直线伺服六位置环虚拟轴数控机床的解耦研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在国家自然科学基金“直线伺服双位置环动态精密同步进给理论和实现方法研究”(项目号:50075057)的基础上,首次将直线电机应用到虚拟轴数控机床上,作为虚拟轴数控机床各个杆的驱动,以满足虚拟轴数控机床对于快速性和高加速度的需要。
     由永磁直线同步电机直接驱动,省掉了中间的传动环节,消除了传动链的影响;又因永磁直线同步电动机采用高能永磁体,具有电磁推力强度高、损耗低、电气时间常数小、响应快等优点,因此已在长行程、大推力、微进给技术中占据了主导地位,对其理论研究和实际应用越来越受到极大的关注。
     虚拟轴数控机床是近年发展起来的新型机床,它以高刚度、高精度、高速度及高力重比等特点受到广大学者及机床制造商的重视,有望成为21世纪高速轻型数控加工中心的主力设备。虚拟轴数控机床的各伺服驱动回路由于轴间强耦合的影响,在国内外,一直是控制理论和实现技术方面的一个难题。由于并联机构在结构上的简化所带来的控制上的难度以及特有的机械耦合特性,使得无法从机械结构上对其解耦,即在高速下,无法实现对单个杆进行独立控制。因此在本文中,我们将应用于前向运动学的局部结构化方法与传统的解耦理论相结合,从而提出了一种新颖的解耦方法—局部结构化解耦方法,在对一个杆使用旋转传感器的条件下,通过对Jacobian矩阵的改造,得到了准对角解耦矩阵,从而实现了虚拟轴数控机床各直线伺服系统间的耦合,解决了虚拟轴数控机床平动与转动之间的解耦问题。为数控机床的编程控制提供了很大的方便,为高速度、高精度的虚拟轴数控机床伺服控制提供了理论依据。
In this paper, the idea of local structurization method was combined with the theory of decoupling so that a new decoupling method was proposed firstly. The linear motors were used as the driving instrument of virtual-axis NC machine for the first time, and decoupling between parallel motion and rotation is implemented, with the project named "Research on Dynamically and Precisely Synchronous Drive Theory and Realization Method for Double Position-loop of Linear Servo", which is sponsored by National Natural Science Foundation of China. (No. 50075057)
    Having avoided the effects of the mechanical transmission chains from rotary motions to linear ones, the linear permanent magnet AC motor becomes one of the best executive machines in the high-precision and micro-feed servo system and the higher control requirement on it is brought forward. There are a lot of theoretical research and application achievement in linear servo-motors.
    Virtual-axis machine is a new kind of machine that developed in the recent years. Many researchers have paid much attention to it because of its high stiffness, high speed and high precision , and is believed to become main instrument of high speed light NC operating center in the new century. Servo-drive of virtual-axis machine is always a problem in control theory and application technology because it has strong coupling. This paper proposed a new decoupling method-local structurization decoupling strategy. Based on using a rotary sensor on the axles, we reconfigured Jacobian matrix so that we implemented decoupling between parallel motion and rotation.
    By using the method, decoupling between parallel motion and rotation was implemented in 6 position-loops virtual-axis NC
    
    
    machine. It caused programming of NC machine to become easier. It supplies theory for the servo-control of virtual-axis NC machine.
引文
[1] Bernhard Sprenger. Design of a High Speed and High Precision 3 DOF Linear Direct Drive. IEEE/ASME International Conference on Advanced Intelligent Mechatronics'97 (AIM'97), Tokyo, Japan.1997, 200-210
    [2] 陈烨.超高速数控机床控制系统的发展.《制造技术与机床》2000年(5):12-14
    [3] Vincent Hayward, et al. Kinematic Decoupling in Mechanism and Application to a Passive Hand Controller Design. J. Robotic Sys, 1993,10(5): 767-790
    [4] Luc Baron, Jorge Angeles. The Decoupling of the Direct Kinematics of Parallel Manipulators Using Redundant Sensor. Proc. IEEE Int.Conf. Robotics and Automation, 1994, 2: 974-979
    [5] 周凯.虚拟轴数控机床的虚实映射联动控制.中国机械工程 1998,9(3)
    [6] B.Dasgupta, P.Choudhury. A general strategy based on the Newton-Euler approach for the dynamic formulation of parallel manipulators. Mechanism and Machine Theory, 1999, 34: 801-824
    [7] E.Mcinroy John, F.O'Brien John and W.Neat Gregory. Precise, Fault-Tolerant Pointing Using a Stewart Platform. IEEE/ASME TRAC. On Mechatronics, 1999, 4(1): 91-95
    [8] 郭庆鼎,勾丽丽,张凤.交流直线伺服电机虚拟轴数控机床实现精确与容错控制.上海:第一届国际机械工程学术会议,2000
    
    
    [9] 郭庆鼎,王成元等.《直线交流伺服系统的精密控制技术》.2000年1月,机械工业出版社
    [10] Merlet J-P. Direct Kinematics and Assembly Modes of Parallel Manipulators. Int.J.Robotics Research, 1992, 11(2): 150-162
    [11] 王敬庚,傅若男.空间解析几何.北京师范大学出版社,1999
    [12] E.Mcinroy John, F.O'Brien John and W.Neat Gregory. Precise, Fault-Tolerant Pointing Using a Stewart Platform. IEEE/ASME TRAC. On Mechatronics, 1999 Vol. 4 No.1: 91-95
    [14] H.Kilryong, C.Wankyun and Y.Youm.New Resolution Scheme of the Forward Kinematics of Parallel Manipulators Using ExtraSensors.Trans.ASME.J.Mech.Design, 1996, 118: 214-219
    [15] Merlet J-P. Closed-form Resolution of the Direct Kinematics of Parallel Manipulators Using Extra Sensors Data. Proc. 1993 IEEE Int. Robotics and Automation Conf: 200-240
    [16] Innocenti C. and Castelli V P. Direct Position Analysis of the Stewart Platform Mechnism. Mech Theory, 1990,25(6):611-621
    [17] Kong L F., Huang Z and Cai H G. The 6-DOF Parallel Manipulator MRACS and Control Calculation Computer Parallel Process, Proc. of Conference on Workshop on Algorithme and Computation,1994
    [18] Khatib, O., Study of the Effect of Leg Inertia in Stewart Platforms, Proc. of the ICRA, 1993
    [19] 陈苏平,孙优贤,周春辉.多变量过程的鲁棒解耦.自动化学报,Vol.21,No.2,Mar.,1995,214-219
    [20] M. Moallem, R.V.Patel, K.Khorasani, Experimental Result for Nonlinear Decoupling Control of Flexible Multi-link Manipulator, Proc. of IEEE International Conference on Robotics and Automation, Apr.20-25,1997, Piscataway NJUSA,
    
    3142-3147
    [21] Waldron K J., Raghavan M. and Roth B. Kinematic of a Hybird Serial-Parallel Manipulator System. ASME J. of Dyn. Sys. Meas. And Cont., 1989,111:211-221
    [22] C. Gosselin, J.Angeles. Singularity Analysis of Close-Loop Kinematic Chains. IEEE Transactions on Robotics and Automation, 6(3):281-290
    [23] Honegger, M. Steuerung einer Stewart-Platform als Werkzeugmaschine, Internal Report, Insitute of Robotics, ETHZ,1996
    [24] Ming Z. Huang, Shou-Hung Ling, Yang Sheng. A Study of Velocity Kinematics for Hybird Manipulators with Parallel-Series Configurations. Proceedings of the 1993 IEEE International Conference on Robotics and Automation: 456-461.
    [25] M. Shahinpoor. Kinematics of a Parallel-Serial(Hybird) Manipulator. Journal of Robotic System. 1992, 9(1): 17-36.
    [26] Stewart D. A Platform with Six Degree of Freedom. Proceedings of the Insitution of Mechanical Engineering, 1965 180(15):pp371-386
    [27] Kevin Cleary, Thurston Brooks. Kinematic Analysis of a Novel 6-DOF Parallel Manipulator. Proceedings of the 1993 IEEE International Conference on Robotics and Automation: 708-713.
    [28] F. Pierrot, A. Fournier, P. Dauchez. Towards a Fully-Parallel 6 DOF Robot for High-Speed Applications. Proceedings of the 1991 IEEE International Conference on Robotics and Automation: 1288-1293.
    [29] 宣孝英,傅祥志.6-PSS并联机构的研究.华中理工大学学报,1999,27(11):82-84.
    [30] 孙立宁,徐文军,安辉,等.一种新型6-DOF并联机器人研
    
    究.哈尔滨工业大学学报,1999,31(1):17-21.
    [31] 李波,蔡光起.五自由度并串联机器人的研究.机械,1999,26卷增刊:13-14.
    [32] 谭汝某.俄罗斯的新型工艺装备—“六条腿”机床.制造技术与机床,1997(9):17-18.
    [33] 徐鸿根.丰田工机开发出并联杆型机床.世界制造技术与装备市场,1997(2):69-70.
    [35] Q. Y. Wang, H. Zou, M. Y. Zhao et al. Design and Kinematics of a Parallel Manipulator for Manufacturing. Annals of the CIRP,1998, 47/1: 337-340.
    [36] Hans-Juergen Warneeecke, Reimund Neugebauer, Frank Wieland. Development of Hexapod Based Machine Tool. Annals of the CIRP, 1998, 47/1: 337-340.
    [37] L. Molinari Tosatti, G. Bianchi, I. Fassi et al. An Integrated Methodology for the Design of Parallel Kinematic Machines (PKM). Annals of the CIRP, 1997, 46/2: 341-345.
    [38] Tian Huang, D. J. Whitehouse, Jinsong. Wang. The Local Dexterity, Optimal Architecture and Design Criteria of Parallel Machine Tools. Annals of the CIRP, 1998, 47/1: 347-351.
    [39] Petar B. Petrovic, Vladimir R. Milacic. Closed-Form Resolution Scheme of the Direct Kinematics of Parallel Link Systems Based on Redundant Sensory Information. Annals of the CIRP, 1999, 48/1: 341-344.
    [40] F. Rehsteiner, R. Neugebauer, S. Spiewak, F. Wieland. Putting Parallel Kinematics Machines(PKM) to Productive Work. Annals of the CIRP, 1999, 48/1: 345-350.
    [41] Jiri Ylusty, John Ziegert, Shannon Ridgeway. Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machines Tools. Annals of the CIRP, 1999, 48/1: 351-356.
    
    
    [42] Kong L F., Huang Z. and Cai H G. The 6-DOF Parallel Manipulator MRACS and Control Calculation Computer Parallel Process, Proc. of Conf. On Workshop on Algorithms and Computation, 1994
    [43] Kevin Cleary, Thurston Brooks. Kinematic Analysis of a Novel 6-DOF Parallel Manipulator. Proceedings of the 1993 IEEE International Conference on Robotics and Automation: 708-713.
    [44] Warldron K J., Raghavan M. and Roth B. Kinematic of a Hybird Serial-Parallel Manipulator System. ASME J. of Dyn. Sys. Meas. And Cont,, 1989, 111: pp。211-221
    [45] Gregory L. Long, Curtis L. Collins. A Pantograph Linkage Parallel Platform Master Hand Controller for Force-Reflection. Proceedings of the 1992 IEEE International Conference on Robotics and Automation: 390-395.
    [46] D. Kohli, Soo-Hun Lee, Kao-Yueh Tsai. Manipulator Configurations Based on Rotary-Mechanisms, Transmissions, and Automation in Design, 1988, 110(4): 397-404.
    [47] F. Tahmasebi, L. W. Tsai. Closed-Form Direct Kinematics Solution of a New Parallel Minipulators. Journal of Mechanical Design, 1994, 116(4): 1141-1147.
    [48] Hans-Juergen Warneeecke, Reimund Neugebauer, Frank Wieland. Development of Hexapod Based Machine Tool. Annals of the CIRP, 1998, 47/1: 337-340.
    [49] L. Molinari Tosatti, G. Bianchi, I. Fassi et al. An Integrated Methodology for the Design of Parallel Kinematic Machines (PKM). Annals of the CIRP, 1997, 46/2: 341-345.
    [50] Tian Huang, D. J. Whitehouse, Jinsong Wang. The Local Dexterity, Optimal Architecture and Design Criteria of Parallel Machine Tools. Annals of the CIRP, 1998, 47/1: 347-351.
    
    
    [51] Petar B. Petrovic, Vladimir Ro Milacic. Closed-Form Resolution Scheme of the Direct Kinematics of Parallel Link Systems Based on Redundant Sensory Information. Annals of the CIRP, 1999, 48/1: 341-344.
    [52] F. Rehsteiner, R. Neugebauer, S. Spiewak, F. Wieland. Putting Parallel Kinematics Machines(PKM) to Productive Work. Annals of the CIRP, 1999, 48/1: 345-350.
    [53] Jiri Tlusty, John Ziegert, Shannon Ridgeway. Fundamental Comparison of the Use of Serial and Parallel Kinematics for Machines Tools. Annals of the CIRP, 1999, 48/1: 351-356.
    [54] Bashar S. E1-Khasawneh, Placid M. Ferreira. Computation of Stiffness and Stiffness Bounds for Parallel Link Manipulators. International Journal of Machine Tools & Manufacture, 1999: 321-342.
    [55] 周凯,陆启建.新一代超高速加工中心.中国机械工程,1999,10(5):509-512.
    [56] 邱志成,张红,赵明扬,等.新型五坐标并联机床的机构学及运动学.组合机床与自动化加工技术,1999(8):1-3.
    [57] Chen Wuyi, Chen Dingchang, Fan Rui. Some Late Development of Virtual Axis Machine Tools. Proceedings of the Fourth International Conference on Progress of Cutting and Grinding: 20-23. Beijing: International Academic Publishers, 1998.
    [58] Lung-Wen Tsai, Farhad Tahmasebi. Synthesis and Analysis of a New Class of Six-Degree-of-Freedom Parallel Minimanipulators. Journal of Robotic System, 1993, 10(5): 561-580.
    [59] 刘晨辉.多变量过程控制系统解耦理论.水利电力出版社,1984.
    [60] 陈苏平,孙优贤,周春晖。多变量过程的鲁棒解耦.自动化学报,Vol.21,No.2,Mar.,1995,214-219
    
    
    [61] 马孜,柴天佑,程勉.同时不变子空间与鲁棒干扰解耦.自动化学报,Vol.23,No.1,Feb.,1994,15-21
    [62] 韩志军,吴智铭.多变量双环自校正动态解耦控制器.控制理论与应用,Vol.7,No.4,Dec.,1990,37-43

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700