含气固两相夹杂复合材料宏观本构关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以物理发泡新型工艺成型微孔泡沫塑料为工程背景,对含气固两相夹杂复合材料宏观本构关系进行了研究,初步探讨了气泡内压及其在外载作用下内压的变化对单个气泡变形规律和对整个复合材料宏观拉伸性能的影响。
     首先,从实验和理论两个方面研究了具有非线性粘弹性特征的聚丙烯材料的本构关系,提出了能够较好的拟合实验曲线的非线性粘弹性本构模型,并运用“对应材料”的概念,将非线性粘弹性问题进行了线性化处理。
     其次,运用增量法,分析了无限大非线性粘弹性基体含单个微气泡复合材料的气泡长大规律,得到了显含内压的增量型气泡变形表达式。根据该式较为详细地探讨了气泡内压、内压变化、Poisson比、椭球度等在单向拉伸和一维应变两种加载方式下,对微气泡长大规律的影响。计算表明气泡内压的变化对其变形影响非常微小,以至可以忽略,而Poisson比、椭球度对气泡变形的影响都与加载方式有关。
     运用Eshelby等效夹杂理论和Mori-Tanaka平均场概念,研究了含气固两相夹杂复合材料的宏观本构关系,得到了显含初始应力和内压变化的增量型表达式。通过数值计算,分析了初始应力、加载速率、体积份数、内压变化等在不同加载方式下对宏观本构的影响,计算结果表明:无论是单向拉伸条件下还是一维应变条件下,气泡内压都对复合材料的宏观拉伸性能有所削弱,内压越大,削弱的程度也就越高。气泡体积份数对复合材料的比强度的影响与加载方式有关,在单向拉伸时,其比强度基本不随孔洞体积份数变化;在一维应变时,其比强度随气泡体积份数的增加而单调地下降。
     最后,本文还对粒子填充流变材料微孔洞成核进行了探讨,运用能量准则,分析了大气压力对界面脱粘局部临界应力的影响,得到了显含大气压力、粒径和界面粘结能等参量的局部临界应力表达式。文中还导出了基体为标准线性固体时的
    
    摘要
    临界开裂时刻表达式,在此基础上,讨论了当基体为Maxwell体时粒径、界面粘
    结能、应变速率等参量对局部临界开裂时刻的影响。
     本文总体上具有如下两个方面特点,一是所研究的复合材料的基体具非线性粘
    弹性性质。在以往对复合材料有效性能的研究中,复合材料的基体较多具有线性、
    弹塑性、非线性弹性或非线性弹塑性,而有关非线性粘弹性这方面的研究工作较
    少见到相关报道。二是考虑了气泡内压对气泡变形和复合材料性能的影响。在以
    往的研究中,气泡往往被看作无内压孔洞,因而没有考虑内压的影响。
     本文的研究工作,在一定程度上可为低发泡塑料的强韧化设计提供了理论分
    析依据。
Microcellular foam plastics made by the new physical foaming technics has developed very quickly and becomes one of the host study regions in recent years. This paper is concerned with the macroscopic constitutive relations of the microcellular foam plastics with considering the internal pressure of bled.
    Firstly, a new nonlinear visoelastic constitutive model is proposed which can adequately describes observations in the Polypropylene-unaxial tensile tests. According to the concept of "elastic related material", the nonlinear visoelastic stress-strain relation is linearized.
    Secondly, the strain of single air bleb in the infinite matrix is studied under the different loading conditions. With the increment method, a differential expression of the bled strain is derived, in the expression, the bled strain can be expressed by the void pressure and Poisson's ratio of matrix. The numerical results show that the influence of the pressure on the void strain is so small that it can be neglected, and the influences of Poisson's ratio and configuration of the bled are both related to the loading condition.
    Thirdly, by means of the Eshelby-Mori-Tanaka method, the macroscopic constitutive relation is derived, and it can be expressed by the-void pressure, void
    fraction, the initial stress of matrix and loading rate. Numerical results indicate that, the
    strength per unit volume of the matrix doesn't change with the void fraction under the uniaxial loading, but declines with the void fraction under the uniaxial strain loading. The initial stress of the matrix caused by the void pressure reduces the effective tensile performance of composite. The influence of Poisson's ratio of matrix and the rate of loading on overall constitutive relations are also discussed under different loading conditions by the numerical method.
    Finally, the effect of atmospheric pressure on the interfacial debonding in
    
    
    particulate-reinforced rheological materials is studied. Based on an energy criterion, a simple formula of local critical stress for interfacial debonding is derived, and it can be expressed by interfacial adhesive energy, particle radius and atmospheric pressure. An equation describing critical time of interfacial debonding is formulated.
    Compared with other researches, there are two main characteristics in this paper. One is that the matrix of the composite is a nonlinear visoelastic material, the other is the internal pressure of bled is considered when the strain of bled and the macroscopic constitutive relations of composite are analyzed.
    The present work may be used to supply some guidelines for the design of Microcellular foam plastics.
引文
[1] Andersson H.Analysis of a Model for Void Growth and Coalescence ahead of a Moving Crock Yip, J.Mech. Phys. Solids, 1977, Vol.25, pp:217-233
    [2] Argon A.S.and Im J., Cavity formation from Inclusions in Ductile Fracture, Metall Trans., 1975, Vol.6(A), pp:839
    [3] Berveiller M. & Zaoui A., An Extension of the Self-consistent Scheme to Plastically-Flowing Ployerystals, J. Mech. Phys. Solids, 1978, Vol.26, pp: 325-344
    [4] 曹珂,白树林,陈建康,于中振,GB/HDPE复合材料的拉伸性能及其影响因素,航空材料学报,1999,Vol.19,No.4,pp:32-37
    [5] 陈国华,超临界CO_2/PS挤出微孔发泡理论及实验研究,1998,华南理工大学博士学位论文
    [6] 陈国华,彭玉成,国外微孔塑料物理发泡研究现状,中国塑料,1998,Vol.12,No.1,pp:16-21
    [7] 陈国华,彭玉成,颜家华,CO_2/PS挤出微孔发泡实验研究,高分子材料科学与工程,2000,Vol.16,No.3,pp:110-112
    [8] 陈国华,彭玉成,颜家华,微孔塑料物理发泡技术,高分子材料科学与工程,2000,Vol.16,No.1.pp:169-172
    [9] 陈建康,粒子填充高聚物材料中微损伤演化和宏观本构关系,1999,北京大学博士研究生学位论文
    [10] Chen Jiankang and Huang Zhuping, The Initial and the Viscous Effects on the Interfacial Stress in a Particulate-Reinforced Composite, Progress in Experimental and Computational Mechanics in Engineering and Material Behavior, Northwestern Polytechnical University Press, 1999, pp:110-115
    [11] Chen Jiankang, Huang Zhuping, Bai Shulin, Liu Yi, Theoretical Analysis on the Local Critical Stress and Size Effect for Interfacial Debonding in Particle Reinforced Rheologicla Materials, Acta Mechanica Solida Sinica, 1999, Vol.12, No.1, pp:1-8
    [12] 陈建康,黄筑平,白树林,刘熠,微粒填壳流变材料界面开裂的局部临界应力及尺寸效应的理论分析,固体力学学报,1999,Vol.20,No.1,pp:1-7
    [13] 陈建康,黄筑平,刘熠,刚性微粒填充高聚物的宏观本构关系,高分子学报,1998,No.6.pp:60-63
    [14] 陈建康,黄筑平,白树林,含两类内变量的一种非线性粘弹性本构模型,扬州大学学报,1999,Vol.2,No.2,pp:60-63
    [15] 陈建康,刘熠,黄筑平,李晖凌,颗粒增强复合材料中的损伤演化,现代数学和力学(MMM-Ⅶ),1997,上海大学出版社,pp:223-226
    
    
    [16] 陈建康,彭玉成等,2001年,国家自然科学基金申请书(纳米复合塑料微孔洞形态设计,基金号:)10172074
    [17] 陈晓红,高聚物模糊随机网络统计力学,中国科学,1995,Vol.25,No.5,pp:505-513
    [18] 陈增涛,孙毅,王铎,考虑损伤的弹—粘塑性方程,固体力学学报,1997.Vol.18,No.2,pp:173-178
    [19] Christenson, R.M., Theory of viscoelasticity, An Introduction(2nd edition), Academic Press, Inc 111 Fifth Avenue, 1982, New York
    [20] Cortes Raul, The Growth of Microvoids under Intense Dynamic Loading, Int. J. Solids Structures, 1992, Vol.26, No.11, pp:1339-1350
    [21] Corr D. T., Starr M. J., et al, A Nonlinear Generalized Maxwell Fluid Model for Viscoelastic Materials, Journal of Applied Mechanics, 2001, Vol.68, No.9, pp:787-790
    [22] Dai L.H., Huang Z.P.& Wang R., A Generalized Self-Consistent Mori-Tanaka Scheme for Prediction of the Effective Elastic Moduli of Hybrid Multiphase Particulate Composites. Polymer Composites, 1998, Vol.19, No.5, pp:506-513
    [23] 戴兰宏.黄筑平,王仁,广义自洽Moil-Tanaka模型及涂层夹杂体复合材料有效模量,固体力学学报,1999,Vol.20,No.3,pp:187-194
    [24] 戴兰宏,黄筑平,王仁,N-层涂层夹杂体复合体复合材料有效模量显示表达,高分子材料科学与工程,2000,Vol.16,No.3,pp:17-19
    [25] 戴兰宏,纤维增强金属基复合材料(FRMMC_s)剪切破坏机理及强度的概念设计,1996,中国科学院力学研究所博士研究生学位论文
    [26] 戴兰宏,细观非均质多相复合材料有效弹塑性理论,1998,北京大学博士后研究工作报告
    [27] 邓伟,杨挺青,基于内变量理论的一种广义粘弹性本构方程,固体力学学报,1997,Vol.18,No.1,pp:11-16
    [28] Drozdov Aleksey D.. Visoelasticitv and Viscoptasticity of Glassy Polymers in the Vicinity of the Yield Point, Mechanics Research Communications, 2001, Vol.28. No.3. pp:247-254
    [29] Drozdov Aleksey D. and Dorfmann A1, The Effect of Annealing Temperature on the Visoelastic Response of Glassy Polymers, Mechanics Research Communications, 2001, Vol.28, No.4, pp:355-362
    [30] 杜善义,王彪,复合材料细观力学,科学出版社,1998,北京
    [31] Eshelby J.D., The Determination of the Elastic Field of an Ellipsodial Inclusion, and Related Problems, Proceedings of the Royal Society of London Series A, 1957.Vol.241.pp376-396
    [32] Evans Anthony G. He Ming Y. &Hutchinson John. W., Interface Debonding and Fiber Cracking in Brittle Matrix Composites, Journal of the American Ceramic Society, 1989,Vol.72,No.12,pp300-303
    [33] Furuhashi R.Huang Jin H. & Mura T., Sliding Inclusions and Inhornogeneities With Frictional Interfaces, Journal of Applied Mechanics, 1992,VOL.59,pp:783-788
    
    
    [34] 傅志红,彭玉成.微孔塑料的研究,中国包装工业,2000,No.71,pp:13-17
    [35] Gent A.N.,Rusch K.C.,J.Cell.Plast.,1966, Vol.2, pp:46
    [36] Goods S. H. and Brown L. M. The nucleation of Cavities by Plastic Deformation, Acta Metall., 1979, Vol.27, pp:1
    [37] Green S.J., et al. Exp. Mech., 1969, Vol.9, pp:103
    [38] Gurson A. L., Plastic Flow and Fracture Behaviors of Ductile Materials Incooperating Void Nucleation, Growth and Interaction, Ph. D Thesis, Division of Engineering, Brown university, 1975
    [39] Gurson A. L., Continuum Theory of Ductile Rupture by Void Nucleation and Growth, Part Ⅰ-Yield Criterion and Flow Rules for Porous Ductile Media, Trans. ASME J. Eng. Mat. Tech., 1977. Vol.99. pp:2-15
    [40] Gurson A. L., Porous Rigid-Plastic Materials Containing Rigid Inclusions-Yield Function Plastic Potential and Void nucleation, In "Fracture" Proc.ICF4(ed. Taphin D.M.R.), 1977, Vol.2A, pp:357-364
    [41] Hancock J.W. and McMeeking A.C., On the Mechanisms of Ductile Failure in High-Strength Steels Subjected to Multiaxiai Stress States, J. Mech. Phys. Solids, 1976, Vol.24, pp:147-169
    [42] Hansen N. R. and Schreyer H. L., Thermodynamically Consistent Framework for Theories of Elastoplasticity Coupled with Damage, Int. J. Solids Structures, 1994, Vol.31, No.3, pp359-389
    [43] Hashin Z., The Spherical Inclusion with Imperfect Interface. Journal of Applied Mechanics. 1991, Vol.58, pp:444-449
    [44] Hazanov S., On Separation of Energies in Viscoelasticity. Mechanics Research Communications. 1996. Vol.24. No.2, pp: 167-177
    [45] He Ming-Yuan and John Hutchinson W., Crack Deflection at an Interface between Dissimilar Elastic Materials. Int. J. Solids Structures. Vol.25,No.9, pp:1053-1067
    [46] He Ming Y., On the Flow and Creep Strength of Power Law Materials Containging Rigid Reinforcements. Materials Research Society Symp. Proc. 1990. Vol.194
    [47] 何宗彦,高聚物屈服的形变区增值模型,高分子材料科学与工程,1995,Vol.11,No.11.pp:1-8
    [48] Hill R., A Self-Consistent Mechanics of Composite Materials, J. Mech. Phys. Solids,1965. Vol.13, pp:213-222
    [49] Holzapfel Gerhard A. and Juan C.Simo, A New Viscoelastic constitutive Model for Conrinuous Media at Finite Thermomechanical Changes, Int. J. Solids Structures. 1996, Vol.33, No.20, pp:3019-3034
    [50] Horgan C. O. and Pence T. J., Cavity Formation at the Center of a Composite Incompressible Nonlinearly Elastic Sphere, Journal of Applied Mechanics, 1989, Vol.56, pp:302-308
    [51] Hu Geng Kai, A method of Plasticity Aligned Spheroidal Void or Fiber Reinforced Composites
    [52] Huang Zhuping, Chen Jiankang & Wang Wenbiao, An internal-variable Theory of
    
    Thermo-viscoelastic Constitutive Relations at Finite Strain, Science in China(series A), 2000, Vol.43, No.5 pp:545-551
    [53] 黄筑平,陈建康,王文标,有限变形热粘弹性本构关系的内变量理论,中国科学(A辑),1999,Vol.29,No.10,pp:939-944
    [54] Huang Z. P., Yang L. M. and Pan K.L., Dynamic Void Growth Models in Ductile Materials, In Proc. Of IUTAM Sym. On Impact Dynamics, Peking Univ. press, 1994
    [55] 黄筑平,杨黎明,潘容麟,材料的动态损伤和失效,力学进展,1993,Vol.23,pp:433-467
    [56] Hutchinson John W., Bounds and Self-Consistent Estimates for Creep of Polycristalline Materials, Proc. Roy. Soc. Lond., 1976, Vol.A348, pp:101-127
    [57] Hutchinson John W., Mechanisms of Toughening in Ceramics, Theoretical and Applied Mechanics, 1989, pp:139-144
    [58] Ju J. W., A Micromechanical Damage Model for Uniaxially Reinforced Composites Weakened by Interfacial Arc Microcracks, Journal of Applied Mechanics, 1991, Vol.58, pp:923-930
    [59] Johnson J.N., Dynamic Fracture and Spallation in Ductile Solids, J. Appl. Phys, 1981,Vol.52 No.4,pp:2812-2825
    [60] Klipfel Y. L., He M. Y., Mcmeeking R.M., Evans A. G. and Mehrabian R., The Processing and Mechanical Behavior of an Aluminum Matrix Composite Reinforced with Short Fibers, Acta Metal. Mater., 1990, Vol.38, No.6, pp:1063-1074
    [61] 李晖凌,韧性材料中微损伤演化的统计规律和随机模型,1996,北京大学博士研究生学位论文
    [62] Li J. and Weng G.J., Effective Creep Behavior and Complex Moduli of Fiber-and Ribbon-Reinforce Polymer-Matrix Composites, Composites Science and Technology 1994, Vol.52 pp:615-629
    [63] Li J. and Weng G.J., A Secant-Viscosity Approach to the Time-Dependent Creep of an Elastic-Viscoplastic Composite, J. Mech. Phys. Solids, 1997, Vol.45, No.7, pp:1069-1083
    [64] Li J. and Weng G.J., Void growth and Stress-Strain relations of a class of Viscoelastic Porous Materials, Mech. Mater, 1995, Vol.22, pp:179
    [65] 李开林,彭玉成,颜家华,微孔(发泡)塑料的研究进展,现代化工,1998,No.6,PP:11-14
    [66] 李龙,树脂基复合材料的研究进展,玻璃钢/复合材料,1999,No.5,pp:37-42
    [67] Lin S. C., Hirose Y. and Mura T., Constitutive Equations of Power-Law Composites and Failure of Materials Having Multiple Cracks, ASME J. Eng. Mater. Tech., 1994, Vol.116, pp:359-366
    [68] 刘熠,黄筑平,王仁,关下非线性基体中Eshelby等效夹杂方法适用性的讨论,力学学报,1997,Vol.29,No.4,pp:206-512
    [69] 刘熠,幂次粘性基体材料吕的孔洞增长和多孔介质的非线性本构关系,1998,北京大学
    
    硕士研究生学位论文
    [70] 卢子兴,赵明洁,泡沫塑料力学性能研究进展,力学与实践,1998,Vol.20,No.2,pp:1-9
    [71] 卢子兴,王仁,黄筑平等,泡沫塑料力学性能研究综述,力学进展,1996,Vol.26,No.3,pp:306-323
    [72] Margolina Alia and Wu Souheng, Percolation Model for Brittle-Tough Transition in Nylon/Rubber blends, Polymer, 1988, Vol.29, pp:2170-2173
    [73] McClintock F.A., A criterion for Ductile Fracture by the Growth of Holes, Trans. ASME J. Appl. Mech., 1968, Vol.35, pp:363-371
    [74] Navidi P., Rougier Y. and Zaoui A., Self-Consistent Modelling of Elastic-Viscoplastic Multiphase Materials, IUTAM Symposium on Micromechanics of Plasticity and Damage of Multiphase Materials, 1996, 123-130
    [75] Needleman A., A Continuum Model for Void Nucleation by Inclusion Debonding, Jounal of Applied Mechanics, 1987, Vol.54, pp:525-531
    [76] Needleman, Void Growth in an Elastic-Plastic Medium, Trans. ASME J. Appl. Mech., 1972, Vol.39, pp:964-970
    [77] Ortiz M. and Molinari A., Effect of Dtrain Hardening and Rate Sensitivity on the Dynamic Growth ofa Voed in a Plastic Material, Jounal of Applied Mechanics, 1992, Vol.59, pp:48-53
    [78] 欧玉春,方晓萍,施怀球,冯宇鹏,界面改性齐在聚丙烯/高岭土二相复合体系中的作用,高分子学报,1996 No.1,pp:59-64
    [79] 卜小明,严宗达,厚球壳与实心球对称问题的一般解,应用数学和力学,1992,Vol.13,No.6.PP:497-503
    [80] Qiu Y. P. and Weng G. J., A Theory of Plasticity for Porous Materials and Particle-Reinforced Composites, Journal of Applied Mechanics, 1992, Vol.59, pp:261-268
    [81] Qiu Y. P. and Weng G. J., Elastic Moduli of Thickly Coated Particle and Fiber-Reinforced Composites, Journal of Applied Mechanics, 1991, Vol.58, pp:388-398
    [82] Rao P. N., Hofer K.E., J. materials, 1971, Vol.6, pp:704
    [83] Rice J. R. and Tracey D. M., On the Ductile Enlargement of Voids in Triaxial Stress Fields, J. Mech. Phys. Solids, 1969, Vol.17, pp:201-217
    [84] Sih G.C., Mesomechanics 2000(Voiume 2), Tsinghua University Press, 2000
    [85] Sun L. Z. and Huang Z. P., Dynamic Void Growth in Rate-Sensitive Plaxtic Solids, Int. J. Plasticity, 1992, Vol.8, pp:903-924
    [86] Tandon G. P. & Weng G. J., A Theory of Particle-Reinforced Plasticity, Journal of Applied Mechanics, 1988, Vol.55, pp:126-135
    
    
    [87] Tanaka K., Mori T. and Nakamura T., Cavity Formation at the Interface of a Spherical Inclusion in a Plastically Deformed Matrix, Phol. Mag., 1970, Vol.21, pp:267
    [88] Tohgo Keiichiro & Weng G. J., A Progressive Damage Mechanics in Particle-Reinforced Materials and Technology, 1994, Vol.116, pp:414-420
    [89] Tohgo K. and Chou T., Incremental Theory of Particalate-Reinforced Composites Including Debonding Damage, JSME Int. J. Series A, 1996, Vol.39, pp:389
    [90] Toya M., A Crack along the Interface of a Circulate Inclusion Embedded in an Infinite Solid, J. Mech. Phys. Solids, 1974, Vol.22, pp:325-348
    [91] Tracey D.M., Strain-Hardening and Interaction Effects on the Growth of Voids in Ductile Fracture, Eng. Fract. Mech., 1971, Vol.3, pp:301-316
    [92] Tvergaard V., Influence of Voids on Shear Band Instrabilities under Plane Strain Condition, Int.J. Fracture, 1981,Vol.17, pp:389-407
    [93] Tvergaard V., Ductile Fracture by Cavity Nucleation between Large Voids, J. Mech. Phys. Solids, 1982, Vol.30, pp:265-286
    [94] Tvergaard V., On Localization in Ductile Materials Containing Spherical Voids, Int. J. Fracture, 1982,Vol.18, pp:237-252
    [95] Wang Hongbing, Li Shanjun & Yu Tongyin, Interfacial Stress Concentration and the Effect of Residual Microstress on Tensile Fracture in Filled Eposy Resins, Polymer Engineering and Science, 1993, Vol.33, No.16, pp:1027-1032
    [96] Wang Hongbing, Li Shanjun & Yu Tongyin, On the Thermal Behavior and Mechanism of Residual Microstress Buildup at the Matrix Interface in Filled Epoxy Resins, Polymer Engineering and Science, 1993, Vol.33, No.8, pp:474-479
    [97] 王仁,陈晓红,高分子材料粘弹性本构关系研究进展,力学进展,1995,Vol.25,No.3,pp:289-301
    [98] 王仁,黄克智,朱兆祥,塑性力学进展,中国铁道出版社,1988,北京
    [99] 王秋霞,世界复合材料强国与我国复合材料的现状及发展动向,玻璃钢/复合材料,1999,No.1,pp:40-44
    [100] 王自强,秦嘉亮,含孔洞非线性材料的本构关系和孔洞扩展率,固体力学学报,1989,Vol.10.PP:127-141
    [101] 魏培君,张双寅,吴永礼,粘弹性力学的对应原理及其数值反演方法,1999,Vol.29,No.3,pp:317-330
    [102] 吴林志,杜善义,石志飞,含夹杂复合材料宏观性能研究,力学进展,1995,Vol.25,No.3,pp:410-423
    [103] Wu Souheng, Phase Structure and Adhesion in Polymer Blends: A Criterion for Rubber Toughening, Polymer, 1985, Vol.26, pp:1855-1863
    
    
    [104] 颜家华,彭玉成,聚合物熔体本构关系的研究进展,力学进展,1998,Vol.28,No.2,pp:218-216
    [105] 杨黎明,黄筑平,PBT在变应变率下的拉伸特性,第二届全国高分子材料形变损伤与破坏学术讨论会论文集,1992,北京
    [106] 杨挺青,粘弹性力学,华中理工大学出版社,1992,武汉
    [107] 杨挺青,非线性粘弹性理论中的单积分型本构关系研究进展,力学进展,1988,Vol.18,No.1,pp:52-60
    [108] 尹祥础,固体力学,地震出版社,1985,北京
    [109] Yu Tongyin & Jin Xiaowei, A Study of the Residual Microstress at the Matrix Interface in Filled Epoxy Resins, Polymer Engineering and Science, 1992, Vol.32, No.10, pp:678-685
    [110] Zhang Rui & Lu Sinien, Numerical Analysis of Stress Field around the Second-Phase Particle in Polymeric Composite Materials, Applied Composite Materials. 1994, pp:115-124
    [111] 仲政,滑动界面的球形夹杂问题,力学学报,1996,Vol.28,NO.2,pp:239-243
    [112] 朱晓光,漆宗能,聚合物增韧研究进展,材料研究学报,1997,Vol.11,No.6,pp:1855-1863

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700