一元微积分概念教学的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大众化背景下,大学生入学时的能力普遍降低,学生层次越来越不均衡,这已经成为世界高等教育面临的一个主要问题。另一方面,基础教育课程改革的推进使得中学的课程设置发生了巨大的变化,这种变化也对大学的课程设置提出了新的要求。大众化教育以及高中课改的背景使得大学微积分教学中的问题日益突出,很多大学生会进行求导、积分运算,但是对概念中蕴含的思想并不理解,对概念间的关系认识模糊。所以,发现学生在微积分概念上的认知困难并进行有针对性的教学设计是微积分教学改革的关键。
     本论文以一元微积分作为载体,选取极限、导数、微分、中值定理、定积分等内容作为研究的切入点,研究了2个问题:(1)大学生对微积分中的基本概念具有什么样的概念意象,存在哪些概念误解?(2)如何设计微积分的概念教学,以加深学生对概念的理解,提高其运用基本概念的能力?
     本研究构建了微积分概念教学原则,并对一所理工院校大一上学期三个教学班的微积分课程进行了教学设计与教学实验,主要采用了设计研究、问卷调查、访谈、课堂观察、准实验对照等研究方法,有3位教师以及255位学生参加了概念教学班的教学实践。研究包括3个阶段:(1)准备和设计:根据现有文献及教学经验总结出学生所遇到的常见错误与问题以及每个案例教学设计的要点(设计原型),设计出概念的前/后测试卷,对测试时间、教学时间作出安排。(2)教学实践:针对前测中发现的问题,对原有的教学设计(设计原型)进行修正,并实施概念教学。(3)回顾分析:任课教师撰写教学反思,并对概念教学设计原则进行修正;依据修正后的原则,开始下一轮的教学设计。在研究的最后,我们进行了教学设计的效果检验,主要通过三条路径:(1)以具体案例的前后测对比,进行教学班纵向的比较;(2)以学校统一安排的期中期末考试进行横向的比较;(3)在学期末,对学生进行调查,了解学生对概念教学的认可情况。
     通过研究得到以下结论:
     其一,大学生对微积分基本概念的概念意向是片面的,甚至有些是错误的。(1)在学习极限的定义前,大学生不会用严格的语言来界定极限,有一些同学用静态的观点来看待极限,认为极限就是“n趋于无穷大(x趋于x0)时,数列(函数)等于a”。(2)大多数学生在看到导数时首先想到的是函数曲线在某点切线的斜率;学生主要从斜率的角度来理解导数,而非从变化率的角度来理解。(3)学生对通过导数来求微分这种“操作性的知识”认识深刻,但是对微分的几何意义和线性近似的思想认识存在混乱。(4)部分学生知道定积分是面积,但是不清楚究竟是哪个区域的面积;知道定积分概念中的分割与近似代替的过程,但是部分学生不清楚对哪个量进行分割:一些学生单纯地认为dx是积分号的一部分,而忽略了其“微分”的实际意义。
     其二,我们构建了微积分概念教学原则,并进行了相应的教学设计与教学实验。微积分概念教学原则如下:(1)通过本原性(历史上的,本质的)问题引入数学概念,借助历史发展阐述数学概念;(2)借助几何直观或生活中的直观例子帮助同学理解概念;(3)注重概念间关系的阐述。针对前测中的问题,每个案例的设计重点如下:极限的教学设计重在通过直观的方式帮助同学熟悉、理解并会运用形式化的语言;导数的教学设计重在阐明概念所蕴含的“变化率”思想;微分的设计重点在于突出概念间的联系,帮助学生在头脑中形成概念图;中值定理的设计重点在于通过历史上的定理形式来让学生体会到概念的严格化过程:定积分是过程性概念的典型代表,其设计要点在于在教学中帮助学生将定积分的概念解压缩,从而将定积分概念迁移到未知情境中。
     研究的创新之处在于:在国内首先比较系统地研究了学生对一元微积分基本概念的理解,并剖析了学生的概念意象;针对这些概念意象与学生的概念误解进行了教学设计与为期一个学期的教学实践。研究呈现了微积分概念教学的原始设计、对学生概念意象及概念误解的调查、教学设计的修正、教学设计的实施、教学效果反馈的全过程,其理论意义在于为微积分教学研究提供实证性的依据,为后续研究的开展做一些基础性的工作。实践价值在于可帮助大学教师了解学生的概念理解情况,为教师提供具体的教学策略和教学设计参考,也可为大学的教材编写者提供素材。
In the context of mass higher education, the ability of college freshmen are generally in lower level than before, and increasingly uneven. It has become a major problem facing the world of higher education. On the other hand, reform on basic education has made tremendous change in the secondary school curriculum. This change also put forward new requirements for the university setting. Mass education and the high school curriculum cause problems increasingly on Calculus teaching in university. Many college students can do simple works on derivative and calculus, but can not understand the idea behind the concept, and as a result, usually have fuzzy understanding of the relationship between concepts. Therefore, how to find the cognitive difficulties of the students on the concepts of calculus and to make the targeted instructional design is the key to the reform of the teaching on Calculus.
     This research, selecting cases on limit, derivative, differential, Mean Value Theorem, definite integral, focuses on the two questions:(1) What concept images and misunderstandings do college students have on the basic concepts in calculus?(2) How to design the teaching of calculus concepts can help students understand the concepts, and improve their ability to apply basic concepts?
     This research, based on the construction of principles on concept instruction in calculus, presents a case study on calculus course in three classes of a college of science and engineering freshmen by carrying out the teaching design and teaching experiment. Research methods such as design research, questionnaires, interview, classroom observation, control of quasi-experimental are adopted. There are3teachers and255students participated in the practice. The study consists of three phases.1) Preparation and design:based on literature review and teaching experience we sum up the common errors and problems encountered by students, and the main points in concept instruction. Then we design test volumes for before/after the teaching, and make arrangements of test time, teaching time.(2) Teaching practice: according to the problems found in the pre-test, we correct the original instructional design (prototype) and implement the concept instruction.(3) Review:teachers write teaching reflection on the concept instruction design principles and make second correction; based on the revised principles, the next round of instructional design is carried on. At the end of the study, we conduct a test of the effect of instructional design, primarily through three paths:firstly, making longitudinal comparison among the testing classes according the pre-test and post-test comparison of the specific case; secondly, using midterm and final exams in school uniform arrangements for horizontal comparison; thirdly, at the end of the semester, making the student survey to know students'recognition of the concept instruction.
     Based on the findings of this study, the following conclusions can be drawn:
     Firstly, college students'concept image of the fundamental concepts of calculus is one-sided, and some even wrong.(1) Before learning, students can not define the limit by correct words. Some students even take a static point of view, as limit is "when n tends to infinity (tend), the number of series (function) is equal to a."(2) Most of the students usually think of the function curve slope of the tangent at a point when seeing derivative; students mainly consider the angle of the slope as derivative, rather than from the point of view of the rate of change in understanding the definition.(3) The "operational knowledge" makes deeply impression to students. There is confusion in the profound understanding of the significance of differential geometry and linear approximation.(4) some students know the definite integral is the area, but it is not clear exactly which area of the region; Some know the definite integral concept segmentation and approximation substitute of the process, but do not know which amount is divided; some students simply think dx as part of the integral symbol, while ignoring the practical significance of the "differential".
     Secondly, we constructed principles on concept instruction in calculus and the corresponding instructional design and teaching experiments. The principles are as follows:(1) through the primitive (history, essentially) the introduction of mathematical concepts, with the historical development of elaborate mathematical concepts;(2) by means of geometric or intuitive life examples to help students understand the concepts;(3) paying attention to the elaboration of the concept of the relations between them. Based on the problems in the pre-test, the design focus of each case are as follows:Limit focuses on intuitive way to help students learn, understand and use formal language; Derivative on clarifying the thought of "the rate of change"; Differential on the links between prominent concept to help students in the minds of a concept map; Mean Value Theorem on the history of the theorem in the form to help students understand the concept of strict process; Given integral as a typical representative of the process concept, the design point is to help students in teaching the concept of definite integral decompression, which will be fixed integral concept to migrate to an unknown situation.
     The research, first in China, systematically studied students'understanding of the fundamental concepts of calculus, and explores students'concept image through a semester teaching practice. The implications of this study for teaching and learning the concept of calculus as well as on research in mathematics education are also discussed. The practical value is that it can help university teachers to know students' conceptual understanding of the situation, to provide teachers with specific teaching strategies and design reference, and also as material for a university textbook writing.
引文
鲍建生(1992).数学语言的教学.数学通报,31(10):1-2.
    鲍建生,周超(2009).数学学习的心理基础与过程.上海:上海教育出版社.
    鲍建生,王洁,顾泠沅(2005).聚焦课堂.上海:上海教育出版社.
    曹荣荣(2011).理工科大一学生高等数学思维的研究.未出版的博士论文,华东师范大学.
    柴俊,陆竞,俞曼(2003).高考数学分数高,大学数学学习成绩一定好吗?数学教学,(8):封二-1.
    柴俊(2006).我国微积分教学改革方向的思考.大学数学,22(3):17-20.
    柴俊(2008).高师院校数学教师多元化、分层次培养方案设计与研究.未出版的博士论文,华东师范大学.
    陈昌平(2000).数学教育比较与研究.上海:华东师范大学出版社.
    陈跃(2005).从历史的角度来讲微积分.高等数学研究,8(6):47.
    陈跃(2008).从历史角度讲大学数学.数学教育学报,17(4):68-72.
    柴长建(2010).微分中值定理的教学实践与探索,高等数学研究,13(5):2-5.
    崔允漷,沈毅等(2007).课堂观察20问答.当代教育科学,24:6-16.
    David.M(1997).改革微积分——为了数百万人.数学译林,16(4):347.
    邓纳姆(2010).微积分的历程——从牛顿到勒贝格.李伯民,王军,张怀勇译.北京:人民邮电出版社,21-22.
    段素芬(2008).高等数学学习困难及其化解的元认知视角.中国成人教育报,(19):154-155.
    段耀勇(2006).数学史与数学教育(HPM)的一个案例——刘徽的“割圆术”与微积分.大学数学,22(3):163-166.
    郭大钧(2010).“数学分析”课的教学与研究,高等数学研究,13(4):110-114.
    房元霞,连茂廷,宋宝和(2010).高中生对导数概念理解情况的调查研究——兼与大学生的比较,数学通报,49(2)
    芬尼,韦尔,焦尔当诺(2003).托马斯微积分.叶其孝,王耀东,唐兢译.北京:高等教育出版社.
    高明海,刘守鹏,刘琳,孔杨,刘芳,祈爱琴(2010).基于Matlab环境优化Taylor中值定理教学.教学研究,23(1):114-116.
    高雪芬,王月芬,张建明(2010).关于大学数学与高中衔接问题的研究.浙江教育学院学报,(3):30-36.
    高雪芬,汪晓勤(2012).M·克莱因的HPM思想——以《微积分》为例.数学教育学报,21(4):24-27.
    高雪芬,周远,张建明(2012).大学与高中数学课程的衔接问题研究.高等数学研究,15(5):50-53.
    高雪芬(2012).微积分概念教学研究之述评——以Chappell文章为例.教学研究,35(5):36-39.
    高雪芬,鲍建生(2013).大学生对微分概念的理解及认知方式分析.数学教育学报,22(1):40-43.
    高尧来(2006).数学史知识融入微积分教学的探索.教科文汇,20(3):19-22.
    高尧来(2007).王世龙.美国微积分教学改革及其启示.理工高教研究,26(3):42-45.
    巩子坤(2006).有理数运算的理解水平及其教与学的策略研究.未出版的博士论文,西南大学.
    顾泠沅、周卫(1999).课堂教学的观察与研究——学会观察,上海教育,5:14-18.
    顾泠沅,杨玉东(2003).反思数学教育研究的目的与方法.数学教育学报,12(2):10-12.
    顾可敬(1980).数学教育一家言——介绍莫里斯·克莱因的一本近著及其所引起的评论.自然杂志,3(12):889-894.
    洪小辉(2008).一元函数积分计算错误的主要类型及错因分析.未出版的博士论文,首都师范大学,北京.
    洪妍(2009).高中导数概念的教与学的研究.未出版的硕士论文,扬州大学,扬州.
    贺真真(2008).数学教育研究中运用数据处理方法的若干探索,未出版的博士论文,华东师范大学,上海.
    侯维民(2003).从数学方法论看高等代数与中学数学的多种联系.数学教育学报, 12(3):84-87.
    黄荣金(2003).国际数学课堂的录像研究及其对我国数学教育研究的启示,中学数学月刊,9:5-8.
    黄荣金(2004).国际数学课堂录像研究对我国数学教育的启示.比较教育研究,3:39-43.
    黄荣金,李业平(2009).LPS数学课堂研究发现及启示.浙江教育学院学报,1:45-51.
    黄兴丰,庞雅丽,李士锜(2009).数学课堂教师教学行为的继承和发展——3节录像课的比较研究,数学教育学报,18(6):54-57.
    黄兴丰,翟红村编译(2011).数学教育研究方法——多元并存各尽其用.数学教育学报,20(2):73-77.
    黄银波(1988).专科生对微分解题之反思,嘉义技术学院学报,59:143-161.
    黄友初(2006).一次大学数学调查带来的思考和启示.大学数学,22(6):140-143
    胡国专(2003).定积分概念教学设计.河北理科教学研究,3:54-56.
    季素月,钱林(2000).大学与中学数学学习衔接问题的研究.数学教育学报,9(4):45-49.
    季素月,袁洲(2005).高中与大学数学课堂教学的比较研究.数学教育学报,14(3):63-66.
    卡茨(2004).数学史通论(第2版).李文林,邹建成,胥鸣伟等译.北京:高等教育出版社.
    卡尔·B·波耶(2007).微积分概念发展史.上海:上海人民出版社.
    Kieran, C(1999).朝着高等数学思维的转变:函数,极限,无限和论证.D.A.格劳斯主编,数学教与学研究手册(陈昌平等译),上海:上海教育出版社,640-675.
    李大潜(2009).漫谈大学数学教学的目标与方法.中国大学教学,1:7-10.
    李大潜(2010).关于高校数学教学改革的一些宏观思考.中国大学教学,1:7-10.
    李莉,谢琳(2006).关于学习极限概念认知障碍的研究与分析.数学教育学报,15(1):42-44.
    李倩,胡典顺,赵军(2008),对新课程标准下微积分课程教学的思考,高等函授 学报,2(2):58-62.
    李晓玲(2009).微积分中值定理在复数域内的推广.佳木斯大学学报,(5)791-792.
    连茂廷(2008).高中生和大学生导数概念理解比较.中国科教创新导刊,6:122-124.
    林群(2009).微积分快餐.北京:科学出版社.
    凌海生(2010).定积分学习现状的调查和思考.高等数学研究,13(4):122-125.
    柳笛(2011).高中数学教师学科教学知识的案例研究.未出版的博士论文,华东师范大学,上海.
    刘曼丽(2002).小数概念知多少.高雄:高雄复文图书出版社,32-39.
    刘荣玄,罗贤强,徐向阳(2011).关于概念图在数学教学评价中的应用研究问题.数学教育学报,4:51-54.
    路易斯·伏利德勒(美国)(2005).柴俊等译.美国微积分教学:1940-2004.高等数学研究,8(3):6-11.
    吕杰(2003),大学新生数学学习困难期的成因及应对措施.现代教育科学,(5),总173:13-114.
    吕林海(2003).数学理解之面面观.中学数学教学参考,(12):1-4.
    芦伟,陈浩(2005).全微分概念的表征及教学对策.巢湖学院学报,7(3):50-51.
    卢玉峰(2008).微分中值定理历史与发展.高等数学研究,11(5):59-63.
    陆忠源,秦春(2002).谈谈中学微积分教学的准备及开头课.中学数学月刊,10:9-11
    马知恩(2008).工科高等数学课程教学改革五十年.中国大学教学,1:11-16。
    马守春(2007).微积分中反例的作用和构造.高等数学研究,10(91):40-43.
    莫里斯·克莱因(2003a).古今数学思想(第一册).张理京,张锦言,江泽涵译.上海:上海科学技术出版社,4.
    莫里斯·克莱因(2003b).古今数学思想(第二册).朱学贤,申又枨,叶其孝等译.上海:上海科学技术出版社,65.
    莫里斯·克莱因(2006).古今数学思想(第四册).邓东皋,张恭庆译.上海:上海科学技术出版社,322-323.
    齐民友(2004),从微积分的发展看微积分的教学(续三),高等数学研究,7(5): 3-5.
    彭杜宏,何敏,刘电芝(2009).大学课堂教与学状况的个案观察报告.高教探索,2.
    秦德生(2007).学生对导数的理解水平及其发展规律研究.未出版的博士论文,东北师范大学,长春.
    青浦县数学教改实验小组(1991).学会教学.北京:人民教育出版社,222.
    人民教育出版社,课程教材研究所,中学数学课程教材研究开发中心(2007).数学:普通高中课程标准试验教科书.2版.北京:人民教育出版社.
    宋宝和,房元霞(2006).变化率的思想——高巾开设微积分课程的价值.课程教材教法,9:44-47.
    宋晓平,杨建华(2010).基于“数学课堂学习动力系统”的课堂教与学分析框架.数学教育学报,19(6):30-33.
    苏德矿,金蒙伟(2004).微积分.北京:高等教育出版社.1-244.
    唐兢(1999).大学数学教育必须从经典走向现代,高等数学研究,4:6-7.
    同济大学数学系(2007).高等数学.6版.北京:高等教育出版社.
    T.M.菲赫金哥尔茨.杨弢亮,叶彦谦译(2006),微积分学教程(第一卷)(第八版).北京:高等教育出版社.
    万里安(1994).关于微分.工科数学,3:174-176.
    王高峡,唐瑞芬(2000).再谈美国的微积分教学改革.数学教育学报,9(4):69-72.
    王红风,高雪芬(2012).托普利兹的微积分:历史发生的方法.教学研究,35(4):83-85.
    王佳莹,郭俊杰(2012).视频自我分析:发展教师的教学决策能力.教育理论与实践,32(5):22-24.
    王建军(2007).“新数学”:一个课程改革的故事及其启示.全球教育展望,(36):31-36.
    王开正(1999).从加减法到微积分.运城高等专科学校学报,17(6):63-65.
    王荣,罗铁山(2008).对中学与大学数学教育衔接问题的思考.中国成人教育,(1):153-154.
    王明春,潘惟秀,郭阁阳(2010).大学数学与中学数学教学内容衔接研究.高等 数学研究报,13(5):11-13.
    王文静等(2008).基于设计的研究教育理论与实践创新的持续动力.教育理论与实践,28(11):7-11.
    汪晓勤(2003).HPM视角下的高等数学教学.高等理科教育,5:10-12.
    汪晓勤(2009).数学史与高等数学教学.高等理科教育,2:20-23.
    王孝玲(1993).教育统计学.上海:华东师范大学出版社,226-248.
    王佑镁(2010).教育设计研究:是什么与不是什么.中国电化教育,9:7-15.
    王玉芳(2011).微分中值定理教学中融历史与技术的案例设计.高等函授学报(自然科学版),24(5):46-49.
    吴波(2002).浅谈高等数学课中微分中值定理教学方法——反例教学法.思茅师范高等专科学校学报,18(3):5-7.
    吴赣昌(2007).高等数学(理工类).北京:中国人民大学出版社.
    吴建成(2009).高等数学.北京:机械工业出版社出版.
    吴介儒(1998).微分中值定理形象化教学尝试.理工高教研究,2:74-76.
    吴凤珍(2007).微分中值定理教学方法探究.北京教育学院学报(自然科学版),2(1): 28-30.
    吴甬翔,汪晓勤(2009).曲线的切线:从历史到课堂.高等理科教育,3:38-43.
    项明寅,方继光,鲍志晖等(2006).论“数学分析”入门学习四大难关的成因与对策,高等理科教育,6(70).
    萧树铁(2000),《大学数学》系列教材的改革思路和特点,中国大学教学,2:19.
    萧树铁等(2000).高等数学改革研究报告(非数学类专业).北京:高等教育出版社.
    萧树铁(2002).高等数学改革研究报告.数学通报,9:3-8.
    萧文强(1999).少者多也:普及教育中的大学数学教育.高等数学研究,2(4):2-6。
    辛静宜,林珊如,叶秋呈(2005).五年制专科学生微积分学习动机与策略之初期研究.南大学报39(2):65-82.
    徐芳芳(2008).高中数学教师导数知识研究.未出版的硕士论文.东北师范大学,长春.
    徐彦辉(2012).数学理解三种方式及其课堂教学特征.中国教育学刊.11(1),59-61.
    徐永琳(2008).在微积分中开展探究性学习的现状及其对策研究.未出版的硕士论文,天津师范大学,天津.
    徐章韬,汪晓勤,梅全雄(2010).发生教学法:从历史到课堂.数学教育学报.
    徐章韬(2012).曲线系:从知识点还原到研究工具.数学教学,(5):5-6.
    杨凌(2006).概念图、思维导图的结合对教与学的辅助性研究.电化教育研究,6:59-61.
    杨明升,何晓敏,宁连华(2010).大学数学专业本科生数学学习现状的调查研究.数学教育学报,19(6):56-49.
    杨南昌(2007).基于设计的研究:正在兴起的学习研究新范式.中国电化教育,(5):7.
    叶立军,斯海霞(2011).基于录像分析背景下的代数课堂教学语言研究——以两堂《分式的乘除》课堂实录为例.数学教育学报,20(1):42.
    叶其孝(1998).国际数学教育委员会(ICMI)关于大学数学教与学的研究课题的讨论文件.数学的实践与认识,28(02):108-114.
    叶赛英,胡月(2007).国内外两本微积分教材的比较与启示.大学数学,23(1):189-190.
    于坚(2005).师范生数学学习的现状分析及对策研究.广西教育学院学报,4:61-62.
    于群福(2008).基于APOS理论指导下的导数概念教学设计.数学学习与研究·教研版,8:16-16.
    袁玉波,曹飞龙(2010).基于几何直观的微积分教学内容改革探索,大学数学,26(1).
    袁文俊(2004).微分中值定理教学改革探讨.广州大学学报(自然科学版),3(1).
    张奠宙(1999).大学数学教育的若干新趋势——新加坡数学教育国际会议的报道.高等数学研究,2(2):2-4.
    张奠宙(2002),王振辉.关于数学的学术形态和教育形态——谈“火热的思考”与“冰冷的美丽”.数学教育学报,5(2):1-4.
    张奠宙,张荫南(2004a).新概念:用问题驱动的数学教学.高等数学研究,7(3): 8-10.
    张奠宙,张荫南(2004b).新概念:用问题驱动的数学教学续,高等数学研究,7(5):8-11.
    张奠宙(2006a).微积分教学:从冰冷的美丽到火热的思考.高等数学研究,9(2):2-5.
    张奠宙(2006b).微积分教学:从冰冷的美丽到火热的思考(续).高等数学研究,9(3): 2-5.
    张奠宙,柴俊(2010).在理论和实践上进一步加强大学数学教学研究----国际研究述评,大学数学,26(增刊):12-18.
    张奠宙(2010).代序努力掌握微积分思想的精髓,张景中著.直来直去的微积分,北京:科学出版社.
    张景中(2009).微积分基础的新视角.中国科学,39(2):247-256.
    张景中(2010).直来直去的微积分.北京:科学出版社.
    张倩苇(2011).教育设计研究的本土化应用——支持教师实施综合实践活动课程的设计研究.电化教育研究,213:35-39.
    张海祥(1980).关于“微分”概念的教学.曲阜师范大学学报(自然科学版),1:22-29.
    张伟平(2007).学生在数学学习中对无限的认识探究.未出版的博士论文,华东师范大学,上海.
    赵伟丽(2009).课堂教学录像研究——一种新的课堂观察策略.未出版的硕士论文,曲阜师范大学,曲阜.
    郑日昌,崔丽霞(2001).二十年来我国教育研究方法的回顾与反思.教育研究,(6):17-21.
    张蕙兰,童丽珍(2001).大学数学教学与中学数学教学衔接问题研究.荆州师范学院报,24(5):107-109.
    张在明(1997).关于数学分析中几个重要概念之间的关系.玉溪师范学院学报,13(6):1-3.
    赵南元(2008).追忆父亲赵访熊,http://www.tsinghua.edu. cn/publish/th/index. html, 2008-11-03.
    赵鹏飞(1998),James Pomfret美国计算器辅助微积分教学改革的启示.数学教 育学报,7(1):101-102.
    中华人民共和国教育部制订(2003).普通高中数学课程标准(实验).北京:人民教育出版社.
    朱桂英(2009).基于与中学数学相衔接的高等数学教学改革的研究.科技信息,430-431.
    朱卫平(2006).大学一年级学生对微积分基本概念的理解.未出版的硕士论文,华东师范大学,上海.
    朱卫平(2010).大一学生对微积分基本概念的理解,数学教育学报,19(4):37-40.
    祝智庭(2008).设计研究作为教育技术的创新研究范式.电化教育研究,(10):30-31.
    Alexanderson, G. L., Kline M(1979). An Interview with Morris Kline:Part 1.The Two-Year College Mathematics Journal,10 (3),172-178.
    Alcock, L. & Simpson, A.(1999). The rigors prefix. In O. Z aslavsky(Ed.) Proceeding of the 23rd PME International Conference,2,17-24.
    Alsina C.(2001). Why the Professor Must Be a Stimulating teacher. In:Derek Holton.The Teaching and Learning of Mathematics at University Level-An ICMI Study. New York:Kluwer Academic Publishers,3-12.
    Artigue M. (1991). Analysis, In D. Tall (Eds). Advanced Mathematical Thinking (pp. 167-197). Dordrecht:Kluwer Academic Publishers.
    Artigue M. (1999). The Teaching and Learning of Mathematics at the university Level: Crucial Questions for Contemporary Research in Education, Notices of AMS, 46(11),1377-1385.
    Asiala M, Cottrill J, Dubinsky E,,Schwingendorf K(1997). The Development of Students Graphical Understanding of the Derivative. Journal of Mathematical Behavior.,16(4),399-431.
    Asiala, M., Brown, A. DeVries, D., Dubinsky, E. Mthaews, D. & Thomas, K(1996). A framework for research and curriculum development in undergraduate mathematics education.Kaput, J., Schoenfeld, A., & Dubinsky, E. Research in Collegiate Mathematics Education Ⅱ(pp.1-32). Washington, Dc:American Mathematical Society.
    Attorps, I., Bjork, K., Radic, M. & Tossavainen, T(2009). The Learning Study Model and the Teaching of the Definite Integral Concept. Proceedings of annual symposium of the Finnish mathematics and science education research association.http://epublications.uef.fi/pub/urn isbn 978-952-61-0266-5/urn isbn 978-952-61-0266-5.pdf#page=86.
    Baker B, Cooley L and Triguerous M(2000). A Calculus Graphing Schema. Journal for Research in Mathematics Education,31(5),557-578.
    Barbe J, Bosch M, Espinoza L and Gascon J (2005). Didactic Restrictions on the Teacher's Practice:The Case of Limits of Functions in Spanish High Schools, Educational Studies in Mathematics, (59),235-268.
    Bass,H.(2003), The Carnegie Initiative on the Doctorate:The Case of Mathematics,Notices of the AMS,50(7),767-776.
    Barrow-Green, J.(2009). From cascades to calculus:Rolle's Theorem, In:Robson, Eleanor and Stedall, Jacqueline eds. The Oxford Handbook of the History of Mathematics, Oxford University Press, Oxford,737-754.,
    Berge,A. (2008). The completeness property of the set of real numbers in the transition from calculus to analysis. Educational Studies in Mathematics,67(3), 217-236.
    Berge. A. (2010). Students' perceptions of the completeness property of the set of real numbers. International Journal of Mathematical Education in Science and Technology,41(2),217-227.
    Bezuidenhout J. & A. Olivier, (2000) Students' conceptions of the integral, in Proceedings of the 24th Conference of the International Group for the Psychology of Mathematics Education, Hiroshima, Japan.
    Bezuidenhout J. Limits and Continuity(2001):Some Conceptions of First-year Students. International Journal of Mathematical Education in Science and Technology,32(4),487-500.
    Bingolbali E, Monaghan J and Roper T(2007). Engineering Students' Conceptions of the Derivative and Some Implications for Their Mathematical Education. International Journal of Mathematical Education in Science and Technology. 38(6),763-777.
    Bingolbali, E., Monaghan, J. (2008). Concept image revisited, Educational Studies in Mathematics, Vol.68(1),19-35.
    Bloch, I. (2004) The teaching of calculus at the transition between upper secondary school and the university:Factors of rupture. Communication to the Topic Study Group 12, Dans M. Niss (Eds.) Actes de ICME10. Copenhagen. Copenhagen: Roskilde University.
    Bloch, I., Ghedamsi I. (2010). From Numbers to Limits:Situations as a way to a process of abstraction. Proceedings of CERME 6, Lyon, France, http://www.inrp.fr/publications/edition-electronique/cerme6/wg12-15-bloch.pdf
    Brousseau, G. (1997). Theory of didactical situations in mathematics. Dordrecht: Kluwer Academic Publishers.
    Brown, A. L. (1992). Design experiments:Theoretical and methodological challenges in creating complex interventions. Journal of the Learning Sciences,2,141-178.
    Carpenter, T. P., Dossey, J.A.. & Koehler, J.L. (Eds).(2004). Classics in mathematics education research. Reston, VA, USA:NCTM.
    Chappell, K.K. & Killpatrick, K. (2003). Effects of concept-based instruction on students'conceptual understanding and procedural knowledge of calculus. Problems, Resources and Issues in Mathematics Undergraduate Studies,8(1), 17-37.
    Chappell, K.K.(2003). Transition Issues That Reform Calculus Students Experience in Traditional Second Semester Calculus. Problems, Resources and Issues in Mathematics Undergraduate Studies,8,129-151.
    Chappell K K(2006). Effects of Concept-Based Instruction on Calculus Students' Acquisition of Conceptual Understanding and Procedural Skill. In:Hitt F, Harel G, Selden A. Research in Collegiate Mathematics Education VI. Washington, DC:American Mathematical Society
    Chevallard, Y.(1985). La transposition didactique. Grenoble:La Pensee Sauvage.
    Chri Dede(2005).Why Design-Based Research is Important and Difficult. Educational Technology, (1-2),5-8.
    Collins, A. (1992). Toward a Design Science of Education. In E. Scanlon & T. O Shea Eds., New Directions in Educational Technology, (pp.15-22). Berlin: Springer Verlag.
    Collins, A. (1999) The changing infrastructure of education research. In E. Lagemann & L. Shulman (Eds.), Issues in education research (pp.289-298). San Francisco: Jossey-Bass.
    Cornu, B. (1981). Learning the Limit Concept:Individual and Suitable Models, Internationale PME,Universite de Grenoble, Grenoble,322-326.
    Cornu, B.(1991). Limits. In D. Tall (Eds). Advanced Mathematical Thinking (pp. 153-166). Dordrecht:Kluwer Academic Publishers.
    Clark M, Lovric M(2009). Understanding secondary-tertiary transition in mathematics. International Journal of Mathematical Education in Science and Technology, 40(6),755-776.
    Davis, R.B., & Vinner, S.(1986).The notion of limit:Some seemingly unavoidable Misconceptions stages. Journal of Mathematical Behavior,5,281-303.
    Dahlberg, R. P. & Housman, D.L.(1997). Facilitation learning events through example generation. Educational Studies in Mathematics,33,283-299.
    Nguyen D. & Rebello N.S.(2011). Students'understanding and application of the area under the curve concept in physics problems.Physical Review Special Topic,7: 010112-1—010112-17.
    Dorko, Allison J. (2012), "Calculus Students'Understanding of Area and Volume in Non-calculus Contexts". Electronic Theses and Dissertations. Paper 1707. http://digitalcommons.library.umaine.edu/etd/1707.
    Dorierj,-L.(1995). Meta level in the teaching of unifying and generalizing concepts in mathematics. Educatonal Studies in Mathematics,29,175-197.
    Douglas R. (1986). Toward a Lean and Lively Calculus. Report of the Conference/Workshop to Develop Curriculum and Teaching Methods for Calculus at the College Level, Mathematical Association of America, Washington, DC.
    Dreyfus.,T. (1991). Advanced mathematics thinking as process. In D. Tall (Eds)., Advanced Mathematical Thinking (pp.25-41). Dordrecht, Netherlands:Kluwer Academic Publishers.
    Dubinsky, E. (1991). Reflective abstraction in advanced mathematical thinking. In D. Tall (Eds)., Advanced Mathematical Thinking (pp.95-126). Dordrecht: Kluwer Academic Publishers.
    Dubinsky, E. (Guest Ed.).(1997). An investigation of students'understanding of abstract algebra (binary operation, groups and subgroups) and the use of abstract structures to build other structures (through coset, normality and quotient groups) [special issue]. The Journal of Mathematical Behavior,16(3).
    Dubinsky, E., & MacDonald, M. (2001). APOS:a constructivist theory of learning in undergraduate mathematics education research. In:D. Holton (Eds.), The Teaching and Learning of Mathematics at University Level:An ICMI Study. Dordrecht:Kluwer Academic Publishers.
    Dubinsky, E., Weller, K. Mcdonald, M. A. Brown,A. (2005). Some Historical Issues and Paradoxes Regarding the Concept of Infinity:An Apos-Based Analysis:Part 1,Educational Studies in Mathematics,58(3),335-359.
    Duval R. (2006) A Cognitive Analysis of Problems of Comprehension in a Learning of Mathematics. Educational Studies in Mathematics,61(1),103-131.
    Edwards, H. M.(1977).Fermat's Last Theorem A Genetic Introduction to Algebraic Number Theory. New York:Springer-Verlag.
    Ervynck G. (1991). Mathematical creativity. In D. Tall(Eds)., Advanced Mathematical Thinking (pp.42-53). Dordrecht, Netherlands:Kluwer Academic Publishers.
    Faulkner, F., Hannigan, A., & Gill, O. (2011). The changing profile of third level service mathematics in Ireland and its implications for the provision of mathematics education (1998-2010). In M. Pytlak, T. Rowland, & E. Swoboda. Proceedings of the 7th Conference of European Researchers in Mathematics Education. Poland:Rzeszow,1992-2001.
    Ferrini — Mundy,J.&Gaudard, M. (1992).Secondary school calculus:PreParation or Pitfall in the study of college caleulus? Journal of Reseacrh for Mathematics Education,23(1),56-71.
    Furinghetti F, Paola D. (1991) The Construction of a Didactic Itinerary of Calculus Starting from Students'Concept Images. International Journal of Mathematical Education in Science and Technology,22(5),719-729.
    Gonzalez-Martin, A. & Camacho, M. (2003). What is first year Mathematics students actual knowledge about improper integrals? International Journal of Mathematical Education in Science and Technology. Vol.35 (1),73-89.
    Grabiner, J. V. (1981). The Origins of Cauchy's Rigor in Calculus, MIT Press, Cambridge.
    Gray, E., & Tall, D. (1991). Duality, ambiguity and flexibility in successful mathematical thinking:In F. Furinghetti (Eds.), Proceedings of the 15th PME International Conference,2,72-79.
    Gray, E., & Tall, D. O. (1994). Duality, ambiguity and flexibility:A perceptual view of simple arithmetic. Journal for Research in Mathematics Education,26(2), 115-141.
    Gray, E., Pinto, M., Pitta, D., & Tall, D.O.(1999). Knowledge Construction and diverging thinking in elementary and advanced mathematics, Educational Studies in Mathematics,38 (1-3),111-133.
    Gray, E., Pitta, D., & Tall, D. (2000). Objects, actions and images:A perspective on early number development. Journal of Mathematical Behavior,18(4),1-13.
    Gonzalez-Martin, A. S., Nardi, E., & Biza, I. (2011) Conceptually-driven and visually-rich tasks in texts and teaching practice:The case of infinite series. International Journal of Mathematical Education in Science and Technology, 42(5),565-589.
    Hahkioniemi, M. (2006). Tools for studying the derivative. Unpublished PhD, Jyvaskyla, Finland.
    Hardy,N. (2009). Students' perceptions of institutional practices:the case of limits of functions in college level Calculus courses, Educational Studies in Mathematics, 72 (3):341-358.
    Harel G. & Kaput J.(1991). The role of conceptual entities and their symbols in building advanced mathematical concepts. In D. Tall (Eds). Advanced Mathematical Thinking (pp.82-94). Dordrecht, Netherlands:Kluwer Academic Publishers.
    Harel,G.,Selden A.,Selden J.(2006). Advanced mathematical thinking, In Gutierrez, A., Boero P.(Eds).Handbook of research on the psychology mathematics education(pp.147-172). Taipei, China:Sense publishers.
    Huang, C.H. (2011). Conceptual and procedural abilities of engineering students to perform mathematical integration. World Transactions on Engineering and Technology Education,9:31-37.
    Jordaan, T.(2005). Misconceptions of the limit concept in a mathematics course for engineering students. Unpublished PhD, University of South Africa.
    Judith V. G. The Origins of Cauchy's Rigor in Calculus, MITPress, Cambridge,1981.
    June B.(2009), From cascades to calculus:Rolle's Theorem, In:Robson, Eleanor and Stedall, Jacqueline eds. The Oxford Handbook of the History of Mathematics (pp.737-754). Oxford University Press, Oxford.
    Juter, K. (2006a). Limits of Functions as They Developed through Time and as Students Learn Them Today. Mathematical Thinking and Learning,8(4), 407-431.
    Juter, K. (2006b). Limits of Functions-students solving tasks. Australian Senior Mathematical Journal,20(1),15-30.
    Katz V J. (1993). Using the History of Calculus to Teach Calculus. Science & Education,2(3),243-249.
    Kendal, M., & Stacey, K. (2001). The impact of teacher privileging on learning differentiation with technology. International Journal of Computers for Mathematical Learning,6(2),143-165.
    Kidron I. (2008) Abstraction and Consolidation of the Limit Procept by Means of Instrumented Schemes:The Complementary Role of Three Different Frameworks. Educational Studies in Mathematics,69(3),197-216.
    Kline, M. et al. (1962). On the Mathematics Curriculum of the High School. American Mathematical Monthly,69 (3),189-193.
    Kline M. (1966). A proposal for the high school mathematics curriculum. Mathematics Teacher,59 (4):322-330.
    Kline M. (1970). Logic versus pedagogy. American Mathematical Monthly,77(3), 264-282.
    Kline, M. (1977). Why the professor can't teach mathematics and the dilemma of university education. New York:St Martin's Press..
    Kline M. (1998).Calculus:An intuitive and Physical Approach. New York:Dover Publications Inc.
    Kyeong H. R.(2008). Students, images and their understanding of definitions of the limit of a sequence. Educational Studies in Mathematics,69:217-233.
    Kung,D., Speer, N. (2010). Do they really get it? Evaluating evidence of student understanding of power series, Proceedings of the 13th Annual Conference on Research in Undergraduate Mathematics Education.
    Lesh R., Sriraman B. (2005). Mathematics Education as a Design Science. ZDM, 37(6),490-505.
    Leigh W.(2001), The Secondary-Tertiary Interface, in Derek Holton. The Teaching and Learning of Mathematics at University Level-An ICMI Study New York:Kluwer Academic Publishers,87-99.
    Leinbach, L. C., Hundhausen, J. R., Ostebee, A. R., Senechal, L. J., & Small, D. B. (1991). The laboratory approach to teaching calculus. MAA Notes, Volume 20, The Mathematical Association of America.
    Mahir, N.(2009). Conceptual and procedural performance of undergraduate students in integration. International Journal of Mathematical Education in Science and Technology,40(2),201-211.
    Mamona-Downs, J. (2010). On introducing a set perspective in the learning of limits of real sequences. International Journal of Mathematical Education in Science and Technology,41(2),277-291.
    Maracci, M.(2003).Difficulties in vector space theory:A compared analysis in terms of conceptions and tacit models. In N.A. Pateman, B. J. Dougherty, & J. Zilliox, (Eds.), Proceedings of the 27th PME International Conference,3,229-236.
    Martin,J.(2013), Differences between experts' and students' conceptual images of the mathematical structure of Taylor series convergence. Educational Studies in Mathematics, Volume 82, Issue 2, pp 267-283
    Maull, W., & Berry, J. (2000). A questionnaire to elicit the mathematical concept images of engineering students. International Journal of Mathematical Education in Science and Technology,31(6),899-917.
    Milovanovic, M., Takaci. D.. and Milajic, A.(2011). Multimedia approach in teaching mathematics-example of lesson about the definite integral application for determining an area. International Journal of Mathematical Education in Science and Technology,42:2,175-187.
    Moore, R.C. (1994). Making the transition to formal proof. Educational Studies in Mathematics,27,249-266.
    Moutsios-Rentzos A. & Simpson, A.(2005). The transition to postgraduate study in mathematics:A thinking styles perspective. In H. L. Chick & J. L. Vincent (Eds.), Proceeding of the 29th PME International Conference,3,329-336.
    Mundy, J. (1984). Analysis of errors of first year calculus students. In Theory, Research and Practice in Mathematics Education, A. Bell, B. Love & J. Kilpatrick (Eds.) Proceeding of ICME 5, Shell Centre, Nottingham, UK, 170-172.
    Nardi, E.(1999). Using Semi-structured interviewing to trigger university mathematics tutours'reflections on their teaching practices. In O. Z aslavsky(Ed.) Proceeding of the 23 rd PME International Conference,3,321-328.
    Niss, M.(2001). University Mathematics Based on Problem-Oriented Student Projects: 25 Years of Experience with the Roskilde Model. In:Derek Holton.The Teaching and Learning of Mathematics at University Level-An ICMI Study. New York: Kluwer Academic Publishers.p 153-166.
    Niss, M. (2007). The concept and role of theory in mathematics education. In C Bergsten, B. Grevholm, H. Masoval, & F. R(?)nning (Eds.), Relating practice and research in mathematics education. Proceedings of Norma 05 (pp.97-110) Trondheim:Tapir.
    Oehrtman, M. (2002). Collapsing Dimensions, Physical Limitation, and other Student Metaphors for Limit Concepts:An Instrumentalist Investigation into Calculus Students'Spontaneous Reasoning. Unpublished PhD,The University of Texas, Austin.
    Oehrtman, M. (2009). Collapsing dimensions, physical limitation, and other student metaphors for limit concepts. Journal for Research in Mathematics Education, 40(4),396-426.
    Orton, A. (1980). An investigation into the understanding of elementary calculus in adolescents and young adults, Cognitive Development Research in Science and Mathematics, University of Leeds 201-215.
    Orton, A. (1983a). Students'understanding of differentiation. Educational Studies in Mathematics,15,235-250.
    Orton, A. (1983b). Students'understanding of integration. Educational Studies in Mathematics,14,1-18.
    Orton, A. (1984). Understanding rate of change, Math. School 13(5), pp.23-26.
    Parnell S., Statham M. (2007). An effective preparation for tertiary mathematics. International Journal of Mathematical Education in Science and Technology, 38(7),869-879.
    Pinto, M., Tall, D.O. (1996). Student teachers'conceptions of the rational numbers, in L. Puig & A. Guitier(?)ez, (Eds.), Proceedings of the 20th International conference on the Psychology of Mathematics Education (Vol.4, pp.139-146). Valencia, Spain.
    Praslon, F. (2000). Continuites et ruptures dans la transition Terminale S/DEUG Sciences en analyse. Le cas de la notion de derivee et son environnement. In, T. Assude & B. Grugeon (Eds.), Actes du Seminaire National de Didactique des Mathematiques (pp.185-220). IREM Paris 7.
    President's Council of Advisors on Science and Technology (PCAST) (2012). Engage to excel:Producing one million additional college graduates with Degrees in Science, Technology, Engineering, and Mathematics. Washington, DC:The White House.
    Rasslan, S. & Vinner, S. (1997). Images and Definitions for the Concept of Even/ Odd Function. Proceedings of the 21st Conference of the International Group for the Psychology of Mathematics Education. Vol.4,41-48.
    Rasslan, S., & Tall, David. (2002). Definitions and images for the definite integral concept, in:A. D. Cockburn & E. Nardi (eds.) Proceedings of the 26th Conference PME, Norwich,4,89-96.
    Reeves, T. C. (2006). Design Research From the Technology Perspective.In J. V. Akker, K. Gravemeijer, S. McKenney, & N. Nieveen Eds. Educational Design Research (pp).86-109. London:Routledge.
    Reigeluth, C. M., & Frick, F. W. (1999). Formative Research:A Methodology for Creating and Improving Design Theories. In C. M. Reigeluth Eds., Instructional-Design Theories and Models Vol. Ⅱ, pp.633-651.Mahwah, NJ: Lawrence Erlbaum.
    Robert, A. & Schwarzenberger, R. (1991). Research in teaching and learning mathematics at an advanced level. In D. Tall (Eds). Advanced Mathematical Thinking (pp.127-139). Dordrecht:Kluwer Academic Publishers.
    Robert, A. & Speer, N. (2001). Research on the Teaching and learning of Calculus/Elementary Analysis, In:D. Holton (Eds.), The Teaching and Learning of Mathematics at University Level:An ICMI Study (pp.283-300).Dordrecht: Kluwer Academic Publishers.
    Rosken, B., & Rolka, K. (2007). Integrating intuition:the role of concept image andconcept definition for students'learning of integral calculus. The Montana Mathematics Enthusiast, Monograph,3,181-204.
    Scheja, M., Pettersson, K. (2010). Transformation and Contextualisation: Conceptualising Students'Conceptual Understandings of Threshold Concepts in Calculus. Higher Education,59(2),221-241.
    Schoenfeld A. H. (2000) Purposes and Methods of Research in Mathematics Education. Notices of The AMS,47(6),641-649.
    Schwarzenberger, R. L. E. (1980). Why calculus cannot be made easy. Mathematical Gazette,64(429),158-166.
    Sealey, V. (2006) Definite integrals, Riemann sums, and area under a curve:What is necessary and sufficient?, in Proceedings of the 28th Annual Meeting of the North American Chapter of the International Group for the Psychology of Mathematics Education, Merida, Mexico, (unpublished).
    Selden,A. & Selden,J(2001). Tertiary Mathematics Education Research and Its Future, In:Derek Holton. The Teaching and Learning of Mathematics at University Level An ICMI Study. New York: Kluwcr Academic Publishers.p237-254.
    Sfard, A.(1987). The conceptions of mathcmatical notions: Operational and stuctual. In J. C. Bergeron, N. Herscovics, & C. Kieran(Eds.) Proceedings of the 11th PME Interantional Conference. 3, 162-169.
    Sfard, A.(1989). Transiton from operational to structural conception: The notion of function revisited. In G. Vergnaud, J. Rogalski, & M. Artiguc(Eds.) Proceedings of the 13th PME lnterantional Confernce. 3, 151-158.
    Sfard, A.(1991). On the dual nature of mathematical conccptions, Educational Studies in Mathematics, 22, 1-36.
    Skemp, R. R. (1976). Relational understanding and instrumental understanding. Mathematics Teaching, 77, 20-26.
    Star, J., & J. Smith. (2006). An image of calculus reform: Students' experiences of Harvard calculus. In: Hitt F, Harel G, Selden A. Research in Collegiate Mathematics Education VI. Washington, DC: American Mathematical Society.
    Steen, L. A. (Ed.) (1987). Calculus for a new century: A Pump, Not a Filter. MAA Notes, Number 8. The Mathematical Association of America.
    Stigler, J.W. & Hiebert, J.(1999). The teaching gap: Best ideas from the world's teachers for improving education in the classroom. New York: Free Pres
    Tall,D. O. (1975). A long-term learning schema for calculus/analysis. Mathematical Education for Teaching,2:3-16.
    Tall, D. O. (1980). Looking at graphs through infinitesimal microscopes, windows and telescolpcs. Mathematical Gazette, 64: 22-49.
    Tall, D. O. (1982). Elementary axioms and pictures for infinitesimal calculus, Bulletin of the IMA, 18, 43-48.
    Tall, D. O. (1985a). Understanding the calculus, Mathemalics Teaching,110, 49-53.
    Tall, D. O. (1985b). The gradient of a graph, Mathematics Teaching, 111, 48-52.
    Tall, D. O. (1985c). Tangents and the Leibniz notation, Mathematics Teaching, 112、 48-52.
    Tall, D. O. West, B.(1986a). Graphic insight into calculus and differential equations, in The Influence of Computers and Informatics on Mathematics and its Teaching (cd. Howson G. & Kahane J-P), C.U.P.,107-119.
    Tall, D. O., (1986b). A graphical approach to integration and the fundamental theorem. Mathematics Teaching,113,48-51.
    Tall, D. O. (1986c). Drawing implicit functions, Mathematics in School,15(2),33-37.
    Tall, D. O. (1990). A Versatile Approach to Calculus and Numerical Methods. Teaching Mathematics and its Applications,93,124-131.
    Tall, D. O. (Ed.) (1991). Advanced mathematical thinking. Dordrecht, The Netherlands:Kluwer.
    Tall, D. O., (1991). Intuition and rigour:the role of visualization in the calculus, Visualization in Mathematics (ed. Zimmermann & Cunningham), M.A.A., Notes, 19,105-119.
    Tall, D.O.(1991).Recent developments in the use of the computer to visualize and symbolize calculus concepts, The Laboratory Approach to Teaching Calculus, M.A.A. Notes,20,15-25.
    Tall, D.O.(1991). Visualizing Differentials in Integration to Picture the Fundamental Theorem of Calculus. Mathematics Teaching,137,29-32.
    Tall, D.O.(1992). Visualizing differentials in two and three dimensions. Teaching Mathematics and its Applications,111,1-7.
    Tall, D. O. (1993). Students Difficulties in Calculus. Proceeding of Working Group 3 on Students'Difficulties in Calculus. ICME-7, Quebec, Canada, (1993),13-28.
    Tall, D. Gray, E., Ali, M. Crowley, L., De Marois, P., Mc Gowen, M., et al.(2001). Symbols and the bifurcation between procedural and conceptual thinking. Canadian Joural of Science, Mathematics and Technology Education, 1(1),81-104.
    Tall, D. (2003). Using Technology to Support an Embodied Approach to Learning Concepts in Mathematics. (Talk given in Rio de Janiero). http://homepages. Warwick.ac.uk/staff/David.Tall/pdfs/dot2003a-rio-plenary.pdf
    Tall, D. (2004). Thinking Through Three Worlds of Mathematics. Proceedings of the 28th Conference of the International Group for the Psychology of Mathematics Education, Bergen, Norway,4,281-288.
    Tall D. (2008). The Transition to Formal Thinking in Mathematics. Mathematics Education Research Journal,20 (2),5-24.
    Thompson P. W.. Yes, Virginia(1993), Some Children Do Grow up to Be Mathematicians. Journal for Research in Mathematics Education,24(3), 279-284.
    Thompson P.W. & Silverman J(2008). The concept of accumulation in calculus, in Making the Connection:Research and Teaching in Undergraduate Mathematics, edited by M. P. Carlson and C. Rasmussen, Mathematical Association of America, Washington, DC,43-52.
    Toeplitz Otto(1963). The Calculus:A Genetic Approach. Chicago:The University of Chicago Press,.
    Mike Thomas, Iole de Freitas Druck, et al(2012). Survey team 4:key mathematical concepts in the transition from secondary to university [EB/OL]//ICME-12 preproceedings (2012-07-12), [2012-09-20].http://icmel 2.org/.
    Thurston, W. P. (1994). On proof and progress in mathematics, Bulletin of the American Mathematical Society,30(3),161-177.
    Tucker, T. W. (Chair)(1990). Priming the Calculus Pump:Innovations and Resources. MAA Notes Vol.17. Washington, D.C:Mathematical Association of America.
    Ubuz.B. (2007). Interpreting a graph and constructing its derivative graph:stability and change in students'conceptions. International Journal of Mathematical Education in Science and Technology,38(5),609-637.
    Vandebrouk, F. (2010). Students'conceptions of functions at the transition between secondary school and university. CERME. http://www.cerme7.univ.rzeszow.pl/index.php?id= wg14.
    Van den Akker, J. (1999). Principles and Methods of Development Research. In J. Van Den Akker, N. Nieveen, R. M. Branch, K. L. Gustafson & T. Plomp Eds. Design Methodology and Developmental Research in Education and Training, pp.1-14. The Netherlands:Kluwer Academic Publishers.
    Vinner, S., & Hershkowitz, R. (1980). Concept images and common cognitive paths in the development of some simple geometrical concepts. Proceedings of the Fourth International Conference for the Psychology of Mathematics Education pp.177-184. Berkeley CA.
    Vinner, S., & Dreyfus, T. (1989). Images and definitions for the concept of function. Journal For Research in Mathematics Education,20,356-366.
    Vinner, S. (1991). The role of definitions in the teaching and learning of mathematics. In D. Tall (Eds). Advanced Mathematical Thinking (pp.65-81). Dordrecht, Netherlands:Kluwer Academic Publishers.
    Vinner, S. (1994). Research in teaching and learning mathematics at an advanced level. In D. Tall (Ed.), Advanced Mathematical Thinking (2nd ed.). Dordrecht:Kluwer.
    Wang, F., & Hannafin, M. J. (2005). Design-based research and technology-enhanced learning environments. Educational Technology Research and Development, 53(4),5-23.
    Weber K. (2004) Traditional Instruction in Advanced Mathematics Courses:A Case Study of one Professor's Lectures and Proofs in an Introductory Real Analysis Course. Journal of Mathematical Behavior,23(2),115-133.
    Winslow, C. (2008) Transformer la theorie en taches:La transition du concret a I'abstrait en analyse reelle in A. Rouchier, et al. Actes de la XIIIieme ecole d'ete de didactique des mathematiques. Grenoble:La Pensee Sauvage,185-196.
    Zandieh, M. J. (2000). A theoretical framework for analyzing student understanding of the concept of derivative. In E. Dubinsky, A. H. Schoenfeld & J. Kaput (Eds.), Research in Collegiate Mathematics Education Vol. IV(8),103-127.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700