南黄海辐射状沙脊群动力特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先针对辐射状沙脊群现有的文献及实测资料,初步分析研究了南黄海辐射沙脊群海域地貌和动力特征,以及动力与地貌的关系。基于过程分裂法及垂向坐标伸缩变换,外模式采用改进型双步全隐有限差分DSI法,内模式采用欧拉—拉格朗日公式,改进了三维垂向隐式格式,成功地建立了南黄海辐射状沙脊群海域三维全隐格式潮流数学模型。通过对辐射沙脊群海域平面及立面动力特征的研究,基本探明了南黄海辐射沙脊群形成发育和维持的水动力机制,以及其不对称分布格局与动力因素的内在联系。
     平面潮流椭圆、水质点迹线、潮流流速特征研究表明,辐射状沙脊群海域潮流具有明显的定向往复流形式,平均潮流流速一般为0.6~1.0m/s,满足形成潮流沙脊的水动力条件。通过对潮波波面传播过程及潮波能流率研究表明,辐射沙脊群海域为南部太平洋前进潮波和北部旋转潮波所控制,两潮波系统在弶港外海辐聚辐散,形成大潮差区的特点。另外还研究了辐射沙脊群海域的余流及余流量的分布,发现在潮流沙脊两侧存在平面余环流,余环流将有利于泥沙在脊顶沉积,与潮流沙脊的维持发育密切相关。
     研究主要潮流通道及沙脊横剖面的涡度场。首次发现,在潮涨潮落过程中,深槽中及沙脊两侧均存在一组方向相反、不对称余涡度场(余环流场),横向余环流的存在将有利于沙脊两侧的泥沙均向沙脊顶运动和堆积,是潮流沙脊的形成和维持重要动力因素。应用Hulscher沙波及沙脊增长模式,通过对该海域斯托克斯数及底部阻力参数的计算首次发现,南黄海辐射沙脊群海域在概化古地形和现代辐射状沙脊群水下地形情况下,其斯托克斯数及底部阻力参数均满足形成潮流沙脊的条件。故在有充分泥沙供应的条件下,辐射沙脊群海域必然会形成潮流沙脊,并且辐射沙脊群在现代水动力条件下仍将维持。
     各种动力特征平面分布规律研究表明,辐射沙脊群南北沙脊不对称分布的格局是潮流沙脊对潮流往复流性质的强弱分布、潮波能流率大小分布、含沙量的平面分布规律及斯托克斯数的大小分布的动力响应。
First.upon the former research work and field measurements in the radial sandbanks area, the characteristics of geomorphology, hydromechanics and the relationship between them are preliminarily analysed. Though adopting the σ-coordinate transformation in the control equations and mode-splitting technique, the external mode (surface gravity waves) is solved by the improved double-sweep-implicit finite difference method; the internal mode (internal gravity waves) untilizes the Eulerian-Lagrangian method, which improves the implicit-difference scheme for the vertical direction. The newly developed 3D numerical tidal model with implicit scheme has been successfully applied in the radial sandbanks area. Through studing the plane and vertical hydromechanical characteristics in the radial sandbanks area, the mechanisms of the formation, maintenance and asymmetrical distribution of the radial sandbanks are understood.
    It's well known that the directional to-and-fro movement and strong tidal current are the necessary dynamic conditions for the formation of tidal current sandbanks. The tidal current in the radial sandbanks area apparently has directional to-and-fro movement, which can be observed not only from tidal ellipses, but also from water particle traces. The calculated distribution of tidal velocity in this area shows that the average velocity is around 0.6 to 1.0 m/s. It has been proven that, from the propagation process of the tidal waves and wave energy rates, the whole radial sandbanks area is controlled by the progressive tidal wave in the south and the rotational standing tidal wave in the north. These two waves merge at Qianggang and induce a large tidal range. The distributions of the residual flow and the residual discharge from the numerical model show that the residual circulation flows around the sandbanks contribute significantly to the deposition at the peak of sandbank, and closely related to the sandbank development.
    The existence of the asymmetrical residual transverse circulation flows in pair is discovered in the residual vorticity field along the passage and sandbank cross section. The transverse residual circulation flow is favorable to sediment's moving to the peak of sandbank and the development and maintenance of sandbank. Using the Hulscher model of the formation of sand waves and sandbanks, under the ancient bathymetry, or under the modern bathymetry, the Stokes number of the tidal flow and resistance parameter in the radial sandbanks satisfy the conditions for the formation of sandbanks. The research demonstrates that the dynamic flow conditions result in the development of tidal current sandbank. The radial sandbanks and it's asymmetrical distributions will still maintain in the future.
    It has been proven that the differences of magnitude and distribution of tidal currents, wave energy rate, suspended sediment concentration and the Stokes number result in a
    
    
    
    asymmetrical distribution of sandbanks between the north and south. The sandbank surface area and length in the north are lager than those in the south, but its cross section area is less than that in the north.
引文
1. Off, T.,1963, Rhythmic linear sand bodies caused by tidal currents. Am. Assoc. Pet. Geol. Bull., Vol 47:304~341.
    2.刘振夏,夏东兴,王揆洋,1998,中国陆架潮流沉积体系和模式,海洋与湖沼,29(2):141-147。
    3.吕炳全、孙志国,1997,海洋环境与地质,同济大学出版社。
    4.王琦、朱而勤,1989,海洋沉积学,科学出版社。
    5. Stride, A.H. (ed), 1982, Offshore tidal sand processes and deposits. London New York, Chapman and Moll.
    6. Ma Daoxiu, Liu Xiqing, 1998, Types and Formation Mechanisms of Tidal Sand Ridges in China Offshore Shelf, Research of Marine Geology and Mineral Resources, 41-52, Qingdao Ocean University Press.
    7.冯士笮,李风岐,李少菁,1999,海洋科学导论,高等教学出版社。
    8. Belderson, R.H., R.D.. Griffiths, D.K., 1986. Low sea-level tidal origin of Celtw sand bank-evidence from numerical modelling of tidal steams. Marine Geology 73, 99-108.
    9.刘振夏,夏东兴,汤毓祥,1994,渤海东部全新世潮流沉积体系,中国科学,24(12):1331-1338。
    10.夏东兴等,1995,渤海东部更新世以来的沉积环境,海洋学报,17(2):86-92。
    11. Pattiaratchi, C.B., Collins, M.B., 1987. Mechanisms for linear sandbank formation and maintenance in relation to dynamical oceanographic observations. Progress in Oceanography. 19,117-176.
    12. Swift, D.J.P., 1975. Tidal sand ridges and shoal-retreat massifs. Marine Geology. 18,105-134.
    13. Dyer, K.R., Hunltey, D.A., 1999, The origin, classification and modelling of sand banks and ridges. Continental Shelf Research. 19,1285-1330.
    14.许东禹、刘锡清、张训华、李唐根,1997,中国近海地质,地质出版社。
    15. Yang Changshu, Sun Jiasong, 1988, Tidal Sand Ridges of the East China Sea Shelf. In: PL De Boer et al. eds. Tide-Influenced Sedimentary Environments and Facies. D. Reidel Publishing Company, 23-29.
    16.朱永其、曾成开、冯韵,1984,东海陆架地貌特征,东海海洋,2(2):1-20。
    17.王文介,1995,琼州海峡潮流通道地貌体系发育的动力效应,南京大学海岸与海岛开发国家重点实验室,“海平面变化与海岸侵蚀专辑”,南京大学出版社。
    18. Kenyon, N.H., 1970, Sand ribbons of European tidal seas, Marine Geology, 9, 25-39.
    19. Caston, V.N.D., Stride, A.H.,1970, Tidal sand movement between some linear sand banks in the North Sea off northwest Norfolk. 9, 38-42.
    
    
    20. Caston, V.N.D., 1972, Linear sand banks in the southern North sea, Sedimentology, 18:63-71.
    21. Caston, G.E, 1981, Potential gain and loss of sand by some sand banks in the southern North sea off northeast Norfolk. Marine Geology, 41:239-250.
    22. Huthnance, J.M., 1973, Tidal current asymmetries over the Northfolk sandbanks, Estuarine and Coastal Marine Sciences, 1:89-99.
    23. Stride, A.H. 1974, Indications of long term, tidal control of net sand loss or gain by European Coasts. Estuarine and Coastal Marine Sciences, 2:27-36.
    24. Stride, A.E.(E,d), 1982, Offshore Tidal Sands. Chapman and Hall.
    25. McCave, I.N., 1979, Tidal currents at North Hinder lightship, southern North Sea: Flow directions and turbulence in relation to maintenance of sand banks. Marine Geology, 31:101-117.
    26. McCave, I.N., Langhorne, D.N., 1982, Sand wave and sediment transport around the end of a tidal sandbank. Sedimentology, 29:105-117.
    27. Howarth, M.J., Huthnance, J.M.,1984, Tidal and residual circulation around a Norfolk sandbank. Estuarine and Coastal Marine Sciences, 19:105-117.
    28. Houbolt, J.J.H.C., 1968, Recent Sediments in the a southern bight of the North sea, Geologie en Mijnbouw, 47:245-273.
    29. Alain, T.A.S., Bernadette, T., et al., 1994, Swrficial sedimentology of the Middlekerke Bank(southern North Sea). Marine Geology, 121:43-55.
    30. Berne, S., Trentesaux, A., Stolk, A., et al., 1994, Architecture and long term evolution of tidal sandbank: the Middalkerke Bank (southern North sea). Marine Geology, 121:57-72.
    31. Collins, M.B., Shimwell, S.J., Gao, S. et al., 1995, Water and sediment movement in the vicinity of linear sandbank: the Norfolk Banks, Southern North Sea. Marine Geology, 123:125-142.
    32. Jean, L., Guy, D.M.S. 1994, Environmental setting, morphology and volumetric evolution of the Middelkerke Bank (southern North sea). Marine Geology,121:1-21.
    33. Van, D.M., Boersma, J.R., Terwindt, J.H.J., 1996, Sedimentary structures of combined flow deposits from the shoreface-connected ridges along the central Dutch coast. Marine Geology, 131:151-175.
    34.李成治、李本川,1981,苏北沿海暗沙成因的研究,海洋与湖沼,12(4):321-331。
    35.周长振、孙家松,1981,讨论苏北岸外浅滩的成因,海洋地质研究,1(1):83-92。
    36.万延森,1982,江苏辐射状沙脊群形成的初步探讨,海洋研究,21(2):83-89。
    37.万延森,张年,1985,江苏近海辐射状沙脊群的泥沙运动与来源,海洋与湖沼,16(5):392-399。
    
    
    38.杨长恕,1985,弶港辐射沙脊成因探讨,海洋地质与第四纪地质,5(3):35-43。
    39.杨治家、李本川,1995,江苏沿海辐射状沙脊群的动态变化,4:63-67。
    40.刘振夏,1981,江苏近岸底质粒度特征及其地质意义,海洋研究,(3):50-61。
    41.刘振夏,夏东兴,1983,潮流脊的初步研究,海洋与湖沼,14(3):286-295。
    42.刘振夏,夏东兴,1995,潮流沙脊水力学问题探讨,黄渤海海洋,13(4):23-28。
    43.刘振夏,汤毓祥,王揆洋等,1996,渤海东部潮流动力地貌特征,黄渤海洋,14(1):7-20。
    44.夏东兴,刘振夏,1983,我国邻近海域的水下沙脊,黄渤海海洋,(1):46-56。
    45.夏东兴,刘振夏,1984,潮流脊的形成机制和发育条件,海洋学报,6(3):361-367。
    46.黄易畅、汤毓祥,1982,江苏沿海潮汐数值计算研究,海洋研究,(2):1-12和(3):41-49。
    47.黄易畅、汤毓祥,1982,江苏沿海潮汐状况的初步分析,海洋研究,(2):23-29。
    48.黄易畅、王文清,1987,江苏沿岸辐射状沙脊群的动力机制探讨,海洋学报,9(2):209-215。
    49.黄易畅、汤毓祥,1988,江苏沿岸的潮汐运动,黄渤海海洋,6(2):1-11。
    50.何浩明,1992,弶港附近超浅宽潮滩成因的初步研究,南京大学学报,13。
    51.赵松龄,1991,苏北浅滩成因的最新研究,海洋地质与第四纪地质,11(3):103-112。
    52.张家强、李从先,从友兹,1997,苏北陆区潮成沙体的古流向,科学通报,42(22):2208-2410。
    53.张家强、李从先,从友兹,1999,苏北南黄海潮成沙体的发育条件及演变过程,海洋学报,21(2):65-74。
    54.张光威,1991,南黄海陆架沙脊的形成与演变,海洋地质与第四纪地质,11(2):25-33。
    55.朱大奎、安芷佐,1993,江苏岸外辐射沙洲的形成与演变,见:任美锷八十华诞论文集,南京大学出版社,144-147。
    56.朱大奎,傅命佐,1986,江苏岸外辐射沙洲的初步研究,江苏省海岸带东沙滩综合调查文集,海洋出版社(北京),28-32。
    57.朱大奎,傅命佐,1986,江苏省海岸东沙滩地貌与表层沉积特征,江苏省海 岸带东沙滩综合调查文集,海洋出版社(北京),6-14。
    58.李从先,赵娟,1995,苏北琼港辐射沙洲研究的进展和争论,海洋科学,(4):67-60。
    59.李文勤,1981,对苏北辐射状沙洲成因演变初步探讨,海洋研究,(3):34-40。
    60.任美锷(主编),1986,江苏省海岸带和海涂资源综合调查,海洋出版社(北京)。
    61.陈报章,1989,苏北琼港地区发现全新世埋藏潮成沙体,海洋地质动态, (12):3-5。
    62.陈报章,1996,苏北弶港地区埋藏潮成沙体的发现与现代辐射状潮流沙脊群的成因,海洋学报,15(5):46-52。
    63.耿秀山,1983,苏北海岸带的演变过程及苏北浅滩动态模式的初步探讨,海洋学报,5(1):62-70。
    64.张忍顺,1984,苏北黄河三角洲及滨海平原的成陆过程,地理学报,39(2):173-184。
    
    
    65.张忍顺,陈才俊,1992,江苏岸外沙洲演变与条子泥并陆前景研究,海洋出版社(北京)。
    66. Swift, D.J.P., Duane, D.B. and Mckimey, T.E., 1973, Ridge and swale topography of the middle Atlantic Bight, North America: Secular response to the Holocene Hydoanlic regime. Marine Geology, 15:227-247.
    67. Soulsby, R.L., 1981, Measurements of Renolds Stress components close to a marine sandbank, Marine Geology, 42, 35-37.
    68. Soulsby, R. L., 1990, Tidal-current boundary layers, in the Sea, 9, Part A. New York, P523~566.
    69. Pingree, R.D., 1978, The formation of the shambles and other banks by tidal stirring of the seas. Journal of the Marine Biological Association UK, 58:211-226.
    70. Pingree, R.D., and Maddock, L. 1979, The tidal Physics of headland flows and offshore tidal bank formation. Marine Geology, 32:269-289.
    71. Signell, R.P., and Harris, C.K., 1999, Modelling Sand Bank Formation Around Tidal Headlands, The 6th International Conference on Estuarine and Coastal Modelling, New Orleans, LA.
    72. Colombini, M., 1993, Turbulence-driven secondary flows and formation of sand ridges, Journal of Fluid Mechanics, 254:701-719.
    73.黄昌明,1997,我国潮流沙脊的流体动力学研究及其卫星遥感分析,国家海洋局第一海洋研究所博士论文。
    74. Smith. J.D.,1969, Geomorphology of a sand ridge.Journal of Geology, 77: 39-55.
    75. Swift, D.J.P. and Field, M.E., 1981; Evolution of a classic sand ridge field: Maryland sector, North American inner shelf. Sedimentology, 28: 461-482.
    76. Huthnance, J.M., 1982a, On one mechanism forming linear sandbanks. Estuarine and coastal shelf science, 14: 79-99.
    77. Huthnance, J.M., 1982b, On the formation of sand banks of finite extent. Estuarine and coastal shelf science, 15: 277-299.
    78. Kenyon, N.H., Belderson, R.H., Stride, A.H., Johnson, M.A., 1981, Offshore tidal sand banks as indicators of net sand transport and as potential deposits. Special Publication International Association of Sedimentology. 5:257-268.
    79. Swift, D.J.P., Parker, G., Lanfredi, N.W., Perillo, G., Figge, K., 1981, Shoreface-connected sand ridges on American and European Shelves-comparison, Estuarine and Coastal Marine Science, 7:257-273.
    80. Ferentinos, A.G., Swift, D.J.P., Stubblefield, W.L., and Clarke, T.L., 1981, Sand Ridges on the inner atlantic
    81. Ferentinos, A.G., and Collins, M.B., 1980, The effects of shoreline irregularities on a rectilinear tidal current and their significance in sedimentation processes. Journal of sedimentary petrology, 50:1081-1094.
    
    
    82. Parker, G., Lanfredi, N.W. and Swift, D.J.P., 1982, Seafloor response to flow in a southern hemisphere sand ridge field: Argentine inner shelf. Sedimentary Geology, 33:195-216.
    83. De Vriend, H.J., 1990, Morphological processes in shallow tidal seas. In: Residual currents and long term transport, R.T.Cheng, editor, Verlag, Coastal and Estuarine Studies, 38:276-301.
    84. Hulscher, S.J.M.H., 1996a, Tidal-induced large-scale regular bed form patterns in a three-dimensional shallow water model. Journal of Geophysical Research. 101(c9): 20727-20744.
    85.江苏水利厅,1959,苏北沿海挡潮闸下引河回淤情况报告。
    86.华东师范大学,1961,琼港地区勘探报告。
    87.何浩明,1979,江苏海岸地貌与弶港辐射沙洲,江苏海岸带海涂资源综合开发利用学术论文选编第一集。
    88.夏综万、王钟捃,1984,黄海分潮数值模拟,黄渤海海洋,2(1):2-7。
    89.朱玉荣、李从先、常瑞芳,1995,琼港辐射沙洲成因的数值模拟及其古环境意义。同济大学学报,23(增刊):226-230。
    90.张东生、张君伦,1996,黄海海底辐射沙洲区的M2潮波,河海大学学报,24(5):35-40。
    91.张东生、张君伦、张长宽等,1998,潮流塑造—风暴破坏—潮流恢复—试释黄海海底辐射沙脊群形成演变的动力机制,中国科学(D辑),28(5):394-402。
    92.李从先、王靖泰、李萍,1979,长江三角洲沉积相的初步研究,同济大学学报,2(海洋地质版):1-14。
    93.仲德林、申宪忠、夏东兴,1983,全新世早期古长江海侵三角洲卫片初步解释,海洋科学,2:16-17。
    94.王颖、朱大奎,1994,海岸地貌学,北京:高等教育出版社。
    95.王颖、朱大奎等,1998,南黄海辐射沙脊群沉积特点及其演变,中国科学(D辑),28(5):386-393。
    96.王颖主编,2002,黄海陆架辐射沙脊群,中国环境科学出版社,ISBN 7-80163-443-8。
    97.诸裕良,严以新,茅丽华,1998,大江河口三维非线性斜压水流盐度数学模型,水利水运科学研究,No.2。
    98. Zhu Yuliang, Zheng Jinhai, Mao Lihua, Yan Yiin, 2000, Three-Dimensional Nonlinear Numerical Model With Inclined Pressure In The Yangtze River Estuary, Journal of Hydrodynamics, Ser.B, 12(1): 57-66.
    99.高抒,朱大奎,1988,江苏淤泥质海岸剖面的初步研究,南京大学学报(自然科学版),24(1):75-84。
    
    
    100. Saint-Venant, B. De., 1871, Theories du mouvement non-permannent des seaux avec application aux cures des riviees el l'introdaction des marees dans leur lit, Acad. Sci. Comptes renkus, 73:148-154.
    101. Lasscson, R. E., Stoker, J. J. and Troesch, B. A., 1954, Numerical Solution of flood prediction and river regulation problems (Ohio-Mississippi floods).
    102. Lax, P. D. and Wendroff, B., 1960, Systems of conservation laws, Conn. Pare. Appl. Math.
    103. Amein, M. and Ching, S. F., 1970, Implicit Flood Routing in Natural Channels, J. of Hyd. Div. ASCE, Vol.99, P2481~2500.
    104. Vasiliev, O. F., Voyevodin, A. F. and Atavin, A. A., 1976, Numerical method for the calculation of unsteady flow in systems of open channels and canals, Proceedings of the International Symposium on Unsteady Flow in Open Channels, E2-15-22.
    105. Preissmann, A., 1978, Use of Mathematical Method, Proceedings of the International Symposium on Unsteady Flow in Open Channels, E3-23-28.
    106. Butler, H.S., 1978, A Storm Surge Model Study, Vol.Ⅱ, A finite element storm surge analysis and it's application to a bay-ocean system, Virginia Inst. Marina Science, Gloucester Point Va., Spec. Rep. P189.
    107. Abbott, M. B., 1979, Computational Hydraulics, Pitman.
    108. Maa, J. P. Y., 1990, An efficient horizontal two-dimensional hydrodynamic model, Coasted Eng. 14, P1~18.
    109. Vincenzo Casulli and Filippo Notamicola, 1988, An Eulerian-Lagrangian Method for Tidal Current Computation. Computer Modeling in Ocean Engineering(Schrefler & Zienkiewicz, eds), Balkema, Rotterdam.
    110.林秉南,明渠不恒定流的计算和验证,水利学报,Vol.1,No.1,1958。
    111. Leendertse, J. J., 1970, Water quality model for well-mixed estuary and coastal seas, Vol.1 Princeples of computation. Corp. Santa Monica, Calif. RM-6230-RC.
    112. Thompson, J. F., 1985, Numerical Grid Generation-Foundations and Applications, North-Holland.
    113.赵士清等,1983,一种简便的二维潮流数学模型,水利水运科学研究,No.2,P15~23。
    114. Rayleigh, J. W. S., 1877, Theory of Sound, 1st ed revised, Dover Publications Inc., New York, P1945.
    115. Ritz, W., 1909, Uber Eine Neue Methods zur Losung Gewisser Variations-probleme der Mathematis chen Phyisk, J. Reine Angew Math, 135, No. 1, P1.
    116. Galerkin, B. G., Rods and Platers, 1915, Series Occurring in Various Questions Concerning the Elastic Equilibrium of Rods and Plates (in Russian), Vestn Inghenevov, 19, P897-908.
    
    
    117.李大鸣,1996,多重尺度水沙数学模型的理论及其应用,天津大学博士学位论文。
    118.金子安雄等,采用ADI法的潮流和污染扩散的数值计算,日本港湾技术研究报告,Vol.14,No.1,1975。
    119. Chen, C. J., Hamid, N. N., and Li, R, 1980, Finite Analytic Method, ⅡHR Report (232-Ⅰ).
    120. Phillips, N.A., 1957, A Coordinate system having some special advantages for numerical forecasting, J. Meteorol. 14:184-184.
    121. Blumberg, A. F., 1977, Numerical Tidal Model of Chesapeake Bay, Hydraulics Div., ASCE, Vol.103, P1~10.
    122. Davies, A.M., 1987, Spectral Models in Continental Shelf Sea Oceanography, Three Dimension Coastal Ocean Models, Heaps, N.S.(Ed.), AGU, Washington, D.C., P71~106.
    123. Bowden, K. E, 1975, Some experiment with a numerical of circulation and mixing in a tidal estuary, East &. Coast. Mar., 3, P282~301.
    124. Noye, J. and Stevens, M. A., 1987, A three-dimensional model of tidal propagation using transformation and variable grids, Three-Dimensional Coastal Ocean Models, Vol. 4:41~69, American Geophysical Union, Washington, D. C.
    125. Yan, Y.X., 1987, Numerical Modeling of Current and Wave Interactions of an Inlet-Beach System, Ph.D Dissertation, University of Florida, U.S.A.
    126.诸裕良,严以新,薛鸿超,1998,南黄海辐射沙洲形成发育水动力机制研究—Ⅰ.潮流运动平面特征,中国科学(D辑),28(5):403-410。
    127.诸裕良,严以新,薛鸿超,1998,黄海辐射沙洲形成发育潮流数学模型,水动力学研究与进展,Vol.13,NO.4
    128.宋志尧,严以新,薛鸿超,茅丽华,1998,南黄海辐射沙洲形成发育水动力机制研究—Ⅱ.潮流运动立面特征,中国科学(D辑),28(5):411-417。
    129. Hulscher, S.J.M.H., 1996b, On validation of a sand waves and banks model. Proceeding of the 25th international conference, Coastal Engineering, Volume 3: 3575-3587.
    130. Van den Brink, M., 1998. Prediction of sand wave occurrence. Report B006 to the University of Twente. Alkyon Hydraulic Consultancy and Research. Emmeloord, The Nethrlands.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700