、通信和家电等行业。但由于镁合金高温强度和高温抗蠕变性能差,限制了镁合金在高温条件下的应用。人们用加稀土等合金元素的方法来提高其使用温度,制备耐热镁合金。
     本文以固相再生的方法再生ZM6耐热镁合金料。利用透射电子显微镜、扫描电镜、金相显微镜、等离子耦合电感光谱仪、电子万能拉伸机和蠕变试验机等分析和测试手段,研究了合金成分、组织的演变规律、合金拉伸性能、蠕变性能和断裂行为。讨论了各种状态下合金的强化机制和断裂机制。
     研究了固相再生工艺参数对ZM6镁合金组织和性能的影响,分析了固相再生过程中ZM6镁合金屑变形的基本特征。ZM6镁合金屑在冷压成坯过程中,压力为350MPa,坯料密度为1.71g/cm~3,形成少量新的结合面。ZM6镁合金随着挤压比和挤压温度的提高,晶粒细化,强度和延伸率同时提高。挤压温度为500℃和挤压比为25:1时,再生试样具有较好的综合力学性能,这时抗拉强度为280MPa,延伸率为29.7%,在250℃时,高温强度为171.9MPa。
     研究了固相再生ZM6镁合金固溶时效过程中组织演变、拉伸性能和断裂方式。时效初期,晶界产生不连续的沉淀相。随着时效时间的延长,沉淀相增多而不均匀。时效16h后,合金的强度达到峰值,主要的强化相为β′相和β相。欠时效时合金以穿晶剪切断裂为主;峰时效时合金以穿晶韧窝和沿晶断裂为主;过时效时粗大的第二相对断裂过程有着较大的影响。
     研究了ZM6耐热镁合金不同加工状态下的力学性能。铸态下,合金的抗拉强度和延伸率都很低,分别为141.3MPa和3.3%。经挤压后,合金的致密性增加,晶界组织状态被破坏,合金的强度和塑性大幅度提高。屑挤压合金的抗拉强度和铸锭挤压态合金的抗拉强度相当,塑性稍差一些。固相再生ZM6镁合金经T5处理后,抗拉强度略有增加,延伸率下降;经T4处理后,延伸率增加,抗拉强度明显下降。
     研究了Ce对固相再生ZM6镁合金组织和性能的影响。一次挤压后,Mg-Ce中间合金屑没有被打碎,合金的力学性能较差。经五次挤压后,Mg-Ce中间合金屑的均匀分布使合金的力学性能有较大的改善。随着挤压次数的增加,合金的抗拉强度和延伸率增大,增大的幅度随着挤压次数的增加而变小。五次挤压后,合金主要由α-Mg相、Mg_(12)Ce相、Mg_(12)Nd相和氧化相组成,这时合金的抗拉强度为300MPa,延伸率为14.8%。
     研究了固相再生ZM6耐热镁合金的抗蠕变性能。ZM6镁合金在200℃蠕变温度下,随着蠕变应力的增加,合金的抗蠕变性能下降,蠕变第一阶段的变形量增大;ZM6镁合金在110MPa下,随着蠕变温度的增加,合金的抗蠕变性能下降,蠕变第一阶段的时间缩短。ZM6镁合金的应变硬化指数为4.4,蠕变激活能为104kJ/mol。ZM6镁合金在蠕变过程中受位错攀移机制控制。
At present, magnesium alloy is the lightest metal structural materials. It has many advantages including low density, good specific strength and stiffness, steady dimension, good machinability and excellent damping capacity. Magnesium alloy is being used in aviation, spaceflight, automotive, computer, communications and electronic industries. Because mechanical and creep properties at elevated temperature of magnesium alloy are inferior, its applications at elevated temperature are limited. Mechanical and creep properties of magnesium alloy at elevated temperature are improved by adding lanthanon and heat-resistant magnesium alloy is made.
     In this paper, ZM6 heat-resistant magnesium alloy chips and scraps were prepared by solid state recycling. Microanalysis and test of mechanical properties were carried out by transmission electron microscope, scanning eletron microscope, optical microscope, inductively coupled plasma-atomic emission Spectrometry, electron universal strength testing machine and creep testing machine. Composition of the alloy, microstructural evolution, tensile properties, creep properties and fracture behavior were investigated. Strengthening mechanism and fracture mechanism of the alloy at different conditions were discussed.
     Effect of technologic parameters on micrcostructures and mechanical properties of ZM6 magnesium alloy prepared by solid state recycling were studied and plastic characteristics in solid state recycling were analyzed. At first, ZM6 magnesium alloy chips were cold-pressed to form a compact billet with the pressure of 350MPa. The density of the billet was 1.71g/cm~3 and the surface of the chips exhibited some breaking and bonding. With extrusion ratios and temperatures increasing, grains of ZM6 magnesium alloy became refiner and tensile strength and elongation of the alloy improved. Recycled specimen that was prepared with extrusion temperature of 500℃and extrusion ratio of 25:1 showed higher mechanical property. Its ultimate tensile strength and elongation to failure were 280MPa and 29.7%, respectively. Ultimate tensile strength of ZM6 magnesium alloy prepared by solid state recycling was 171.9MPa at 250℃.
     Microstructural evolution, tensile properties and fracture mode of ZM6 magnesium alloy prepared by solid state recycling during ageing treatment were investigated. At the beginning of ageing, The discontinuous precipitation occurred near the grain boundaries. Precipitates became more and uneven distribution with aging time increasing. When aging time reached 16 hour, tensile strength of the alloy was maximal and main strengthening phases of the alloy wereβ' phase andβphase. Fracture mode of the alloy was mainly transgranular tearing fracture at the initial stage of ageing. Fracture mode of the alloy was a mix mechanism with transgranular dimple fracture and intergranular fracture in the peak-ageing. Bigger second phases had largely effected on fracture in the further-ageing.
     Mechanical properties of ZM6 heat-resistant magnesium alloy at different conditions were studied. Ultimate tensile strength and elongation of the cast alloy were 141.3MPa and 3.3%, respectively. Strength and ductility of the alloy were largely improved because microstructural state at the grain boundaries was destroyed through extrusion. Ultimate tensile strength of the alloy prepared by chip extrusion was equal to ultimate tensile strength of the alloy prepared by cast extrusion. Ductility of the alloy prepared by chip extrusion was lower than that of the alloy prepared by cast extrusion. Ultimate tensile strength of the alloy prepared by solid state recycling lightly increased and elongation to failure decreased after T5. Ultimate tensile strength of the alloy prepared by solid state recycling obviously decreased and elongation to failure increased after T4.
     Effect of Ce on microstructures and mechanical properties of ZM6 magnesium alloy prepared by solid state recycling was investigated. After the first extrusion, tensile strength and elongation to failure of the alloy were very low because Mg-Ce intermediate alloy chips have not been broken. Tensile strength and elongation to failure of the alloy were obviously improved because of well-proportioned distribution of Mg-Ce intermediate alloy chips after the fifth extrusion. Ultimate tensile strength and elongation to failure of the alloy increased with the extrusion times increasing. Increasing range decreased with the extrusion times increasing. The alloy was made ofα-Mg phase, Mg_(12)Ce phse, Mg_(12)Nd phase and MgO phase after the fifth extrusion. Ultimate tensile strength and elongation to failure of the alloy were 300MPa and 14.8%, respectively.
     Creep properties of ZM6 heat resistant magnesium alloy prepared by solid state recycling were studied. At 200℃temperature, creep properties of the alloy decreased and creep strain of Class I creep increased with the creep stress increasing. At 110MPa stress, creep properties of the alloy decreased and time of Class I creep reduced with the creep temperature increasing. The stress exponent and the activation energy of ZM6 magnesium alloy were 4.4 and 104kJ/mol. ZM6 magnesium alloy was controlled by the dislocations climbing mechanism.
引文
[1]左铁镛.树立科学发展观,促进我国镁产业的可持续发展[C].中国首届镁合金挤压技术国际讨论会文集,苏州,2006:1-5.
    [2]闫蕴琪,张廷杰,邓炬,等.耐热镁合金的研究现状与发展方向[J].稀有金属材料与工程,2004,33(6):561-565.
    [3]KHAN S A,MIYASHITA Y,MUTOH Y,et al.Influence of Mn Content on Mechanical Properties and Fatigue Behavior of Extruded Mg Alloys[J].Materials Science and Engineering A,2006,402:315-321.
    [4]严峰,吴昆,赵敏,等.热挤压对SiC_W/MB15镁基复合材料组织和性能的影响[C].中国首届镁合金挤压技术国际讨论会文集,苏州,2006:244-248.
    [5]BUCH F U,LIETZAU J,MORDIKE B L,et al.Development of Mg-Sc-Mn Alloys[J].Materials Science and Engineering A,1999,263:1-7.
    [6]白晶,孙扬善,薛烽,等.高性能碱土耐热镁合金的显微组织和蠕变性能[J].北京科技大学学报,2007,29(2):198-204.
    [7]晏井利,孙扬善,薛烽,等.Mg-2Nd合金的组织与抗蠕变性能[J].铸造,2007,56(8):805-808.
    [8]郭旭涛,李培杰,刘树勋,等.稀土耐热镁合金发展现状及展望[J].铸造,2002,51(2):68-71.
    [9]陈振华.镁合金[M].北京:化学工业出版社,2004:30-32.
    [10]NAN Z Y,ISHIHARA S,MCEUILY A J,et al.On the Sharp Bend of the S-N Curve and the Crack Propagation Behavior of Extruded Magnesium Alloy[J].Scripta Materialia,2007,56:649-652.
    [11]SMOLA B,BUCH F V,MORDIRE B L,et al.Structural Aspects of High Performance Mg Alloys Design[J].Materials Science and Engineering A,2002,324:113-117.
    [12]HUANG D M,CHEN Y G,TANG Y B,et al.Indentation Creep Behavior of AE42 and Ca-containing AE41 Alloys[J].Materials Letters,2007,61:1015-1019.
    [13]卢晨,卫中山,黄晓峰,等.耐热镁合金的研究进展[J].铸造,2005,54(2):112-115.
    [14]WOLFF U,PRYDS N,JOHNSON E,et al.The Effect of Partial Crystallization on Elevated Temperature Flow Stress and Room Temperature Hardness of a Bulk Amorphous Mg_(60)Cu_(30)Y_(10) Alloy[J].Acta Materialia,2004,52:1989-1995.
    [15]黄晓峰,毛祖莉,阎峰云,等.钇对Mg-9Al-1Si合金蠕变抗力和微观组织的影响[J].中国稀土学报,2006,24(4):480-483.
    [16]FAN Y,WU G H,GAO H T.Influence of Lanthanum on the Microstructure,Mechanical Property and Corrosion Resistance of Magnesium Alloy[J].Journal of Materials Science,2006,41;5409-5416.
    [17]何尚明,曾小勤,丁文江.高强度耐热镁合金及其制备方法[P].中国专利:200510025251.6,2005-10-05.
    [18]才川清二.具有优良的耐热性铸造性低成本的铸造用耐热镁合金[P].中国专利:200410056203.9,2005-02-03.
    [19]吴安如,夏长清.稀土镁合金铸造和挤压态组织及力学性能研究[J].铸造,2005,54(11):1113-1116.
    [20]BARBAGALLO S,CAVALIERE P,CERRI E.Compressive Plastic Deformation of an AS21X Magnesium Alloy Produced by High Pressure Die Casting at Elevated Temperatures[J].Materials Science and Engineering A,2004,367:9-16.
    [21]刘畅,周宏,孙广平,等.稀土Y,Ce和Si对AM50合金铸态及固溶处理组织的影响[J].热加工工艺,2006,35(10):7-9.
    [22]PEDERSEN L,ARNBERG L.The Effect of Solution Heat Treatment and Quenching Rates on Mechanical Properties and Microstructure in AlSiMg Foundry Alloys[J].Metallurgical and Materials Transactions,2001,A32:525-532.
    [23]CHINO Y,NAKAURA Y,OHORI K,et al.Mechanical Properties at Elevated Temperature of a Hot-deformed Mg-Al-Ca-Mn-Sr Alloy[J].Materials Science and Engineering A,2007,452-453:31-36.
    [24]NINOMIYA R,OJIRO T,KUBOTA K.Improved Heat Resistance of Mg-Al Alloys by the Ca Addition[J].Acta Metallurgical Materials,1995,43(2):669-674.
    [25]LUO A A,BALOGH M P,POWELL B R.Creep and Microstructure of Magnesium-Aluminum-Calcium Based Alloys[J].Metallurgical and Materials Transactions,2002,A33:567-574.
    [26]曹林峰,苏学宽,杜文博,等.Ca含量对AZ61-1Si合金显微组织及力学性能的影响[J].金属热处理,2006,增刊:46-49.
    [27]ZHU S M,GAO X,NIE J F.Strain Burst in Creep of Mg-1Ga-0.5Zn-0.6Zr Alloy[J].Materials Science and Engineering A,2004,384:270-274.
    [28]ZHANG Z,TREMBLAY R,DUBE D.Microstructure and Mechanical Properties of ZA104(0.3-0.6Ca) Die-casting Magnesium Alloys[J].Materials Science and Engineering A,2004,385:186-191.
    [29]陈振华.耐热镁合金[M].北京:化学工业出版社,2007:11-12.
    [30]BAI J,SUN Y S,XUN S,XUE F,et al.Microstructure and Tensile Creep Behavior of Mg-4Al Based Magnesium Alloys with Alkaline-earth Elements Sr and Ca Additions[J].Materials Science and Engineering A,2006,419:181-188.
    [31]GORNY A,BAMBERGER M,KATSMAN A.High Temperature Phase Stabilized Microstructure in Mg-Zn-Sn Alloys with Y and Sb Additions[J].Journal of Materials Science,2007,42:10014-10022.
    [32]YUAN G Y,SUN Y S,DING W J.Effects of Bismuth and Antimony Additions on the Microstructure and Mechanical Properties of AZ91Magnesium Alloy[J].Materials Science and Engineering A,2001,308:38-44.
    [33]罗思东.镁合金在汽车上的开发与应用[J].汽车工艺与材料,2004,6:38-41.
    [34]关绍康,王迎新.汽车用高温镁合金的研究进展[J].汽车工艺与材料,2003.4:3-9.
    [35]王小强,李全安,张兴渊.耐热镁合金的研究现状和发展方向[J].热加工工艺,2007,36(14):66-70.
    [36]赵志远.稀土金属在铸造镁合金中的应用[J].材料工程,1993,12:31-35.
    [37]陈亚莉.航空用压铸镁合金的发展[J].航空制造工程,1998,5:24-26.
    [38]钟锆,刘培英,周铁涛.镁及镁合金在航空航天中的应用及前景[J].航空工程与维修,2002,4:41-42.
    [39]赵志远.铸造稀土镁合金在我国航空工业中的应用[J].材料工程,1993,7:8-10.
    [40]张光业,郭建亭,张华.NiAl-25%Cr合金的高温蠕变行为[J].中国有色 金属学报,2006,16(11):1882-1887.
    [41]樊喜刚.Al-Zn-Mg-Cu-Zr合金组织性能和断裂行为的研究[D].哈尔滨:哈尔滨工业大学博士学位论文,2007:8-9.
    [42]潘复生,韩恩厚.高性能变形镁合金及加工技术[M].北京:科学出版社,2006:81-85.
    [43]尹从娟,张星,张治民.热挤压工艺对AZ31镁合金组织性能的影响[J].热加工工艺,2007,36(21):63-65.
    [44]ANYANWU I A,GOKAN Y,SUZUKI A,et al.Effect of Substituting Cerium-rich Mischmetal with Lanthanum on High Temperature Properties of Die-cast Mg-Zn-Al-Ca-RE Alloys[J].Materials Science and Engineering A,2004,380:93-99.
    [45]KAWAMURA Y,KASAHARA T,IZUMI S.Elevated Temperature Mg_(97)Y_2Cu_1 Alloy with Long Period Ordered Structure[J].Scripta Materialia,2006,55:453-456.
    [46]KUMAR S.Some Studies on Hot Extrusion of Rapidly Solidified Mg Alloys[J].Journal of Materials Engineering and Performance,2006,15(1):41-46.
    [47]AGNEW S R,HORTON J A,LILLD T M,et al.Enhanced Ductility in Strongly Textured Magnesium Produced by Equal Channel Angular Processing[J].Scripta Materialia,2004,50:377-381.
    [48]LIN L,WU W,YANG L,et al.Grain Boundary Sliding and Accommodation Mechanisms During Superplastic Deformation of ZK40Alloy Processed by ECAP[J].Journal of Materials Science,2006,41:409-413.
    [49]GUO X F,SHECHTMAN D.Reciprocating Extrusion of Rapidly Solidified Mg-6Zn-1Y-0.6Ce-0.6Zr Alloy[J].Journal of Materials Processing Technology,2007,187-188:640-644.
    [50]DIERINGA H,HUANG Y,MAIER P,et al.Tensile and Compressive Creep Behaviour of Al_2O_3 Short Fiber Reinforced Magnesium Alloy AE42[J].Materials Science and Engineering A,2005,410-411:85-88.
    [51]LUO Z P,ZHANG S Q.High-resolution Electron Microscopy on the X-Mg_(12)ZnY Phase in a High Strength Mg-Zn-Zr-Y Magnesium Alloy[J].Journal of Materials Science Letters,2000,19:813-815.
    [52]SINGH A,SOMEKAWA H,MUKAI T.Compressive Strength and Yield Asymmetry in Extruded Mg-Zn-Ho Alloys Containing Quasicrystal Phase[J].Scripta Materialia,2007,56:935-938.
    [53]任文亮,李全安,石雅静,等.抗蠕变耐热镁合金的发展现状[J].上海有色金属,2009,30(1):37-43.
    [54]张诗昌,朱明,胡衍生,等.挤压态AZ31镁合金高温蠕变性能的试验研究[J].铸造技术,2008,29(8):1062-1066.
    [55]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状[J].铸造,2004,53(10):770-774.
    [56]李爱文,朱红梅,焦东玲,等.合金化提高镁合金抗蠕变性能的研究进展[J].材料导报,2008,22(11):74-82.
    [57]彭大暑,罗超,姚伍秋.铝及铝合金颗粒挤压的研究[J].中南矿冶学院学报,1989,20(5):520-525.
    [58]宋宝韫,高飞,李明典,等.LD7铝合金废屑直接再生新工艺[J].上海金属,1990,11(5):30-36.
    [59]宋宝韫,戴焕海,高飞,等.用热挤压使LD7铝合金切屑再生新工艺的试验研究[J].大连铁道学院学报,1987,4:31-36.
    [60]GRONOSTAJSKI J,MATUSZAK A.The Recycling of Metals by Plastic Deformation:an Example of Recycling of Aluminium and its Alloys Chips[J].Journal of Materials processing Technology,1999,92/93:35-41.
    [61]GRONOSTAJSKI J,MARCINIAK H,MATUSZAK A.New Methods of Aluminium and Aluminium-alloy Chips Recycling[J].Journal of Materials Processing Technology,2000,106:34-39.
    [62]胡茂良.固相再生AZ91D镁合金组织结构及性能研究[D].哈尔滨:哈尔滨理工大学博士学位论文,2008:14-16.
    [63]GRONOSTAJSKI J Z,KACZMAR J W,MARCINIAK H,MATUSZAK A.Production of Composites from A1 and AlMg_2 Alloy Chips[J].Journal of Materials Processing Technology,1998,77:37-41.
    [64]LEE J S,CHINO Y,HOSOKAWA H,et al.Deformation Characteristics at Elevated Temperature in Recycled 5083 Aluminum Alloy by Solid State Recycling[J].Materials Transactions,2005,46(12):2637-2640.
    [65]FOGAGNOLO J B,E.M.RUIZNAVAS E M,SIMON M A,MARTINEZ M A.Recycling of Aluminium Alloy and Aluminium Matrix Composite Chips by Pressing and Hot Extrusion[J].Journal of Materials.Processing Technology,2003,143/144:792-795.
    [66]LIU Y,LI Y Y,ZHANG D T,et al.Microstructure and Properties of AZ80Magnesium Alloy Prepared by Hot Extrusion from Recycled Machined Chips[J].Trans.Nonferrous Met.Soc.China,2002,12(5):882-885.
    [67]潘国如,张佩武,刘英.AZ80镁合金切屑回用的探讨[J].特种铸造及有色合金,2006(7):457-461.
    [68]WANG J Y,LIN Y N,CHANG T C,et al.Recycling the Magnesium Alloy AZ91D in Solid State[J].Materials Transactions,2006,47(4):1047-1051.
    [69]吉泽升,陈晓瑜,胡茂良,等.固相合成AZ91D镁合金的组织和性能[J].中国有色金属学报,2006,16(12):2010-2015.
    [70]HU M L,JI Z S,CHEN X Y,et al.Effect of Chip Size on Mechanical Property and Microstructure of AZ91D Magnesium Alloy Prepared by Solid State Recycling[J].Materials Characterization,2008,59(4):385-389.
    [71]JI Z S,HUM L,CHEN X Y.Fracture Analysis and Mechanical Property of AZ91D Magnesium Alloy Chips Prepared by Solid State Recycling[C].Proceedings of the 5~(th) International Conference on Fracture and Damage Mechanics,Harbin,2006,9:499-502.
    [72]MABUCHI M,KUBOTA K,HIGASHI K.New Recycling Process by Extrusion for Machined Chips of AZ91 Magnesium and Mechanical Properties of Extruded Bars[J].Materials Transactions,1995,36(10):1249-1254.
    [73]#12
    [74]#12
    [75]NAKANISHI M,MABUCHI M,SAITO N,et al.Tensile Properties of the ZK60 Magnesium Alloy Produced by Hot Extrusion of Machined Chip[J].Journal of Materials Science Letters,1998,17:2003-2005.
    [76]CHINO Y,KISHIHARA R,SHIMOJIMA K,et al.Superplasticity and Cavitation of Recycled AZ31 Magnesium Alloy Fabricated by Solid Recycling Process[J].Materials Transactions,2002,43(10):2437-2442.
    [77]CHINO Y,KOBATA M,SHIMOJIMA K,et al.Blow Forming of Mg Alloy Recycled by Solid-state Recycling[J].Materials Transactions,2004,45(2):361-364.
    [78]CHINO Y,LEE J S,YUSUKE S N,et al.Mechanical Properties of Mg-Al-Ca Alloy Recycled by Solid-state Recycling[J].Materials Transactions,2005,46(12):2592-2595.
    [79]CHINO Y,HOSHIKA T,MABUCHI M,et al.Enhanced Corrosion Properties of Pure Mg and AZ31 Mg Alloy Recycled by Solid-state Process[J].Materials Science and Engineering A,2006,435-436:275-281.
    [80]CHION Y,HOSHIKA T,MABUCHI M,et al.Mechanical and Corrosion Properties of AZ31 Magnesium Alloy Repeatedly Recycled by Hot Extrusion[J].Materials Transactions,2006,47(4):1040-1046.
    [81]陈振华.变形镁合金[M].北京:化学工业出版社,2004:1-5.
    [82]魏军.金属挤压机[M].北京:化学工业出版社,2006:10-21.
    [83]张静,潘复生,李忠盛.耐热镁合金材料的研究和应用现状[J].铸造,2004,53(10):770-774.
    [84]丁文江.镁合金科学与技术[M].北京:科学出版社,2007:5-8.
    [85]张青辉.耐热镁合金的组织与高温性能[D].成都:四川大学硕士学位论文.2007:1-3.
    [86]XU D K,LIU L,XU Y B,et al.The Fatigue Crack Propagation Behavior of the Forged Mg-Zn-Y-Zr Alloy[J].Journal of Alloys and Compounds,2007,431:107-111.
    [87]NISHIDA M,KAWAMURA Y,YAMAMURD T.Formation Process of Unique Microstructure in Rapidly Solidified Mg_(97)Zn_1Y_2 Alloy[J].Materials Science and Engineering A,2004,375-377:1217-1223.
    [88]ZHAO P,WANG Q D,ZHAI C Q,et al.Effects of Strontium and Titunium on the Microstructure,Tensile Properties and Creep Behavior of AM50Alloys[J].Materials Science and Engineering A,2007,444:318-326.
    [89]黄华勇.耐热镁合金的研究[D].重庆:重庆大学硕士学位论文,2005:9-17.
    [90]SMOLA B,MORDIKE B L.Significance of Stable and Metastable Phases in High Temperature Creep Resistant Magnesium-rare Earth Base Alloys[J].Journal of Alloys and Compounds,2004,378:196-201.
    [91]轻合金材料加工手册编写组.轻金属材料加工手册(上册)[M].北京:冶金工业出版社,1980:165-166.
    [92]王向东.挤压变形对AZ31B镁合金组织及力学性能的影响[D].太原:中北大学硕士论文,2007:31-33.
    [93]刘奎立.AZ31变形组织及力学性能的研究[D].太原:华北工学院硕士论文,2004:20-33.
    [94]MAC J,LIU M P,WU G H,et al.Tensile Properties of Extruded ZK60-RE Alloys[J].Materials Science and Engineering A,2003,349:207-212.
    [95]MUKAI T,YAMANOI M,WATANABE H,et al.Ductility Enhancement in AZ31 Magnesium Alloy by Controlling its Grain Structure[J].Scripta Materialia,2001,45:89-94.
    [96]HE S M,PENG L M,ZENG X Q,et al.Comparison of the Microstructure and Mechanical Properties of a ZK60 Alloy with and without 1.3wt.%Gadolinium Addition[J].Materials Science and Engineering A,2006,433:175-181.
    [97]LU Y Z,WANG Q D,DING W J,et al.Fracture Behavior of AZ91Magnesium Alloy[J].Materials Letters,2000,44:265-268.
    [98]KUMAR S.Some Studies on Hot Extrusion of Rapidly Solidified Mg Alloys[J].Journal of Materials Engineering and Performance,2006,15:41-46.
    [99]CHINO Y,NAKAURA Y,OHORI K,et al.Mechanical Properties at Elevated Temperature of a Hot-formed Mg-Al-Ca-Mn-Sr Alloy[J].Materials Science and Engineering A,2007,452-453:31-36.
    [100]BAI J,SUN Y S,XUE F,et al.Effect of Extrusion on Microstructures,and Mechanical and Creep Properties of Mg-Al-Sr and Mg-Al-Sr-Ca Alloys[J].Scripta Materialia,2006,55:1163-1166.
    [101]LIN L,WU W,YANG L,et al.Grain Boundary Sliding and Accommodation Mechanisms during Superplastic Deformatiom of ZK40Alloy Processed by ECAP[J].Journal of Materials Science,2006,41:409-415.
    [102]XU D K,LIU L,XU Y B,et al.The Crack Initiation Mechanism of the Forged Mg-Zn-Y-Zr Alloy in the Super-long Fatigue Life Regime[J].Scripta Materialia,2007,56:1-4.
    [103]YUAN G Y,LIU M P,DING W J,et al.Microstructure and Mechanical Properties of Mg-Zn-Si-based Alloys[J].Materials Science and Engineering A,2003,357:314-320.
    [104]WATANABE H,YAMAGUCHI M,TAKIGAWA Y,et al.Mechanical Properties of Mg-Al-Ca Alloy Processed by Hot Extrusion[J].Materials Science and Engineering A,2007,454-455:384-388.
    [105]ZHANG Z,TREMBLAY R,DUBE D.Microstructure and Mechanical Properties of ZAl04(0.3-0.6Ca) Die-casting Magnesium Alloys[J].Materials Science and Engineering A,2004,385:286-291.
    [106]ZHANG Y,ZENG X Q,LIU L F,et al.Effects of Yttrium on Microstructure and Mechanical Properties of Hot-extruded Mg-Zn-Y-Zr Alloys[J].Materials Science and Engineering A,2004,373:320-327.
    [107]TOKAJI K,KAMAKURA M,ISHIIZUMI Y,et al.Fatigue Behaviour and Fracture Mechanism of a Rolled AZ31 Magnesium Alloy[J].International Journal of Fatigue,2004,26:1217-1224.
    [108]WATANABE H,TAKARA A,SOMEKAWA H,et al.Effect of Texture on Tensile Properties at Elevated Temperatures in an AZ31 Magnesium Alloy[J].Scripta Materialia,2005,52:449-454.
    [109]WU W,WANG Y,ZENG X,et al.Effect of Neodymium on Mechanical Behavior of Mg-Zn-Zr Magnesium Alloy[J].Journal of Materials Science Letters,2003,22:445-447.
    [110]HIRAI K,SOMEKAWA H,TAKIGAWA Y,et al.Effects of Ca and Sr Addition on Mechanical Properties of a Cast AZ91 Magnesium Alloy at Room and Elevated Temperature[J].Materials Science and Engineering A,2005,403:276-280.
    [111]MOUSTAFA M A,SAMUEL F H,DOTY H W,et al.Effect of Solution Heat Treatment and Additives on the Hardness,Tensile Properties and Fracture Behaviour of Al-Si(A413.1) Automotive Alloys[J].Journal of Materials Science,2003,38:4523-4534.
    [112]PING D H,HONO K,NIE J F.Atom Probe Characterization of Plate-like Precipitates in a Mg-RE-Zn-Zr Casting Alloy[J].Scripta Materialia,2003,48:1017-1022.
    [113]MOHRI T,MABUCHI M,SAITO N,et al.Microstructure and Mechanical Properties of a Mg-4Y-3RE Alloy Processed by Thermo-mechanical Treatment[J].Materials Science and Engineering A,1998,257:287-294.
    [114]GAO X,HE S M,ZENG X Q,et al.Microstructure Evolution in a Mg-15Gd -0.5Zr(wt.%) Alloy during Isothermal Aging at 250℃[J].Materials Science and Engineering A,2006,431:322-327.
    [115]SINGH A,NAKAMURA M,WATANABE M,et al.Quasicrystal Strengthened Mg-Zn-Y Alloys by Extrusion[J].Scipta Materialia,2003,49:417-422.
    [116]GAO X,ZHU S M,MUDDLE B C,et al.Precipitation-hardened Mg-Ca-Zn Alloys with Superior Creep Resistance[J].Scripta Materialia,2005,53:1321-1326.
    [117]HE S M,ZENG X Q,PENG L M,et al.Precipitation in a Mg-10Gd-3Y-0.4Zr (wt.%) Alloy during Isothermal Aging at 250℃[J].Journal of Alloys and Compounds,2006,421:309-313.
    [118]路丽英,白朴存,张秀云,等.Al-Zn-Mg-Cu-1.5wt%Li合金的时效行为与组织特征[J].内蒙古工业大学学报,2006,25(1):35-38.
    [119]关绍康,曹文博,王迎新,等.Mg-8Zn-4Al-0.3Mn-xRE合金时效析出过程及其动力学[J].郑州大学学报(工学版).2003,24(2):1-5.
    [120]HE S M,ZENG X Q,PENG L M,et al.Microstructure and Strengthening Mechanism of High Strength Mg-10Gd-2Y-0.5Zr Alloy[J].Journal of Alloys and Compounds,2007,427:316-323.
    [121]肖阳,张新明,陈健美,等.Mg-15Gd-0.6Zr合金的组织与力学性能[J].中国有色金属学报,2006,16(11):1888-1894.
    [122]THIRUGNANAM A,SUKUMARAN K,PILLAI U T S,et al.Effect of Mg on the Fracture Characteristics of Cast Al-7Si-Mg Alloys[J].Materials Science and Engineering A,2007,445-446:405-414.
    [123]SUN F S,FROES F H.Effect of Mg on the Microstructure and Properties of TiAl Alloys[J].Materials Science and Engineering A,2003,345:255-261.
    [124]SONG J M,LUI T S,CHANG H W,et al.The Influence of Al Content and Annealing on Vibration Fracture Properties of Wrought Mg-Al-Zn Alloys[J].Scripta Materialia,2006,54:399-404.
    [125]LU Y Z,WANG Q D,ZENG X Q,et al.Effects of Rare Earths on the Microstructure,Properties and Fracture Behavior of Mg-Al Alloys[J]. Materials Science and Engineering A,2000,278:66-76.
    [126]SINGH A,WATANABE M,KATO A,et al.Microstructure and Strength of Quasicrystal Containing Extruded Mg-Zn-Y Alloys for Elevated Temperature Application[J].Materials Science and Engineering A,2004,385:382-396.
    [127]KHAN S A,MIYASHITA Y,MUTOH Y,et al.Influence of Mn Content on Mechanical Properties and Fatigue Behavior of Extruded Mg Alloys[J].Materials Science and Engineering A,2006,420:315-321.
    [128]潘国如,王顺成.AZ91镁合金挤压组织和性能研究[J].特种铸造及有色合金,2007,27(10):778-781.
    [129]BOEHLERT C J,KNITTEL K.The Microstructure,Tensile Properties,and Creep Behavior of Mg-Zn Alloys Containing 0-4.4wt.%Zn[J].Materials Science and Engineering A,2006,417:315-321.
    [130]HASSAN S F,HO K F,GUPTA M.Increasing Elastic Modulus,Strength and CTE of AZ91 by Reinforcing Pure Magnesium with Elemental Copper[J].Materials Letters,2004,58:2143-2146.
    [131]RAVIKUMAR N V,BLANDIN J J,DESRAYAUD C,et al.Grain Refinement in AZ91 Magnesium Alloy during Thermomechanical Processing[J].Materials and Engineering A,2003,359:150-157.
    [132]GUO X F,SHECHTMAN D.Reciprocating Extrusion of Rapidly Solidified Mg-6Zn-1Y-0.6Ce-0.6Zr Alloy[J].Journal of Materials Processing Technology,2007,187-188:640-644.
    [133]LANGDON T G.An Analysis of Flow Mechanisms in High Temperature Creep and Superplasticity[J].Materials Transactions,2005,46(9):1951-1956.
    [134]HAYES R,TELLKAMP V,LAVERNIA E.A Preliminary Creep Study of a Bulk Nanocrystalline Al-Mg Alloy[J].Scripta Materialia,1999,41(7):743-748.
    [135]KIM H K,KIM W J.Creep Behavior of AZ31 Magnesium Alloy in Low Temperature Range between 423K and 473K[J].Journal of Materials Science,2007,42:6171-6176.
    [136]SMOLA B,STULIKOVA I,PELCOVA J,et al.Significance of Stable and Metastable Phases in High Temperature Creep Resistant Magnesium-rare earth Base Alloys[J].Journal of Alloys and Compounds,2004,378:196-201.
    [137]REGEV M,AGHION E,ROSEN A.Creep Studies of AZ91D Pressure Die Casting[J].Materials Science and Engineering A,1997,234-236:123-126.
    [138]SUZUKI M,KIMURA T,KOIKE J,et al.Strengthening Effect of Zn in Heat Resistant Mg-Y-Zn Solid Solution Alloys[J].Scripta Materialia,2003,48:997-1002.
    [139]BOEHLERT C J.The Tensile and Creep Behavior of Mg-Zn Alloys with and without Y and Zr as Ternary Elements[J].Journal of Materials Science,2007,42:3675-3684.
    [140]JAIN C C,KOO C H.Creep and Corrosion Properties of the Extruded Magnesium Alloy Containing Rare Earth[J].Materials Transactions,2007,48(2):265-272.
    [141]BAI J,SUN Y S,XUN S,et al.Microstructure and Tensile Creep Behavior of Mg-4Al Based Magnesium Alloys with Alkaline-earth Elements Sr and Ca Additions[J].Materials Science and Engineering A,2006,419:181-188.
    [142]JAIN C C,KOO C H.Creep Behavior of Extruded Sheets of Magnesium Alloys Containing La-Rich Mischmetal[J].Materials Transactions,2006,47(2):433-439.
    [143]黄晓峰,毛祖莉,阎峰云,等.钇对Mg-9Al-1Si合金蠕变抗力和微观组织的影响[J].中国稀土学报,2006,24(4):480-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700