结构和组织不均匀性对无铅微焊点电迁移行为影响的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代电子产品向微型化、多功能化和高可靠性方向的快速发展对高密度封装的需求越来越急迫,为此必须不断减小互连焊点尺寸和互连间距。随着焊点尺度的减小,焊点中承载的密度越来越高的电流驱使微焊点中金属原子发生定向扩散迁移,即出现电迁移现象。电迁移可导致焊点微观组织中出现偏聚和粗化、空洞和裂纹、小丘和晶须以及焊点界面金属间化合物(Intermetal compound,IMC)层发生极性或异常极性生长等,上述变化可恶化焊点的力学性能、降低焊点的可靠性,甚至直接导致焊点断裂而引发电连接断路等;因此,研究微焊点中的电迁移行为具有重要意义。目前虽有不少关于电迁移问题的研究,但关于微焊点自身的结构和微观组织不均匀性对电迁移行为影响的研究还非常缺乏。针对上述问题,本论文研究首先利用自行设计的直角型焊点,通过对比研究直角型和线型Cu/Sn-58Bi/Cu焊点中的电迁移现象,阐明了焊点结构不均匀性对原子扩散迁移微观机制的影响;然后通过对比研究热时效条件下Cu/Sn/Cu、Cu/Sn-3.5Ag/Cu和Cu/Sn-3.0Ag-0.5Cu/Cu三类焊点中的电迁移行为,阐明了钎料成分差异影响电迁移扩散通量和Cu基底晶体特性影响阴极局部溶解的微观机理;还对Cu/Sn-3.0Ag-0.5Cu/Cu焊点两侧存在不同厚度IMC层时的电迁移行为进行了系统研究,揭示了不同初始厚度的界面IMC层在电迁移作用下的演变规律;最后研究了Cu/Sn-58Bi/Cu线型焊点中含有半开放式界面微气孔(空洞)时的电迁移行为,探讨了电迁移过程中微气孔对原子扩散迁移和缺口周围裂纹形成过程影响的微观机制。
     研究结果表明,沿电流方向具有非对称结构的Cu/Sn-58Bi/Cu直角型焊点中电流向微区电阻较小的底部尖角处聚集而形成电流拥挤,导致底部尖角附近产生严重的电迁移问题,表现为阳极侧小丘和裂纹共存、阴极侧凹陷和裂纹同时出现以及Sn/Bi两相完全分离等;随离尖角距离增大上述问题越来越弱,分析结果表明直角型焊点中不均匀分布的微区电阻是导致尖角附近出现电流拥挤并产生严重电迁移问题的根本原因;由于表面Sn原子氧化后形成的氧化膜对扩散组元Bi原子的抑制,焊点内部的物相偏聚和裂纹等缺陷远比表面严重;电迁移后Cu/Sn-58Bi/Cu焊点中阳极侧体积明显增大,其原因为Bi原子数量的增加以及Bi原子本身体积较大(为21.3cm3/mol,Sn原子体积为16.3cm3/mol)而引起阳极侧物相体积增大,电迁移程度越严重则体积增大越多。
     对热时效条件下Cu/Sn/Cu、Cu/Sn-3.5Ag/Cu和Cu/Sn-3.0Ag-0.5Cu/Cu三类焊点中电迁移行为的研究结果表明,电流作用下三种焊点的阳极界面IMC层生长受Cu原子的电迁移扩散通量控制、电迁移扩散系数依次降低,钎料中的Ag元素与Sn反应后生成的细小Ag3Sn颗粒分布于Sn晶界中形成的网状组织对扩散组元Cu原子的抑制作用是引起扩散系数依次降低的微观机制。阴极侧Cu基底晶粒的(020)晶面垂直或近似垂直于电流方向可引起严重的局部溶解,而(111)或(111)晶面垂直或近似垂直于电流方向时局部溶解可以得到抑制,其本质原因是(111)和(111)晶面上的原子释放率要低于(020)晶面。阴
     极侧较高的形核率、充足的Sn和Cu原子供应致使该侧Cu3Sn层中新生成的晶粒多为等轴晶,而阳极侧Sn原子的缺乏导致新生成的Cu3Sn多为柱状晶。对Cu/Sn-3.0Ag-0.5Cu/Cu焊点两侧存在不同厚度IMC层时电迁移行为的研究结果表明,阴极侧IMC层较厚而阳极侧IMC层较薄时焊点的抗电迁移性能优于阴极侧IMC较薄而阳极侧IMC较厚时的情况。阴极界面IMC层的初始厚度存在临界值,如果初始厚度小于临界值,电流作用下其厚度先增加后减小,而大于临界值时则不断减小;由浓度梯度引起的流入阴极侧IMC层中的化学扩散通量和由电流应力导致的从IMC层中流出的电迁移扩散通量之间的平衡关系是存在临界厚度的微观机制。Cu原子在垂直于电流方向的截面上扩散并不均匀,在阳极界面前沿局部位置聚集后与周围Sn原子反应生成Cu6Sn5相并引发体积膨胀,若新生成的Cu6Sn5相的截面积较小且离焊点表面较近则容易引起焊点表面出现明显小丘,否则表面出现轻微凸起。新生成的Cu6Sn5相还可导
     致阳极附近形成压应力,在压应力作用下空位沿着与电子流相反的方向向Cu/Cu3Sn界面和IMC层内扩散迁移,聚集后在界面附近和IMC层中形成空洞。对Cu/Sn-58Bi/Cu线型焊点中含有半开放式界面微气孔时的电迁移行为的研究结果表明,气孔的缺口尖角周围容易形成微裂纹且尖角两侧原子的聚集程度存在差异,分析表明尖角对Bi原子的阻滞作用是造成上述现象的主要原因。内壁光滑的气孔对原子的扩散迁移影响较小,Bi原子可以顺利通过内壁光滑的气孔周围的钎料组织;同时,由于气孔减小了焊点的有效接触面积,当气孔在阴极侧附近时电迁移后阳极富Bi层厚度有增加的趋势。
The rapid development of modern electronic devices and products towardsminiaturization, multifunction and high reliability has brought about increasingly urgentdemand for high density electronic packaging, accordingly the pitch size and dimension ofsolder interconnects have been continuously scaling down. With decreasing the dimension ofsolder interconnects, the current density applied to solder interconnects gets higher andhigher, leading to the electromigration (EM) problem, i.e., the directional migration of theatoms under high-density current stressing. During EM, the microstructure of solderinterconnect will be significantly changed and a number of structural problems may occur,such as microstructure coarsening, voiding, cracking, formation of hillocks and whiskers, andthe intermetallic compound (IMC) polarity or abnormal polarity growth, which can cause agradual deterioration of the mechanical property and reliability of solder interconnect, evencan directly lead to the fracture of interconnects and the open circuit. Therefore, the study ofEM in solder interconnects is significantly important for the reliability of electronic products.Thus far, considerable studies focused on the microstructure evolution and failure mechanismof solder interconnects during EM. However, there is a severe lack of attention looking at theinfluence of inhomogeneous configuration and microstructure on EM behavior of solderinterconnects. To clarify these issues, in this thesis study, a right-angle-type solderinterconnect is designed and fabricated to investigate the EM behavior of the interconnect incomparison with the line-type solder interconnect. The focus is placed on clarifying theinfluence of the inhomogeneity of interconnects’ configuration on the mechanism of theatomic diffusion under current stressing. Then, the EM behavior in Cu/Sn/Cu,Cu/Sn-3.5Ag/Cu and Cu/Sn-3.0Ag-0.5Cu/Cu line-type solder interconnects under thermalaging condition was comparatively studied to reveal the mechanism of influence of thecomposition of solder alloys on the EM diffusion flux and the effect of the crystallinecharacteristics of Cu substrate on the cathodic dissolution. Further, the effect of the IMClayers, which existed initially at the two interfaces of a solder interconnect with unequalthicknesses, on the EM behavior of Cu/Sn-3.0Ag-0.5Cu/Cu solder interconnect was studiedsystematically to clarify the evolution of the interfacial IMC layers during EM. Finally, theEM behavior of the Cu/Sn-58Bi/Cu line-type solder interconnects containing the microscalesemi-open interfacial void was investigated and the influence of the void on the atomicdiffusion and the formation of the microcrack near the edge-notch of the void wascharaterized.
     The results show that the electric current easily flows into the microregion with smallerelectrical resistance, which locates at the bottom corner of the right-angle-typeCu/Sn-58Bi/Cu solder interconnect with inhomogeneous configuration, leading to the currentcrowding which further brings about the severe EM problem in terms of co-existence ofhillocks and cracks at the anode together with the concaves and cracks at the cathode and thecomplete segregation of Bi-rich and Sn-rich phases. The amount of these EM induced defectsdecreses with the distance away from the bottom corner. It has been shown that theinhomogeneous distribution of microregional resistance in the right-angle-type solderinterconnect is the key factor resulting in the current crowding effect and consequently thesevere EM problem at the bottom corner. Due to the suppression effect of superficial film oftin on the diffusion of Bi aotms, the segregation of Bi/Sn phases and cracking in the innermicrostructure of solder interconnect are much severer than that on the surface. The phasevolume near the anode of Cu/Sn-58Bi/Cu solder interconnect expands obviously after currentstressing, owing to the increasing quantity of Bi atom which has a larger atomic volume (21.3cm3/mol) than Sn atom (16.3cm3/mol). Apparently, serverer EM results in the increasingvolume expansion at the anode.
     The results of characterization of the EM behavior of Cu/Sn/Cu, Cu/Sn-3.5Ag/Cu andCu/Sn-3.0Ag-0.5Cu/Cu solder interconnects under thermal aging condition show that thegrowth of the interfacial IMC layer at the anode is controlled by the EM diffusion coefficientof Cu atom, which decreases orderly in three solder interconnects. The decreasing diffusioncoefficient is due to the blocking effect of the network structure of fine Ag3Sn particlessurrounding primary β-Sn phase grains on the diffusion Cu atoms. The results of selected areadiffraction patterns (SADPs) reveal that when the (020)plane of the copper grain in thecathodic substrate adjacent to the Cu3Sn/Cu interface is vertical or nearly vertical to thecurrent direction, severer cathodic dissolution occurs while the local dissolution hardly takingplace at the (111)or (111) plane, and this is resulted from the difference of the release rateof Cu atoms along different crystallographic planes. At the cathode, high nucleation rate andsurfacient supply of Sn and Cu atoms bring to the equiaxed Cu3Sn grains while less supply of
     Sn atoms at the anode leads to columnar grains.The results of the investigation of the influence of unequal thcknesses of IMC layersexisting at both anode and cathode on the EM behavior in Cu/Sn-3.0Ag-0.5Cu/Cu solderinterconnects manifest that for the interconnects with a thick IMC layer at the cathode and athin IMC layer at the anode, the electromigration becomes less severer compared to those with a thick IMC layer at the anode and a thin IMC at the cathode. There is a critical value ofthe initial IMC layer thickness at the cathode, below which the IMC layer grows firstly andthen decreases during EM, while above which the IMC layer at the cathode decreasesmonotonically. This is because there is an equilibrium relationship between the inflow fluxinduced by the chemical potential gradient and the outflow flux induced by the currentstressing during EM. The migration (diffusion) of Cu atoms takes place non-uniformly in thecrosssection of the solder joint under current stressing. Cu atoms easily migrate andcongregate at the anode and react with Sn atoms there, consequently Cu6Sn5IMC forms. Thenewly formed Cu6Sn5phase can lead to the volume expansion at the anode, which in turnbrings about obvious hillocks or tiny protrusions depending on the location of the Cu6Sn5phase formed either near or beneath the surface of the interconnect. In addition, the newlyformed Cu6Sn5phase also results in the compressive stress near the anode, which drivesvacancies to migrate towards the anodic Cu/Cu3Sn interface and IMC layer along the oppositedirection of electron current, and then congregate there, and finially the voids form near theinterface and in the IMC layer.
     The results of the study on the influence of the microscale semi-open void pre-existing atthe interface on the EM behavior of Cu/Sn-58Bi/Cu line-type solder interconnect show thatthe sharp notch of the void can easily result in congregation of Bi atoms and further lead tothe formation of cracks. The supressing effect of the sharp tip at the void on migration of Biatoms is the key factor resulting in those EM defects. Because the smooth inner surface of thevoid has little influence on atom migration, Bi atoms can pass smoothly across the soldermatrix near the void. Meanwhile, the presence of the void near the cathode side results inthickening of the layer of Bi-riched phase at the anode, owing to the reduction of the effectivecontact area.
引文
[1] Abtew M., Selvaduray G. Lead-free solders in microelectronics [J]. Materials Science andEngineering-R,2000,27(5-6):95-141.
    [2] Zeng K., Tu K.N. Six cases of reliability study of Pb-free solder joints in electronicpacking technology [J]. Materials Science and Engineering-R,2002,38(2):55-105.
    [3] Tu K.N., Gusak A.M., Li M. Physics and materials challenges for lead-free solders [J].Journal of Applied Physics,2003,93(3):1335-1353.
    [4]张新平,尹立孟,于传宝.电子和光子封装无铅钎料的研究和应用进展[J].材料研究学报,2008,22(1):1-9.
    [5]菅沼克昭,著;宁晓山,译.无铅焊接技术[M].北京:科学出版社,2004.
    [6] Tu K.N. Recent advances on electromigration in very-large-scale-integration ofinterconnects [J]. Journal of Applied Physics,2003,94(9):5451-5473.
    [7] Chan Y.C., Yang D. Failure mechanisms of solder interconnects under current stressing inadvanced electronic packages [J]. Progress in Materials Science,2010,55:428-475.
    [8] Ho P.S., Kwok T. Electromigration in metals [J]. Reports on Progress in Physics,1989,52:301-348.
    [9] Brandenburg S, Yeh S. Electromigration studies of flip chip bump solder joints [A].Proceedings of the surface mount international conference and exhibition. San Jose (CA):SMI,1998:337-344.
    [10] Assembly and packaging section. In: International technology roadmap forsemiconductors. San Jose: Semiconductor Industry Association,2002.
    [11] Matin M.A., Vellinga W.P., Geers M.G.D. Aspects of coarsening in eutectic Sn–Pb [J].Acta Materialia,2004,52(12):3475-3482.
    [12] Wu B.Y., Alam M.O., Chan Y.C., et al. Joule heating enhanced phase coarsening in theSn37Pb and Sn3.5Ag0.5Cu solder joints during current stressing [J]. Journal ofElectronic Materials,2008,37(4):469-476.
    [13] Gan H., Tu K.N. Polarity effect of electromigration on kinetics of intermetalliccompound formation in Pb-free solder V groove samples [J]. Journal of Applied Physics,2005,97:063514.
    [14] Zhang X.F., Guo J.D., Shang J.K. Abnormal polarity effect of electromigration onintermetallic compound formation in Sn-9Zn solder interconnect [J]. Scripta Materialia,2007,57(6):513-516.
    [15] Lin Y.H., Hu Y.C., Tsai C.M., et al. In situ observation of the void formation andpropagation mechanism in solder joints under current stressing [J]. Acta Materialia,2005,53(7):2029-2035.
    [16] Liang S.W., Chang Y.W., Shao T.L., et al. Effect of three-dimensional current andtemperature distributions on void formation and propagation in flip chip solder jointsduring electromigration [J]. Applied Physics Letters,2006,89:022117.
    [17] Tu K.N. Irreversible processes of spontaneous whisker growth in bimetallic Cu-Snthin-film reactions [J]. Physical Review B,1994,49(3):2030-2034.
    [18] Ouyang F.Y., Chen K., Tu K.N., et al. Effect of current crowding on whisker growth atthe anode in flip chip solder joints [J]. Applied Physics Letters,2007,91:231919.
    [19] Ren F., Nah J.W., Tu K.N., et al. Electromigration induced ductile-to-brittle transition inlead-free solder joints [J]. Applied Physics Letters,2006,89:141914.
    [20] Yeh E.C.C., Choi W.J., Tu K.N., et al. Current-crowding-induced electromigrationfailure in flip chip solder joints [J]. Applied Physics Letters,2002,80(4):580-582.
    [21]尹立孟.电子封装微互连焊点力学性能的尺寸效应与电迁移研究[D].广州:华南理工大学,2009.
    [22]田民波,编著.电子封装工程[M].北京:清华大学出版社,2003.
    [23]中国电子学会生产技术学分会丛书编委会组编.微电子封装技术[M].合肥:中国科学技术大学出版社,2005.
    [24] Rizvi M. J., Bailey C., Chan Y.C., et al. Effect of adding0.3wt%Ni into the Sn-0.7wt%Cu solder-Part I: Wetting behavior on Cu and Ni substrates [J]. Journal of Alloysand Compounds,2007,438(1/2):116-121.
    [25] Rizvi M. J., Bailey C., Chan Y.C., et al. Effect of adding0.3wt%Ni into the Sn-0.7wt%Cu solder-Part II: Growth of intermetallic layer with Cu during wetting and aging[J]. Journal of Alloys and Compounds,2007,438(1/2):122-128.
    [26] Ventura T., Gourlay C.M., Nogita K., et al. The influence of0-0.1wt.%Ni on themicrostructure and fluidity length of Sn-0.7Cu-xNi [J]. Journal of Electronic Materials,2008,37(1):32-39.
    [27] Wang J.X., Xue S.B., Han Z.J., et al. Effects of rare earth Ce on microstructures,solderability of Sn-Ag-Cu and Sn-Cu-Ni solders as well as mechanical properties ofsoldered joints [J]. Journal of Alloys and Compounds,2009,467(1/2):219-226.
    [28] Wiese S., Wolter K.J. Microstructure and creep behaviour of eutectic SnAg and SnAgCusolders [J]. Microelectronics Reliability,2004,44(12):1923-1931.
    [29] Suraski D., Seelig K. The current status of lead-free solder alloys [J], IEEE Transactionson Electronics Packaging Manufacturing,2001,24(4):244-248.
    [30] Pandher R.S., Lewis B.G., Vangaveti R., et al. Drop shock reliability of lead-free alloys-effect of micro-additives [A]. Proceedings of57thElectronic Components andTechnology Conference [C], Nevada, USA: IEEE,2007:669-676.
    [31] Suh D., Kim D.W., Liu P., et al. Effects of Ag content on fracture resistance ofSn-Ag-Cu lead-free solders under high-strain rate conditions [J]. Materials Science andEngineering-A,2007,460-461:595-603.
    [32] Terashima S., Tanaka M. Thermal fatigue properties of Sn-1.2Ag-0.5Cu-xNi flip chipinterconnects [J]. Materials Transactions,2004,45(3):681-688.
    [33] Terashima S., Kariya Y., Tanaka M. Improvement on thermal fatigue properties ofSn-1.2Ag-0.5Cu flip chip interconnects by nickel addition [J]. Materials Transactions,2004,45(3):673-680.
    [34] Kariya Y., Hosoi T., Kimura T., et al. Low cycle fatigue properties of Ni added lowsilver content Sn-Ag-Cu flip chip interconnects [J]. Materials Transactions,2004,45(3):689-694.
    [35]李擘,史耀武,夏志东,等.添加微量稀土元素的SnAgCu无铅钎料的研究[J].电子工艺技术,2004,25(5):193-198.
    [36] Shnawah D.A., Said S.B.M., Sabri M.F.M., et al. High-reliability low-Ag-contentSn-Ag-Cu solder joints for electronics applications [J]. Journal of Electronic Materials,2012,41(9):2631-2658.
    [37] Zhang X.P., Lim C.S.H., Mai Y.W., et al. Thermal fatigue and creep fracture behaviorsof a nanocomposite solder in microelectronic/optoelectronic packaging [J]. KeyEngineering Materials,2006,312:237-242.
    [38] Ma L., Tai F., Xu G., et al. Effects of processing and amount of Co addition on shearstrength and microstructural development in the Sn-3.0Ag-0.5Cu solder joint [J].Journal of Electronic Materials,2011,40(6):1416-1421.
    [39] Seraphim D.P., Lasky R.C., Li C.Y.(editor). Principles of electronic packaging [M].New York: McGraw-Hill,1989.
    [40] Bernstein L. Semiconductor joining by the solid-liquid-interdiffusion (SLID) process [J].Journal of the Electrochemical Society,1966,113(12):1282-1288.
    [41] Handwerker C., Katnner U., Moon K.W., Fundamental Properties of Pb-free SolderAlloys [M]. New York: Springer-Verlag,2007.
    [42]张新平,于传宝,张宇鹏,等.两种无铅钎料的抗蠕变性能及与Sn60Pb40钎料的比较[J].焊接学报,2007,28(2):1-4.
    [43] Kim K.S., Huh S.H., Suganuma K. Effects of cooling speed on microstructure andtensile properties of Sn-Ag-Cu alloys [J]. Materials Science and Engineering-A,2002,333(1-2):106-114.
    [44] Kim K.S., Huh S.H., Suganuma K. Effects of intermetallic compounds on properties ofSn-Ag-Cu lead-free soldered joints [J]. Journal of Alloys and Compounds,2003,352(1-2):226-236.
    [45] Kang S.K., Shih D.Y., Leonard D., et al. Controlling Ag3Sn plate formation innear-ternary-eutectic Sn-Ag-Cu solder by minor Zn alloying [J]. JOM Journal of theMinerals, Metals and Materials Society,2004,56(6):34-38.
    [46] Ochoa F., Williams J.J., Chawla N. The effects of cooling rate on microstructure andmechanical behavior of Sn-3.5Ag solder [J]. JOM Journal of the Minerals, Metals andMaterials Society,2003,55(6):56-60.
    [47] Laurila T., Vuorinen V., Kivilahti J.K. Interfacial reactions between lead-free solders andcommon base materials [J]. Materials Science and Engineering-R,2005,49(1-2):1-60.
    [48] Laurila T., Vuorinen V., Paulasto-Kr ckel M. Impurity and alloying effects on interfacialreaction layers in Pb-free soldering [J]. Materials Science and Engineering-R,2010,68(1-2):1-38.
    [49] Tu K.N. Cu/Sn interfacial reactions: thin-film case versus bulk case [J]. MaterialsChemistry and Physics,1996,46(2-3):217-223.
    [50] Kajihara M. Analysis of kinetics of reactive diffusion in a hypothetical binary system [J].Acta Materialia,2004,52(5):1193-1200.
    [51] Sakama T., Kajihara M. Kinetics of reactive diffusion between Pd-Ag alloys and Sn atsolid-state temperatures [J]. Journal of Alloys and Compounds,2009,475(1-2):608-613.
    [52] Yao P., Liu P., Liu J. Interfacial reaction and shear strength of SnAgCu-xNi/Ni solderjoints during aging at150oC [J]. Microelectronic Engineering,2009,86(10):1969-1974.
    [53] Gong J.C., Liu C.Q., Conway P.P., et al. Evolution of CuSn intermetallics betweenmolten SnAgCu solder and Cu substrate [J]. Acta Materialia,2008,56(16):4291-4297.
    [54] Gong J.C., Liu C.Q., Conway P.P., et al. Initial formation of CuSn intermetalliccompounds between molten SnAgCu solder and Cu substrate [J]. Scripta Materialia,2009,60(5):333-335.
    [55] Park M.S., Arróyave R. Early stages of intermetallic compound formation and growthduring lead-free soldering [J]. Acta Materialia,2010,58(14):4900-4910.
    [56] Zhou M.B., Ma X., Zhang X.P. Early interfacial reaction and formation of intermetalliccompounds in the Sn-3.5Ag/Cu soldering system [J]. Journal of Electronic Materials,2011,40(2):189-194.
    [57]周敏波.无铅微互连焊点形成过程中早期界面反应和过冷凝固行为研究[D].广州:华南理工大学,2012.
    [58]李勋平,周敏波,夏建民,等.界面耦合作用Cu(Ni)/Sn-Ag-Cu/Cu(Ni) BGA焊点界面IMC形成与演化的影响[J].金属学报,2011,47(5):611-619.
    [59]李勋平. BGA结构Cu(Ni)/Sn-3.0Ag-0.5Cu/Ni(Cu)微焊点显微组织形成和演化及剪切断裂行为的尺寸效应[D].广州:华南理工大学,2011.
    [60] Chen H.T., Wang C.Q., Li M.Y., et al, Effect of Cu diffusion through Ni on theinterfacial reactions of Sn3.5Ag0.75Cu and SnPb solders with Au/Ni/Cu substrateduring aging [J]. Materials Letters,2006,60:1669-1672.
    [61] Chen H.T., Wang C.Q., Li M.Y., Numerical and experimental analysis of theSn3.5Ag0.75Cu solder joint reliability under thermal cycling [J]. MicroelectronicsReliability,2006,46:1348-1356.
    [62] Puttlitz K.J., Galyon G.T. Impact of the ROHS directive on high-performance electronicsystems, Part I: need for lead utilization in exempt systems [J]. Journal of MaterialsScience: Materials in Electronics,2007,18:331-346.
    [63] Puttlitz K.J., Galyon G.T. Impact of the ROHS directive on high-performance electronicsystems Part II: key reliability issues preventing the implementation of lead-free solders[J]. Journal of Materials Science: Materials in Electronics,2007,18:347-365.
    [64] Kinyanjui R., Lehman L.P., Zavalij L., et al. Effect of sample size on the solidificationtemperature and microstructure of SnAgCu near eutectic alloys [J]. Journal of MaterialsResearch,2005,20(11):2914-2918.
    [65] Huang Y.C., Chen S.W., Wu K.S. Size and substrate effects upon undercooling ofPb-free solders [J]. Journal of Electronic Materials,2010,39(1):109-114.
    [66] Zimprich P., Betzwar-Kotas A., Khatibi G., et al. Size effects in small scaled lead-freesolder joints [J]. Journal of Materials Science: Materials in Electronics,2008,19(4):383-388.
    [67] Yin L.M., Zhang X.P., Lu C. Size and volume effects on the strength of microscalelead-free solder joints [J]. Journal of Electronic Materials,2009,38(10):2179-2183.
    [68] Li X.P., Xia J.M., Zhou M.B., et al. Solder volume effects on the microstructureevolution and shear fracture behavior of ball grid array structure Sn-3.0Ag-0.5Cu solderinterconnects [J]. Journal of Electronic Materials,2011,40(12):2425-2435.
    [69] Kim K.S., Huh S.H., Suganuma K. Effects of fourth alloying additive onmicrostructures and tensile properties of Sn-Ag-Cu alloy and joints with Cu [J].Microelectronics Reliability,2003,43(2):259-267.
    [70] Lee J.S., Chu K.M., Patzelt R., et al. Effects of Co addition in eutectic Sn-3.5Ag solderon shear strength and microstructural development [J]. Microelectronic Engineering,2008,85(7):1577-1583.
    [71] Lin L.W., Song J.M., Lai Y.S., et al. Alloying modification of Sn-Ag-Cu solders bymanganese and titanium [J]. Microelectronics Reliability,2009,49(3):235-241.
    [72] Huntington H.B., Grone A.R. Current-induced marker motion in gold wires [J]. Journalof Physics and Chemistry of Solids,1961,20(1-2):76-87.
    [73] Wu B.Y., Zhong H.W., Chan Y.C., et al. Degradation of Sn37Pb and Sn3.5Ag0.5Cusolder joints between Au/Ni (P)/Cu pads stressed with moderate current density [J].Journal of Materials Science: Materials in Electronics,2006,17(11):943-950.
    [74] Ye H., Basaran C., Hopkins D.C. Pb phase coarsening in eutectic Pb/Sn flip chip solderjoints under electric current stressing [J]. International Journal of Solids and Structures,2004,41:2743-2755.
    [75] Yang Q.L., Shang J.K. Interfacial segregation of Bi during current stressing ofSn–Bi/Cu solder interconnect [J]. Journal of Electronic Materials,2005,34:1363-1367.
    [76] Chen L.T., Chen C.M. Electromigration study in the eutectic SnBi solder joint on theNi/Au metallization [J]. Journal of Materials Research,2006,21(4):962-969.
    [77] Gupta D., Vieregge K., Gust W. Interface diffusion in eutectic Pb-Sn solder [J]. ActaMaterialia,1998,47(1):5-12.
    [78] Nah J.W., Kim J.H., Lee H.M., et al. Electromigration in flip chip solder bump of97Pb3Sn/37Pb63Sn combination structure [J]. Acta Materialia,2004,52(1):129-136.
    [79] Yoon M.S., Lee S.B., Kim O.H., et al. Relationship between edge drift and atomicmigration during electromigration of eutectic SnPb lines [J]. Journal of Applied Physics,2006,100:033715.
    [80] Ho C.E., Lee A., Subramanian K.N., et al. Early stage of material movements in eutecticSnPb solder joint undergoing current stressing at150°C [J]. Applied Physics Letters,2007,91:021906.
    [81] Chiu S.H., Chen C. Investigation of void nucleation and propagation duringelectromigration of flip-chip solder joints using X-ray microscopy [J]. Applied PhysicsLetters,2006,89:262106.
    [82] Chang Y.W., Liang S.W., Chen C. Study of void formation due to electromigration inflip-chip solder joints using Kelvin bump probes [J]. Applied Physics Letters,2006,89:032103.
    [83] Chang Y.W., Chiang T.H., Chen C. Effect of void propagation on bump resistance dueto electromigration in flip-chip solder joints using Kelvin structure [J]. Applied PhysicsLetters,2007,91:132113.
    [84] Liu C.Y., Chen C., Tu K.N. Electromigration in Sn-Pb solder strips as a function ofalloy composition [J]. Journal of Applied Physics,2000,88(10):5703-5709.
    [85]何洪文,徐广臣,郭福. Cu/Sn-58Bi/Cu焊点在电迁移过程中晶须和小丘的生长[J].金属学报,2009,45(6):744-748.
    [86] Kuo S.M., Lin K.L. The hillock formation in a Cu/Sn-9Zn/Cu lamella upon currentstressing [J]. Journal of Electronic Materials,2007,36(10):1378-1382.
    [87] Lin Y.W., Kao C.R. Tin whisker growth induced by high electron current density [A].Microsystems, Packaging, Assembly and Circuits Technology [C]. Taipei, Taiwan:2007:62-65.
    [88] Chen C.M., Chen S.W. Electromigration effect upon the Sn-0.7wt%Cu/Ni and Sn-3.5wt%Ag/Ni interfacial reactions [J]. Journal of Applied Physics,2001,90(3):1208-1214.
    [89] Chen C.C., Chen S.W., Chang C.H. Electromigration effects upon the Sn/Ni-7wt%Vinterfacial reactions [J]. Journal of Applied Physics,2008,103:063518.
    [90] Xu L.H., Pang H.L., Ren F., et al. Electromigration effect on intermetallic growth andYoung’s modulus in SAC solder joint [J]. Journal of Electronic Materials,2006,35(12):2116-2125.
    [91] Chae S.H., Zhang X.F., Lu K.H., et al. Electromigration statistics and damage evolutionfor Pb-free solder joints with Cu and Ni UBM in plastic flip-chip packages [J]. Journalof Materials Science: Materials in Electronics,2007,18:247-258.
    [92] Gu X., Yang D., Chan YC., et al. Effects of electromigration on the growth ofintermetallic compounds in Cu/SnBi/Cu solder joint [J]. Journal of Materials Research,2008,23(10):2591-2916.
    [93] Lee T.Y., Tu K.N., Kuo S.M., et al. Electromigration of eutectic SnPb solderinterconnects for flip chip technology [J]. Journal of Applied Physics,2001,89:3189-3194.
    [94] Chao B., Zhang X.F., Chae S.H., et al. Recent advances on kinetic analysis ofelectromigration enhanced intermetallic growth and damage formation in Pb-free solderjoints [J]. Microelectronics Reliability,2009,49:253-263.
    [95]尹立孟,张新平.电迁移致无铅钎料微互连焊点的脆性蠕变断裂行为[J].电子学报,2009,37(2):253-257.
    [96] Lee J.H., Lee Y.D., Park Y.B., et al. Joule heating effect on the electromigrationlifetimes and failure mechanisms of Sn–3.5Ag solder bump [A]. Proceedings of the57thElectronic Components and Technology Conference. Reno (NV): IEEE,2007:1436-1441.
    [97] Chiang K.N., Lee C.C., Lee C.C., et al. Current crowding-induced electromigration inSnAg3.0Cu0.5microbumps [J]. Applied Physics Letters,2006,88:072102.
    [98] Choi W.J., Yeh E.C.C., Tu K.N. Mean-time-to-failure study of flip chip solder joints onCuNi(V)Al thin film under bump metallization [J]. Journal of Applied Physics,2003,94:5665-5671.
    [99] Ding M., Wang G., Chao B., et al. Effect of contact metallization on electromigrationreliability of Pb-Free solder joints [J]. Journal of Applied Physics,2006,99:094906.
    [100] Chiu S.H., Shao T.L., Chen C., et al. Infrared microscope of hot spots induced by Jouleheating in flip-chip SnAg solder joints under accelerated electromigration [J]. AppliedPhysics Letters,2006,88:022110.
    [101] Liang S.W., Chiu S.H., Chen C. Effect of Al-trace degradation on Joule heating duringelectromigration in flip-chip solder joints [J]. Applied Physics Letters,2007,90:082103.
    [102] Liang S.W., Chang Y.W., Chen C. Effect of Al-trace dimension on Joule heating andcurrent crowding in flip-chip solder joints under accelerated electromigration [J].Applied Physics Letters,2006,88:172108.
    [103] Dyson B.F., Anthony T.R., Turnbull D. Interstitial diffusion of copper in tin [J].Applied Physics Letters,1967,38:3408.
    [104] Kwon Y.M., Paik K.W. Electromigation of Pb-free solder flip chip using electrolessNi-P/Au UBM [A]. Proceedings of57thElectronic Components and TechnologyConference [C], Nevada, USA: IEEE,2007:1472-1477.
    [105] Chen C.M., Huang C.C. Effects of silver doping on electromigration of eutectic SnBisolder [J]. Journal of Alloys and Compounds,2008,461:235-241.
    [106] Liu H.Y., Zhu Q.S., Wang Z.G. Effects of Zn addition on electromigration behavior ofSn-1Ag-0.5Cu solder interconnect [J]. Journal of Materials Science: Materials inElectronics,2013,24:211-216.
    [107] Xu G.C., Guo F., Wang X.T., et al. Retarding the electromigration effects to theeutectic SnBi solder joints by micro-sized Ni-particles reinforcement approach [J].Journal of Alloys and Compounds,2011,509:878-884.
    [108] Chen C.M., Huang C.C., Liao C.N., et al. Effects of copper doping on microstructuralevolution in eutectic SnBi solder strips under annealing and current stressing [J].Journal of Electronic Materials,2007,36(7):760-765.
    [109] Guo F., Xu G.C., He H.W. Electromigration behaviors in Sb particle-reinforcedcomposite eutectic SnAgCu solder joints [J]. Journal of Materials Science,2009,44:5595-5601.
    [110] Dudek M.A., Chawla N. Mechanisms for Sn whisker growth in rare earth-containingPb-free solder [J]. Acta Materialia,2009,57:4588-4599.
    [111] Li C.F., Liu Z.Q. Microstructure and growth mechanism of tin whiskers on RESn3compounds [J]. Acta Materialia,2013,61:589-601.
    [112] Nah J.W., Suh J.O., Tu K.N. et al. Electromigration in flip chip solder joints having athick Cu column bump and a shallow solder interconnect [J]. Journal of AppliedPhysics,2006,100:123513.
    [113] Xu L.H., Han J.K., Liang J., et al. Electromigration induced high fraction of compoundformation in SnAgCu flip chip solder joints with copper column [J]. Journal of AppliedPhysics,2008,92:262104.
    [114] Han J.K., Choi D., Fujiyoshi M., et al. Current density redistribution from no currentcrowding to current crowding in Pb-free solder joints with an extremely thick Cu layer[J]. Acta Materialia,2012,60:102-111.
    [115] Jang J.W., Ramanathan L.N., Tang J., et al. Secondary current crowding effect duringelectromigration of flip-chip solder joints [J]. Journal of Electronic Materials,2007,37(2):185-188.
    [116] Lin Y.W., Ke J.H., Chuang H.Y., et al. Electromigration in flip chip solder joints underextra high current density [J]. Journal of Applied Physics,2010,107:073516.
    [117] Ma L.M., Xu G.C., Sun J., et al. Effects of Co additions on electromigration behaviorsin Sn-3.0Ag-0.5Cu-based solder joint [J]. Journal of Materials Science,2011,46:4896-4905.
    [118] Chen L.D., Huang M.L., Zhou S.M. Effect of electromigration on intermetalliccompound formation in line-type Cu/Sn/Cu interconnect [J]. Journal of Alloys andCompounds,2010,504:535-541.
    [119] Wang C.H., Kuo C.Y., Chen H.H, et al. Effects of current density and temperature onSn/Ni interfacial reactions under current stressing [J]. Intermetallics,2011,19:75-80.
    [120] Ke J.H., Chuang H.Y., Shih W.L., et al. Mechanism for serrated cathode dissolution inCu/Sn/Cu interconnect under electron current stressing [J]. Acta Materialia,2012,60:2082-2090.
    [121] Lu M.H., Shih D.Y., Lauro P., et al. Effect of Sn grain orientation on electromigrationdegradation mechanism in high Sn-based Pb-free solders [J]. Applied Physics Letters,2008,92:211909.
    [122] Kinney C., Linares X., Lee K.O., et al. The effect of Sn orientation on intermetalliccompound growth in idealized Sn-Cu-Ag interconnects [J]. Journal of ElectronicMaterials,2013,42:607-615.
    [123] Sukharev V., Zschech E., Nix W.D. A model for electromigration-induced degradationmechanisms in dual-inlaid copper interconnects: effect of microstructure [J]. Journal ofApplied Physics,2007,102:053505.
    [124] Ma L.M., Zuo Y., Liu S.H., et al. The failure models of Sn-based solder joints undercoupling effects of electromigration and thermal cycling [J]. Journal of AppliedPhysics,2013,113:044904.
    [125] Yamanaka K., Ooyoshi1T., Nejime T. Effect of underfill on electromigration lifetimein flip chip joints [J]. Journal of Alloys and Compounds,2009,481:659-663.
    [126] Gu X., Chan Y.C. Electromigration in line-type Cu/Sn-Bi/Cu solder joints [J]. Journalof Electronic Materials,2008,37(11):1721-1726.
    [127] Blech I.A. Electromigration in thin aluminum films on titanium nitride [J]. Journal ofApplied Physics,1976,47(4):1203-1208.
    [128] Wei C.C., Chen C. Critical length of electromigration for eutectic SnPb solder stripe[J]. Applied Physics Letters,2006,88:182105.
    [129] Zhou W., Liu L.J., Li B.L., et al. Fast mass migration in SnBi deposits enhanced byelectric current [J]. Thin Solid Films,2010,518:5875-5880.
    [130] Wu A.T., Gusak A.M., Tu K.N. Electromigration-induced grain rotation in anisotropicconducting beta tin [J]. Applied Physics Letters,2005,86:241902.
    [131] Wu A.T., Hsieh Y.C. Direct observation and kinetic analysis of grain rotation inanisotropic tin under electromigration [J]. Applied Physics Letters,2008,92:121921.
    [132] Yue w., Zhou M.B., Qin H.B., et al. A comparative investigation of theelectromigration between wedge-type and line-type Cu/Sn3.0Ag0.5Cu/Cuinterconnects [A]. The12thInternational Conference on Electronic PackagingTechnology&High Density Packaging (ICEPT-HDP2011)[C]. Shanghai, China:IEEE,2011:971-975.
    [133] Sun J., Xu G.C., Guo F., et al. Effects of elecromigration on resistance changes ineutectic SnBi solder joints [J]. Journal of Materials Science,2011,46:3544-3549.
    [134] Yoshida K., Morigami H. Thermal properties of diamond/copper composite material[J]. Microelectronics Reliability,2004,44:303-308.
    [135] Harper J.M.E., Cabral C., Jr., et al. Mechanisms for microstructure evolution inelectroplated copper thin films near room temperature [J]. Journal of Applied Physics,1999,86(5):2516-2525.
    [136] Giannuzzi L.A., Stevie F.A.(Editors). Introduction to Focused Ion Beams: Instruments,theory, Techniques and Practice [M]. New York: Springer Science+Business MediaInc.,2009:1-712.
    [137] Chen D., Ho C.E., Kuo J.C. Current stressing-induced growth of Cu3Sn in Cu/Sn/Cusolder joints [J]. Materials Letters,2011,65:1276-1279.
    [138]陆裕东,何小琦,恩云飞,等.电迁移作用下SnPb与Ni(P)界面金属间化合物的极性生长[J].金属学报,2009,45(12):178-182.
    [139]黄明亮,陈雷达,周少明.电迁移对Ni/Sn3.0Ag0.5Cu/Cu焊点界面反应的影响[J].金属学报,2012,48(3):321-328.
    [140] Yeh Y.T., Chou C.K., Hsu Y.C. Threshold current density of electromigration ineutectic SnPb solder [J]. Journal of Applied Physics,2005,86:203504.
    [141] Chao B.C., Chae S.H., Zhang X.F., et al. Investigation of diffusion andelectromigration parameters for Cu-Sn intermetallic compounds in Pb-free soldersusing simulated annealing [J]. Acta Materialia,2007,55:2805-2814.
    [142] Hu J., Hu A.M., Li M., et al. Depressing effect of0.1wt.%Cr addition into Sn-9Znsolder alloy on the intermetallic growth with Cu substrate during isothermal aging [J].Materials Characterization,2010,61:355-361.
    [143] Zhang L., Xue S.B., Zeng G., et al. Interface reaction between SnAgCu/SnAgCuCesolders and Cu substrate subjected to thermal cycling and isothermal aging [J]. Journalof Alloys and Compounds,2012,510:38-45.
    [144] Lu M.H., Shih D.Y., Kang S.K., et al. Effect of Zn doping on SnAg soldermicrostructure and electromigration stability [J]. Journal of Applied Physics,2009,106:053509.
    [145] Seo S.K., Kang S.K., Shih D.Y., et al. An investigation of microstructure andmicrohardness of Sn-Cu and Sn-Ag solders as functions of alloy composition andcooling rate [J]. Journal of Electronic Materials,2009,38(2):257-265.
    [146] Keller J., Baither D., Wilke U., et al. Mechanical properties of Pb-free SnAg solderjoints [J]. Acta Materialia,2011,59:2731-2741.
    [147] Dyson B.F. Diffusion of gold and silver in tin single crystals [J]. Journal of AppliedPhysics,1966,37:2375-2377.
    [148] Yeh D.C., Huntington H.B. Extreme fast-diffusion system: Nickel in single-crystal tin[J]. Physics Review Letters,1984,53:1469-1472.
    [149] Shang P.J., Liu Z.Q., Pang X.Y., et al. Growth mechanisms of Cu3Sn onpolycrystalline and single crystalline Cu substrates [J]. Acta Materialia,2009,57:4697-4706.
    [150] Shang P.J., Liu Z.Q., Li D.X., et al. Directional growth of Cu3Sn at the reactiveinterface between eutectic SnBi solder and (100) single crystal Cu [J]. ScriptaMaterialia,2008,59:317-320.
    [151] Zhou M.B., Ma X., Zhang X.P. Undercolling behavior and intermetallic compoundcoalescence in microscale Sn-3.0Ag-0.5Cu solder balls and Sn-3.0Ag-0.5Cu/Cu joints[J]. Journal of Electronic Materials,2012,41:3169-3178.
    [152] Liu W., Tian Y.H., Wang C.Q., et al. Morphologies and grain orientations of Cu-Snintermetallic compounds in Sn3.0Ag0.5Cu/Cu solder joints [J]. Materials Letters,2012,86:157-160.
    [153] Ma H.T., Suhling J.C. A review of mechanical properties of lead-free solders forelectronic packaging [J]. Journal of Materials Science,2009,44:1141-1158.
    [154] Chen W.Y., Chiu T.H., Lin K.L., et al. Anisotropic dissolution behavior of the secondphase in SuCu solder alloys under current stress [J]. Scripta Materialia,2013,68:317-320.
    [155] Orchard H.T., Greer A.L. Electromigration effects on compound growth at interfaces[J]. Applied Physics Letters,2005,86:231906.
    [156] Liu C.Y., Ke L., Chuang Y.C., et al. Study of electromigration-induced Cuconsumption in the flip-chip Sn/Cu solder bumps [J]. Journal of Applied Physics,2006,100:083702.
    [157] Liu C.Y., Chen J.T., Chuang Y.C., et al. Electromigration-induced Kirkendall voids atthe Cu/Cu3Sn interface in flip-chip Cu/Sn/Cu joints [J]. Applied Physics Letters,2007,90:112114.
    [158] Kim D., Chang J.H., Park J., et al. Formation and behavior of Kirkendall voids withinintermetallic layers of solder joints [J]. Journal of Materials Science: Materials inElectronics,2011,22:703-716.
    [159] Yue W., Qin H.B., Zhou M.B., et al. Influences of the initial thickness of theinterfacial IMC layer on electromigration behavior of Cu/Sn/Cu microscale joints [A].The13thInternational Conference on Electronic Packaging Technology&HighDensity Packaging (ICEPT-HDP2012)[C]. Guilin, China: IEEE,2012:1320-1325.
    [160] Liang S.W., Chang Y.W., Chen C., et al. Effect of migration and condensation ofpre-existing voids on increase in bump resistance of flip chips on flexible substratesduring electromigration [J]. Journal of Electronic Materials,2008,37(7):962-967.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700