人工加载对废用性骨质疏松大鼠胫骨影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
骨质疏松症是一种以骨量减少,骨组织微观结构退化(骨小梁变细,断裂,数量减少;皮质骨多孔,变薄)为特征的,致使骨强度下降、脆性增加、骨折危险性增高的一种全身性骨骼疾病。随着世界范围内的人口老龄化问题的逐年加重,老年人口在总人口中的比重不断上升;而现代化交通工具及设备(如汽车、电梯等)的日益普及,使人们在日常生活中的运动量将逐渐减少,因此,可以预计今后中老年人的骨质疏松症的发病率将会逐年增高。人类对骨生物力学与骨生物学的研究已进行了一百多年,对骨的功能适应性的研究已经取得了巨大的成就,然而,影响骨代谢的生物学因素与力学因素在骨组织代谢的调控系统中的耦联关系仍不十分清楚,针对骨质疏松的生物医学和力学研究相脱节,至今,国内外仍未见骨质疏松计算模型的报道,阻碍着对骨质疏松症的深入研究和防治。本论文是国家自然科学基金资助项目“骨质疏松的力学-生物学因素耦联关系及计算机模拟(10372034)”中有关骨质疏松中力学-生物学因素耦联关系系列研究的一部分,进行了一系列针对骨质疏松的动物试验,主要内容包括:
     1 .废用性骨质疏松大鼠动物模型的制作:采用尾部骨牵引悬吊饲养的方法,制作了大鼠后肢废用性骨质疏松模型。
     2 .动态活体加载装置的研制及活体加载时大鼠胫骨力学性质的研究:研制成功了一种可用于对大鼠等小型动物进行人工加载的加载装置,并对活体状态下大鼠胫骨应变与外部载荷之间的关系进行了探索研究。
     3 .人工加载对悬吊大鼠胫骨力学性能影响的实验研究:采用自行研制的加载装置对悬吊大鼠后肢进行不同大小载荷的人工加载,4周后对各组大鼠胫骨皮质骨及松质骨进行压缩试验,结果表明悬吊加载各组大鼠胫骨皮质骨及松质骨力学性能显著优于悬吊组,与对照组相比无显著差异。
     4 .人工加载对悬吊大鼠骨组织形态计量学影响的实验研究:采用显微CT扫描的方法对上一实验各组大鼠胫骨近端松质骨进行组织形态计量学测试,结果表明悬吊加载各组大鼠胫骨松质骨组织计量学指标显著优于悬吊组,与对照组相比无显著差异。
     通过上述一系列试验,我们得到了以下结论:
     1 .通过尾部悬吊的方法可以制作大鼠后肢废用性骨质疏松模型;
     2 .本论文实验设计的加载装置可安全、有效地对活体大鼠进行可控的人工加载;
     3 .人工加载可以显著改善悬吊大鼠胫骨的力学性能及组织形态计量学指标;
     4 .大鼠胫骨的中段密质骨的骨重建阈值MESr约为90με左右。
Osteoporosis is a worldwide frequent disease in aged people, which gets more serious and higher incidence annually with the aging of the world's population but easily neglected. Osteoporosis is a systemic skeletal disease characterized by low bone mass and micro architectural deterioration of bone tissue, with a consequent increase in bone fragility and susceptibility to fracture. Many researchers have been researching the biomechanics and biology of bone for over a century and achieved a lot of accomplishment, but the coupling realationship between biological factor and mechanics factor in the regulate and control of bone metabolization is still not distinct, calculation model of osteoporosis is still seldom seen in domestic and international reports. We are supported by National Nature Found of China to research the coupling realationship between biological factor and mechanics factor in the regulate and control of bone metabolization in osteoporosis and computer simulation, this paper is one experimental part of this item. According to the results of these experiments, we can draw some conclusions as follows:
     1. Based on the theory of bone functional adaptability, a better rat model of osteoporosis was attained from the experiment of tail suspending after 4 weeks.
     2. A dynamic axially living animal loading system was devised and tested to be credible and precise, and the realationship bteween loading and the strain of rat tibia was tested.
     3.The artificial loading could pervent the reduce of mechanical performance and bone histomorphometry of suspended rats’tibia as effective as the daily activity, this means an adequate loading was necessary to maintain bone mass and biomechanical capability, and we conclude that the MESr of 9-month-old rat’s tibia was appoximitly 90με.
引文
[1].柏树令.系统解剖学[M],人民卫生出版社,北京,2001.
    [2]. Owan I, Burr DB, Turner CH, et al. Mechanotransduction in bone: osteoblasts are more responsive to fluid forces than mechanical strain[J]. Am J. Physiol, 1997, 27(3): 810-814.
    [3]. Burger EH, Klein Nulend J. Mechanotransduction in bone-role of the lacuno canalicular network[J]. FASES, 1999, 13(Sup): 01-12.
    [4]. Suda T, Takahashi N, Martin TJ. Modulation of osteoclast differentiation [J]. Endocr Rev, 1992; 13(1):66-69.
    [5]. Ducy P, Schinke T, Karsenty G. The osteoblast: a sophisticated fibroblast under central surveillane[J]. Science, 2000, 289: 1501-1504.
    [6]. Lian J, Stein GS, Canalis E, et al. Bone formation: osteoblast lineage cells, growth factors, matrix proteins and the mineralization process, In: Primer on the metabolic bone diseases and disorders of mineral metabolism[M]. Fourth edition, Favus MJ, Ed, Phiadelphia: Lippincott, Williams and Wilkins, 1999.
    [7]. Gorski JP. Is all bone the same? Distinctive distributions and properties of non-collagenous matrix proteins in lamellar and woven bone imply the existence of different underlying osteogenic mechanisms[J]. Crit Rev Oral Biol, 1989, 9: 201-207.
    [8]. Frost HM, Tetracycline-based histological analysis of bone remodeling [J]. Calcif Tissue Res, 1969,3: 211-216.
    [9]. Lian JB Stein GS.Osteoblast biology[M]. In: Osteoporosis Chapter2. Marcus R, Feldman D and Kelsey J, Eds, San Diego: Acade Press, 1996.
    [10]. Ducy P Zhang R, Geoffroy V, etal. Osf2/Cbfal: a transcriptional activator of osteoblast differentiation [J]. Cell, 1997,89: 747-752.
    [11]. Marie PJ .Cellular and molecular alterations of osteoblasts in human disorders of bone formation[J]. Histol Histopathol, 1999, 14 :525 .
    [12]. Lanyon LE. Osteocytes, strain detection, bone modelling and remodelling[J]. Calcif Tissue Int, 1993, 53(Sup) :102 .
    [13]. Roodman GD. Advances in bone biology:the osteoclast[J]. Endocr Rev, 1996, 17(2): 308-332.
    [14]. Baron R, Chakraborty M,Chatterjee D, et al. Biology of the olsteoclast. In: Physiology and pharmacology of bone[M], Mundy GR and Martin TJ, Eds, New York :Springer-Verlag, 1993, 111-129.
    [15]. Hofbauer LC, Khosla S, Dunstan CR, et al. The role of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption[J]. J .Bone Miner Res, 2000, 15: 220-225.
    [16]. Teitelbaum SL.Bone resorption by osteoclasts[J]. Science, 2000, 289: 1504-1508.
    [17]. Puzas EJ, Lewis GD. Biology of osteoclasts and osteoblasts. In :Orthopaedics. Principles of basic and clinical science[M], Chapter 3. Bronner F and Worrell RV, Eds, Boca Raton: CRC Press, 1999.
    [18]. Miller SC, Bowman BM, Smith JM et al. Characterization of endosteal bone-lining cells from fatty marrow bone sites in adult beagles[J]. Anat Rec, 1980, 198(1): 163-166.
    [19]. Miller SC, Jee WSSS. The bone lining cell:a distinct phenotype[J]?. Calcif Tissue Int, 1992, 41(1): 1-7.
    [20]. Buckwalter JA,Glimcher MT,Cooper RR, et al. Bone biology[J]. J Bone Joint Surg Am, 1995;77(10):1256-1264.
    [21].王以近,王介麟.骨科生物力学[M],人民军医出版社,北京, 1989.
    [22]. Frost HM. The biology of fracture healing: an overview for clinicians. Part I. Clin Orthop[J], 1989, 248: 283-293.
    [23]. Meyer, GH. Die Architektur der Spongiosa. Archief für den anatomischen andphysiologischen, Wissenschaften im Medicin[J], 1867, 34: 615-628.
    [24]. Wolff.J. The Law of Bone Remodeling. (Das Gesetz der Transformation der Knochen, Kirschwald, 1892) [M]. Translated by Maquet,P, Furlong, R. Springer, Berlin, 1986
    [25]. Roux, W. Der Kampf der Theile im organismus[M]. Engelmann, Leipzig; 1881.
    [26]. Koch, J.C., The laws of bone architecture. Am J Anat[J],1917, 21: 177-298.
    [27]. Burr DB, Milgrom C, Fyhrie D, et al. Human in vivo tibial strains during vigorous activity[J]. Trans Orthop Res Soc, 1995, 20(2): 202-211.
    [28]. Reich KM, Frangos JA. Effect of flowon prostaglandin E2 and inositol triphosphate levels in osteoblasts[J]. Am J Physiol, 1991, 261(3 Pt1): C428-C432.
    [29]. Chakkalakal DA. Mechanoelectric tranduction in bone [J]. J Mater Res, 1989, 4 (11): 1034 -1036.
    [30]. Reich KM, Gay CV, Frangos JA. Fluid shear stress as a mediator of osteoblast cyclic adenosine monophosphate production [J]. J Cell Physio, 1990, 143 (1): 100-104.
    [31]. Guharay F, Sachs F. Stretch activated single ion channel current in tissue cultured embryonic chick skeletal muscle[J]. J Physiol, 1984, 352 (3): 685-701.
    [32]. Jones DB, Nolte H, Scholubbers JG, et al. Biochemical signal transduction of mechanical strain in osteoblast-like cells[J]. Biomaterials, 1991, 12(2) :101-110.
    [33]. Wang N, Butler JP, Ingber DE. Mechanotransduction across the cell surface and through the cytoskeleton[J]. Science, 1993, 260 (5): 1124-1127.
    [34]. Turner CH, Pavalko FM. Mechanotransduction and functional response of the skeleton to physical stress: the mechanisms and mechanics of bone adaptation[J]. J Orthop Sci, 1998, 3: 346–355.
    [35]. Skerry TM, Bitensky L, Chayen J, et al. Early strain-related changes in enzyme activity in osteocytes following bone loading in vivo[J]. J Bone Miner Res, 1989, 4(5): 783-788.
    [36]. Turner CH, Owan I, Alvey T, et al. Recruitment and proliferative responses of osteoblasts after mechanical loading in vivo determined using sustained-release bromodeoxyuridine[J]. Bone, 1998, 22 (5): 463-469.
    [37]. Frost HM. Bone modeling and skeletal modeling errors[M]. Springfield: CC Thomas, 1973.
    [38]. Frost HM. Osteoporoses: new concepts and some implications for future diagnosis, treatment and research(based on insights from the Utah paradigm) [C]. Berlin: Ernst Schering Research Foundation AG, 1998: 7.
    [39]. Frost HM. Bone development during childhood, a tutorial( some insights of a new paradigm) [M]. In : Paediatric osteology, Schnau E, Ed, Amsterdam: Elsevier, 1996 :3-7.
    [40]. Frost HM, A determinant of bone architecture: the minimum effective strain[J]. Clin Orthop Rel Res, 1983, 175 :286.
    [41]. Frost HM. Why the ISMNI and the Utah paradigm? Their role in skeletal and extraskeletal disorders[J]. J Musculoskel Neuron Interact, 2000, 1: 5-9.
    [42]. Frost HM. The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs[J]. J Bone Miner Metab, 2000, 18: 305-316.
    [43]. Jee WSS. Principle in bone physiology[J]. J Musculoskel Neuron Interact, 2000,1:11-13.
    [44].刘忠厚主编.骨质疏松学[M],科学出版社,北京, 1998。
    [45].王君鳌,林定坤.骨质疏松症的研究和进展[J].中国骨质疏松杂志, 2001, 7(1): 11-13.
    [46].郭世绂.原发性骨质疏松的发病机制[J].中华骨科杂志, 1995, 15(2): 312-314.
    [47].黎小坚, Frost HM.基础骨生物学新观(一) [J],中国骨质疏松杂志, 2001, 7(2): 152- 174.
    [48].黎小坚, Frost HM.基础骨生物学新观(二) [J],中国骨质疏松杂志, 2001, 7(3): 253- 261.
    [49].杨沛彦,苏友新,许书亮.中国人原发性骨质疏松症患病率及影响因素的研究进展[J].中国临床康复. 2002, 19(6), 2904-2905.
    [50]. Dietrick, J.E., Whedon, G., Shorr, E., Effects of immobilization upon various metabolic and physiological functions of bone[J]. Am. Jnl. Med, 1948, 4(1): 33-36,.
    [51]. Mack, P.B.and La Chance, P.L., Effects of recumbency and space flight on bone density[J]. Am. J. Clin. Nutrition, 1967, 20: 194-205.
    [52]. Morey, E. R., and Baylink, D. K., Inhibition of bone formation during space flight[J]. Science, 1978, 201: 1138-1141.
    [53]. Jee W.S.S., Li X.J. Adaptation of cancellous bone to overloading in the adult rat: a single photon absorptiometry and histomorphometry study[J]. Anat Rec, 1990, 22(7): 418-426.
    [54].朱兴华、董心等,长骨功能适应性研究[J].中国生物医学工程学报, 1993, 12(2): 106-109.
    [55]. Wunder, C.C., Briney, S.R., Skangstad, C.A., Growth of mouse femurs during chronic centrifugation[J]. Nature, 1960, 188: 151-152.
    [56]. Chamay, A., and P. Tschantz. Mechanical influences in bone remodeling. Experimental research on Wolff’s law[J]. J. Biomech, 1972, 5: 173-180.
    [57]. Goodship, A.E., Lanyon, L.E., McFie, M., Functional adaptation of bone to increased stress[J]. J. Bone Jnt. Surg., 61A, 539-546, 1979.
    [58]. Jee W.S.S, Li X.J, Ke H.Z. Skeletal adaptations to mechanical usage in the rat[J]. Cells and Materials, 1991, S1: 131-142.
    [59].董心,朱兴华,杨秀勤.去除尺骨后桡骨的适应性[J],中国生物医学工程学报, 1996, 15 (2): 190-192.
    [60]. Biewener, A.A., Swartz, S.M., Bertram, J.E.A. Bone modeling during growth: dynamic strain equilibrium in the chick tibiotarsus[J]. Calcified Tissue International, 1986, 39(2): 390–395.
    [61]. Matsuda, J.J., Zernicke, R.F., Vailas, A.C., Pedrini, V.A., Pedrini-Mille, A., Maynard, J.A. Structural and mechanical adaptation of immature bone to strenuous exercise[J]. Journal of Applied Physiology., 1986, 60(7): 2028–2034.
    [62]. Li, K.-C., Zernicke, R.F., Barnard, R.J., Li, A.F.-Y. Differential response of rat limb bones to strenuous exercise[J]. Journal of Applied Physiology, 1991 70(3): 554–560.
    [63]. Turner C.H., Akhter M.P., Raab D.M., Kimmel D.B., Recker R.R. A non-invasive, in vivo model for studying strain adaptive bone modeling[J]. Bone, 1991, 12(1): 73-79.
    [64]. Hillam RA, Skerry TM. Inhibition of bone resorption and stimulation of formation by mechanical loading of the modeling rat ulna in vivo[J]. J Bone Miner Res,1995, 10(2): 683-689.
    [65].史之桢,沈士民,崔伟,等.悬吊法对废用性骨质疏松症的实验观察[J].航天医学与医学工程, 1990, 2(1): 1-5.
    [66].马进,陈杰,丁兆平et al.模拟失重九十天对大鼠长骨生物力学特性的影响[J].第四军医大学学报, 1994. 15(3): 218-220.
    [67]. Yamazaki M, Shirota T, Tokugawa Y, et al. Bone reactions to titanium screw implants in ovariectomized animals[J].Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999, 87(4): 411-418.
    [68]. Morey-Holton E R, Globus R K. Hindlimb unloading of growing rats: a model for predicting skeletal changes during space flight[J]. Bone, 1998, 22(Sup): 83-88.
    [69]. Shaw S R, Vailas A C, Grindeland R E, et al. Effect of a spaceflingt on morphological and mechanical properties of growing bone[J]. Am J Physiol, 1988, 254: R78-R83.
    [70].陈杰,马进,丁兆平等.一种模拟长期失重影响的大鼠尾部悬吊模型[J].空间科学报,1993, 13(2): 159-162.
    [71].戴娟,汪大鹏,陈蕾等.电测应力实验中应变片的粘贴技巧[J].湖南工程学院学报(自然科学版), 2003,13(3), 55-57.
    [72]. Frost H M. Bone’s Mechanostat: A 2003 Update[J]. The Anatomical Record Part A. 2003, 275A: 1081- 1101.
    [73]. Frost H M. Defining Osteopenias and osteoporoses: another view (With insights from a new paradigm)[J]. Bone 1997, 20: 385-391.
    [74].蔡斌,董心,李锐等.SD大鼠胫骨动态活体载荷-应变关系[J].吉林大学学报工学版, 2005, 35(Sup): 110-112.
    [75]. Duncan, RL, Turner, CH. Mechanotransduction and the functional response of bone to mechanical strain[J]. Calcified Tissue International, 1995, 57: 344-358.
    [76]. Hazelwood SJ, Martin RB, Rashid MM, Rodrigo JJ. A Mechanistic Model for Internal Bone Remodeling Exhibits Different Dynamics Responses in Disuse and Overload [J]. Journal of Biomechanics, 2001, 34(3): 299-308.
    [77]. Lanyon L E. Using Functional Load to Influence Bone Mass and Architecture: Objective, Mechanisms, and Relationship with Estrogen of the Mechanically Adaptive Process in Bone[J]. Bone, 1996, 18: 37-43.
    [78]. Skerry T M. Mechanical Load and Bone: What Sort of Exercise is Beneficial to the Skeleton[J]? Bone, 1997, 20: 179-181.
    [79]. Lukert BP, RaiszLG. Glucocorticoid-induced osteoporosis: patho- genesis and management[J]. Ann Intern Med, 1990, 112: 352-368.
    [80]. Amins S,lavalley MP, Simms RM,et al. The role of vitamin. Dincorti- costeroid-induced osteoporosis: ameta analytic approach [J]. Arthritis. Rheum, 1999, 42(8): 1740-1751.
    [81]. Reginster JY,Kuntz D,Verdickt W,et al. Prophylactic use of alfacalcidol in costicosteroid induced osteoporosis[J]. Jrheumatol, 1999, 6(5):1148-1157.
    [82]. Sambrook P, Birmingham J, Kelly P, et al. Prevention of cortic osteroidosteoporosis. Acomparision of calcium, calcitriol, and calcitonin[J]. Semin Arthritis Rheum,1993, 22 (3): 357-384.
    [83].宋越,等.骨组织病理解剖学技术[M].人民卫生出版社,北京, 1997.
    [84].金征宇,等.医学影像学[M].人民卫生出版社,北京, 2005.
    [85].陈惟昌,张朝宗,王自强.显微CT(μ- CT)—医学CT未来的发展方向[J]. 1998, 8(3): 40-45.
    [86]. Feldkamp LA, GoldsteinSA, ParfittAM, etal. The direct examination of three-dimensional bone architecture invitro by computed tomography[J]. J Bone Miner Res, 1989, 4: 3-11.
    [87]. Hildebrand T, Ruegsegger P. A new method for themodel-independent assessment of thickness in three-dimensional images[J]. J Microscopy, 1997, 185: 67-75.
    [88]. Ding M, Hvid I. Quantification of age-related changes in the structure model type and trabecular thickness of human tibial cancellous bone[J]. Bone, 2000, 26: 291-295.
    [89]. Chappard D, Retailleau-Gaborit N, Legrand E, et al. Comparison insight bone measurements by histomorphometry and microCT[J]. J Bone Miner Res, 2005, 20: 1177-1184.
    [90].盛志峰,廖二元,伍贤平等.去卵巢大鼠胫骨骨小梁的显微CT研究[J].中华骨科杂志, 2007, 27(6): 460-464.
    [91].吴小涛,戴克戎.骨质疏松症松质骨结构与强度的关系[J].国外医学老年医学分册.1996,17(4):174-175.
    [92]. Thompson DD,Simmons HA,Pirie CM,et al.FDA guidelines and animal models for osteoporosis[J]. Bone, 1995, 17: 125-136
    [93]. Croucher PI,Garrahan NJ,Compston JE.Assessment of cancellous bone structure:comparison of strut analysis, trabecular bone pattern factor,and marrow space star volume[J]. J Bone Miner Res, 1996, 11: 955-562.
    [94]. Day J, Ding M, Odgaard A, et al. Parallel plate model for trabecular boneexhibits volume fraction-dependent bias [J]. Bone, 2000, 27: 715-720.
    [95]. Müller R, Van Campenhout H, Van Damme B, et al. Morphometric Analysis of Human Bone Biop sies: A Quantitative Structural Comparison of Histological Sections and Micro-Computed Tomography [J]. Bone, 1998, 23: 59-66.
    [96].贾桂林,黄焯民等.单纯速眠新麻醉在动物实验中的应用[J].武警医学院学报, 2000, 9(4): 280-282.
    [97].孙同柱,付小兵,翁立新等.速眠新在大鼠麻醉中的应用分析[J].实验动物科学与管理, 2004, 21(2): 48-49.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700