制备工艺与氮化硅显微结构及性能的相关性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自增韧是近年来发展起来的能够有效提高陶瓷断裂韧性的一种新型工艺。自增韧Si_3N_4陶瓷制备工艺简单、成本低廉、性能优异,愈加受到研究者们的关注。以Y_2O_3-La_2O_3为烧结助剂的自增韧Si_3N_4,可作为高温结构部件的候选材料。
     本文研究了热压烧结工艺、气压烧结工艺对Si_3N_4显微结构、致密化的影响,分析了烧结工艺和显微结构、致密化的关系,讨论了机械加工对Si_3N_4抗弯强度的影响。主要研究结果如下:
     (1)选择等摩尔Y_2O_3和La_2O_3作为烧结助剂,利用热压烧结的方法制备致密的自增韧Si_3N_4陶瓷,其相对密度高达99.8%,在1800~1840℃烧结1~2h可得到相对密度超过99%的Si_3N_4。
     (2)通过调整热压烧结工艺,研究了Si_3N_4粒径及长径比的分布规律。在1640~1700℃范围内,较低的预烧温度会形成粒径较大、长径比较高的晶粒,而较高的预烧温度会形成较均匀的显微结构;终烧温度升高能够促进氮化硅晶粒生长,氮化硅粒径及长径比均增大;延长烧结时间有利于提高晶粒的长径比,使粒径分布范围扩大。 ‘
     (3)气压预烧结Si_3N_4过程中,气压烧结炉内温度过高导致烧结过程中出现伴生现象,分析了伴生物(如:晶须)的成分,发现烧结过程中出现的SiC晶须遵循VS生长机制。
     (4)使用热压烧结炉进行气压预烧结试验,对气压预烧结工艺与Si_3N_4显微结构和致密化的关系进行了研究。在1800℃进行气压预烧结后,Si_3N_4的致密度未能达到下一步烧结所需要的密度,需要进一步提高烧结温度,同时升高气氛压力,防止Si_3N_4高温分解;试样第一次烧结时的温度越高,则其粒径和长径比越大。
     (5)气压烧结用填粉进行多次预烧后,填粉中部分Si_3N_4与石墨发生反应生成SiC,填粉可以多次重复使用。
     (6)对Si_3N_4陶瓷分别进行了切割、磨削、砂纸打磨、抛光处理,发现金刚石刀片切割材料会造成材料表面损伤,形成表面微裂纹,以较高的速度进行切
    
     西北工业大学工学硕士学位论文
     一
     割所形成的表面缺陷少;抛光处理能够有效减少Si3N4陶瓷的表面缺陷,提高
     Si3N4陶瓷的性能;在此基础上建立了Si3N4材料切削时的受力模型。
The in-situ toughening is a new process developed recently, which can efficiently improve the fracture toughness of ceramics. Currently, the worldwide attention has been focused on the research of in-situ toughened Si3N4 because of its simple manufacturing techniques, low cost, and excellent performance. The in-situ toughened Si3N4 with Y2O3-La2O3 as additives is a candidate of thermal-structure components.
    Effects of hot-pressure sintering processes and gas-pressure pre-sintering processes on the microstructure and densification of silicon nitride are investigated in this thesis. The relations between sintering processes and microstructure, densification are analyzed. Influences of machining on the flexure strength of Si3N4 are discussed. The main results of investigation are as follows:
    (1) By hot-pressing sintering with equimolar Y2O3 and La2O3 as additives, a dense in-situ toughened Si3N4 is prepared. Its density is achieved 99.8 percent of theory density (To) of Si3N4. While Si3N4 over 99 percent To can be prepared by sintering for l~2h at 1800-1840℃.
    (2) By adjusting sintering processes, the rules of distribution of size and aspect ratio of silicon nitride crystals are investigated. Lower pre-sintering temperature would benefit forming crystals with bigger size and larger aspect ratio within extent of 1640~1700癈, higher pre-sintering temperature would form regular microstructure. Elevating final sintering temperature could accelerate the growth of crystals, with increasing the size and aspect ratio of crystals; meanwhile prolonging final sintering time is of benefi to increasing aspect ratio of crystals, and enlarging the distribution of size.
    (3) During gas-pressure pre-sintering, the temperature of gas-pressure sintering oven was too high, which leads to some accompanying phenomena. Components of the accompanying thing (for example: whiskers, sinter) are analyzed, the results are shown that the growth of SiC whiskers follow the mechanism of VS.
    
    
    (4) Conduct gas-pressure pre-sintering experiments in hot-pressure sintering oven, and investigate the relation between gas-pressure sintering processes and microstructure, densification of Si3N4. After gas-pressure pre-sintering at 1800℃, the density of Si3N4 don't attach the value which adapt to next step sintering, and the pre-sintering temperature is needed to elevate with higher nitrogen pressure which to prevent the decomposition of Si3N4 in elevated temperature. The higher the first sintering temperature is, the larger the crystals size and aspect ratio are.
    (5) After several gas-pressure pre-sintering, Si3N4 in powder bed reacts with graphite, and creates silicon carbide. Powder bed could be used repeatedly.
    (6) After treatment of cutting, grinding, gritting and polishing, defaults on the surface of Si3N4 sample are created by diamond reamer during cutting. There are a few of surface faults created by reamer in high linear velocity. Surface faults of samples are efficiently reduced after polished. A model of Si3N4 suffering force during cutting is established.
引文
1 J. Barta. Preparation and Properties of Silicon Nitride for Radome Applications. Proceedings of 16~# Symposium on Electromagnetic Windows. 1982:87~92
    2 W. Ho. High Temperature Millimeter Wave Dielectric Properties of Hot Pressed Silicon Nitride. Proceedings of 16~# Symposium on Electromagnetic Windows. 1982:93~98
    3 G.E. Miller. Broadband Silicon Nitride Radome. Proceedings of 16~# Symposium on Electromagnetic Windows. 1982:207~214
    4 F.F. Lange. Correlation between Microstructure and Toughness of Hot Pressed Si_3N_4 Ceramics Seeded with β-Si_3N_4 Particles. J.Am.Ceram.Soc. 1973, 56(9):445~450
    5 P. D. Shalek. Effects of Y_2O_3 and Yb_2O_3 on the Microstructure and Mechanical Properties of Silicon Nitride. Am. Ceram. Soc. Bull. 1986, 65(2): 351~356
    6 R. Lunderg. Hot-Pressed Silicon Nitride Ceramics with Lu_2O_3 Additives: Elastic Moduli and Fracture Toughness. Am. Ceram. Soc. Bull. 1987, 66(2): 330~333
    7 S.T. Buljan, J. G. Baldoni and M. L. Huckabee. Processing, Microstructure, Mechanical Properties of Si_3N_4 Obtained by Slip Casting and Pressureless Sintering. Am. Ceram. Soc. Bull. 1987, 66(2): 347~352
    8 M. Lange. Stability of Intergranular Phases in Hot-Pressed Si_3N_4 Studied with Mechanical Spectroscopy and In-Situ High-Temperature XRD. J. Am. Ceram. Soc. 1979, 62:428~430
    9 A.J. Pyzik. Mechanical Properties of Oxidized Silicon Nitride Ceramics. Annu. Mater. Sci. 1974, 9(2): 261~269
    10 K. Hirao. Grain Boundary Glassy Phase and Abnormal Grain Growth of Silicon Nitride Ceramics. Key Eng. Mater. 1994, 63~91
    11 潘振甦,郭景坤.高技术新材料要览.北京,中国科学技术出版社,1994:236~238
    
    
    12 H. R. Zhang. Ed. by D. S. Yan, X. R. Fu and S. X. Shi. Proceedings of the 5th International Symposium on Ceramic Materials and Components for Engines. Singapore, World Scientific Publishing Co. Pte. Ltd, 1995:354~357
    13 K. Hirao. Ed. by D. S. Yan, X. R. Fu and S. X. Shi. Proceedings of the 5th International Symposium on Ceramic Materials and Components for Engines. Singapore, World Scientific Publishing Co. Pte. Ltd, 1995:185~188
    14 邬凤英,庄汉锐,马利泰等.添加稀土氧化物的气压烧结氮化硅.无机材料学报.1994,9(3):303~308
    15 S. Wild. The 5th Symoposium on Special Ceramics Stoketon, 1970. Manchester, The British Ceramic Reserch Association, 1972:394~399
    16 K.H. Jack. Review Silicon and Related Nitrogen Ceramics. J. Mater. Sci, 1976, 11(6): 115~119
    17 铃木惠一郎.烧结.材料科学(日),1982,19:5~10
    18 W. H. Sutton. Effects of Iron and Silicon Addition on the Densification, Microstructure and Mechanical Properties of Silicon Nitride. Am. Ceram. Soc. Bull., 1989, 68(2): 376~382
    19 S. H. Risbud. Microstructural Evolution of Gas-Pressure-Sintered Si_3N_4 with Yb_2O_3 as a Sintering Aid. J. Mater. Res. 1995, 10:237~242
    20 S.H. Risbud. Microstructure Designing of Silicon Nitride. Philos. Mag. B. 1994, 69:525~531
    21 C.H. Shan, S. H. Risbud. Microstructural Changes due to Heat-Treatment of Annealing and their Effect on the Creep Behavior of Self-Reinforced Silicon Nitride Ceramics. Physica C. 1994, 222:393~401
    22 S.H. Risbud, C. H. Shan. Study of the Secondary Phase in Gas Pressure Sintered Si_3N_4 (Relation Composition-Toughness). Mater. Lett. 1994, 20:149~154
    23 H.Bj(?)rklund, L.K.L.Falk and K.Rundgren et al. β-Si_3N_4 Grain Growth, Part Ⅰ: Effect of Metal Oxide Sintering Additives. Mater. Manu. Process. 1994, 9:6~11
    24 Z. J Shen. Formation of Tough Interlocking Microstructures in Silicon Nitride Ceramics by Dynamic Ripening. Nature. 2002, 417:266~269
    
    
    25 鸨田正雄.放电烧结(SPS)现状将来性.东京:住友石炭矿业株式会社,1997:34~41
    26 N. Kondo, Y. Suzuki and T. Ohji. Superplastic Sinter-Forging of Silicon Nitride with Anisotropic Microstructure Formation. J. Am. Ceram. Soc. 1999, 82(4): 1067~1069
    27 L. J. Zhou. Preparation of Si_3N_4 Ceramics with High Strength and High Reliability via a Processing Strategy. J. Euro. Ceram. Soc., 2002, 22:1347~1355
    28 罗学涛.自韧Si_3N_4的显微结构控制及其性能研究.西北工业大学博士学位论文.1996:23~76
    29 吕杰.自韧氮化硅晶体生长及其对显微结构和性能的影响.西北工业大学博士学位论文.1997:32~65
    30 M. Mamoru, H. Naoto and H. Hideki. Modelling of the Oxidation Kinetics of a Yttria-Doped Hot-Pressed Silicon Nitride. J. Mater. Sci. 1995
    31 K.H. Jack. Review Silicon and Related Nitrogen Ceramics. J. Mater. Sci. 1976, 11(6): 1135
    32 H.J. Kleeb. Ceramic Material and Components for Engines. Proceeding of Third International Symposium, U.S.A. 1989, 419~431
    33 G. Huebner, H. Knoch. Pressureless Sintering of Silicon Nitride with Magnesia and Ceria. J. Am. Ceram. Soc. 1979, 62:29~32
    34 D. D. Lee. Effects of α to β(β') Phase Transition on the Sintering of Silicon Nitride Ceramics. J. Am. Ceram. Soc. 1990, 73(3): 767~769
    35 R F. Becher. Potential of the Sinter-HIP-Technique for the Development of High-Temperature Resistant Si_3N_4-Ceramics. J. Am. Ceram. Soc. 1991, 74:255~269
    36 H.Bj(?)rklund, L.K.L.Falk. β-Si_3N_4 Grain Growth, Part Ⅱ: Intergranular Glass Chemistry. J. Ceram. Soc. Jp. 1996, 104:23~27
    37 徐鑫,黄莉萍,符锡仁.β-Si_3N_4粉末烧结及其显微结构形成.无机材料学报.2000,15(1):50~54
    
    
    38 G. Pezzotti. Chemistry and Inherent Viscosity of Glasses Segregated at Grain Boundaries of Silicon Nitride and Silicon Carbide Ceramics, J. Non-Crysta. Sol. 2000, 271:79~87
    39 R.E. Loehman. Processing of Silicon Nitride Powder. J. Am. Ceram. Soc. 1979, 62:491~497
    40 P. A. L. Drew, S. Hamphire and K. H. Jack. Progress in Nitrogen Ceramic. Ed. By F. L. Riley. Martinus Nijhoff Publishers, Boston. 1983:323
    41 M. Q. Liu, N. N. Sia. The Microstructure and Boundary Phases of In-Situ Reinforced Silicon Nitride. Mater. Sci. and Eng. 1998, A254:242~252
    42 C. Greskovich. Preparation of High Density Si_3N_4 by a Gas Pressure Sintering Process. J. Am. Ceram. Soc. 1981, 64(12): 725~730
    43 王昊,陈汉仪,杨南如.氮气压力对氮化硅烧结行为的影响.材料导报.1994,(6):37~41
    44 M. Mitomo. Phase Relationships in The System Si_3N_4-SiO_2-La_2O_3. J. Mater Sci. 1982; 17:2359~2364
    45 R.R. Wills. Phase Relationship in The Si_3N_4-Y_2O_3-SiO_2. J. Mater. Sci. 1976, 11: 1305
    46 E.M. Levin. Phase Diagrams for Ceramics. Am Ceram Soc Inc, 1975:153
    47 小山中一郎.无机材质研究所报告书(日).1982,32:45
    48 K. Ueno, Y. Toibana and Y. K. Shi. High-Temperature Mechanical Properties of Sinter-Forged Silicon Nitride with Ytterbia Additive. J. Euro. Ceram. Soc. 1983, 91:409
    49 G. E. Gazza. Microstructural Development of Silicon Nitride with Aligned β-Si_3N_4 Whiskers. Am. Ceram. Soc. Bull. 1975, 54:778~184
    50 R. J. Bratton, C. A. Anderson and F. F. Lange. Nitrogen Ceramic. Ed by F. L. Riley, Noordhoff International Publishing, Leyden, 1977:805
    51 A. Tsuge, K. Nishida. Influence of the Experimental Conditions and the Grinding of the Starting Materials on the Structure of Silicon Nitride
    
    Synthesised by Carbothermal Reduction Am. Ceram. Soc. Bull. 1978, 57:242~249
    52 M.H. Lewis, R. J. Lumby. Effects of Processing Condition on Microstructure of Silicon Nitride. Powder Metal. 1983, 26:73~75
    53 O. Kubaschevski and C. B. Alock. Metallurgical Thermochemistry 5th, Pergamon, London, 1979
    54 M. Mitomo. Influences of Gas-Pressure Sintering on Properties of Silicon Nitride. J. Mater, Sci. 1982, 17:2359~2364
    55 E. M. Levin, C. R. Robbins and H. F. Murdie. Phase Diagrams for Ceramists. The Am. Soc. Inc, 1969:145
    56 N. Hirosaki, A. O. Kada and K. Matoba. Effects of Additives on Properties of Silicon Nitride. J. Am. Ceram. Soc. 1988, 71(3): C-44~C-147
    57 祝桂洪.陶瓷工艺试验.北京,中国建筑工业出版社,1987:63~69
    58 仇沱,马眷春,工程陶瓷弯曲强度试验方法,中国建筑材料科学研究院,1986
    59 H. L. Ekkehard. Model Experiments Concerning Abnormal Grain Growth in Silicon Nitride. J. Am. Ceram. Soc. 1991, 74(1): 1~7
    60 高温结构陶瓷平面应变断裂韧性试验方法,GB-75-70-03,1988
    61 G. W(?)tting, B. Kanka and G. Ziegler. Microstructural Development, Microstructural Characterization and Relation to Mechanical Properties of Dense Silicon Nitride. Non-Oxide Technical and Engineering Ceramics. Ed. By S. Hampshire. London, Elsevier, 1986:83~96
    62 M. Mitomo. Grain Growth During Gas-Pressure Sintering of β-Silicon Nitride. J. Am. Ceram. Soc. 1990, 73(8): 2441~2445
    63 M. Mitomo. Microstructurat Development During Gas-Pressure Sintering of α-Silicon Nitride. J. Am. Ceram. Soc. 1992, 75(1): 103~108
    64 W.D.Kingery.陶瓷导论.北京,中国建筑工业出版社,1987
    65 郝小勇.氮化硅结合碳化硅材料反应烧结时的杂质相行为分析.陶瓷工程.1998,32(3):24~26
    
    
    66 C. M. Hwang. The System of Sialon-Y_3Al_5O_(12) and Sialon-Cordierite: Sintering and Grain Growth. Ph.D. Thesis, The University of Michigan, Ann Arbor, MI. 1988
    67 K. R. Lai, T. Y. Tin. Kinetics of β-Si_3N_4 Grain Growth in Si_3N_4 Ceramics Sintered under High Nitrogen Pressure. J. Am. Ceram. Soc. 1993, 76(1): 91~96
    68 D. D. Lee. Effect of α to β(β') Phase Transition on the Sintering of Silicon Nitride Ceramics. J. Am.Ceram. Soc. 1990, 73(3): 767~769
    69 C. Herring. Two Cores in One Grain in the Microstructure of Silicon Nitride Prepared with Aligned Whisker Seeds J. App. Phys. 1950, 21:237~242
    70 R. L. Coble. High Oxidation Resistance of Hot Pressed Silicon Nitride Containing Yttria and Lanthania. J. App. Phys. 1963, 34:1639~1645
    71 P. Murray, D. T. Liveg and J. Williams. Ceramic Fabrication Processes. Ed by W. D. Kingery. Wiley, New York, 1958:147
    72 W. D. Kingery. High Performance Porous Silicon Nitrides. J. App. Phys. 1959, 30:1185~1191
    73 J. E Sheehan. Passive and Active Oxidation of Hot-pressure Silicon Nitride Materials with Two Magnesia Contents. J. Am. Ceram. Soc. 1982, 65(7): C-111~C-116
    74 W. C. Tripp, H. C. Graham. Oxidation of Silicon Nitride in the Range 1300 ℃ to 1500℃. J. Am. Ceram. Soc. 1976, 59(9-10): 399~404
    75 S. C. Singhal. Influence of Process Conditions on the Surface Oxidation of Silicon Nitride Green Compacts. J. Mater. Sci. 1976, 23(11): 500~505
    76 童一东,黄莉萍.添加剂和升温速度对Si_3N_4陶瓷显微结构的影响.硅酸盐学报.1992,20(3):205~211
    77 F.F. Lange. Progress in Nitrogen Ceramics. Boston, Nijhoff Pub, 1983:476~482
    78 M. Mitomo. Pressure Sintering of Si_3N_4. J. Mater. Sci. 1976, (11): 1103~1107
    79 H. O. Mulfinger. Indentation Crack Profiles in Silicon Nitride. J. Am. Ceram. Soc. 1966, 49(9): 462~467
    
    
    80 邬凤英等.稀土对Si_3N_4陶瓷力学性能和显微组织的影响.无机材料学报.1991,6(2):160~165
    81 N. Hirosaki. Atomic Structural Environment of Y in the Residual Glass Phase of Silicon Nitride and α-Sialon. Adv. Ceram. Mater. 1988, 3:515~516
    82 李文兰等.精细陶瓷微观组成与性能.国家自然科学基金重大项目论文集,1989:88~95
    83 H.J. Kleeb. Ceramic Material and Components for Engines. Proceeding of Third International Symposium, U.S.A., 1989:419~431
    84 李柳生.氮化硅陶瓷气压烧结过程中的Si析出.耐火材料.1996,30(4):188~190
    85 叶大伦.实用无机物热力学数据手册.北京,冶金工业出版社,1981:1~10
    86 G. Ziegler, J. Heinrich and G. Woetting. Relationships between Processing, Micro-structure and Properties of Dense and Reaction-bonded Silicon Nitride. J. Mater. Sci. 1987, 22: 3041~3047
    87 冯志峰,徐政,张培志.气压烧结氮化硅陶瓷致密化研究.建筑材料学报.1999,2(3):241~244
    88 李柳生.氮化硅陶瓷气压烧结过程中的Si析出.耐火材料.1996,30(4):188~190
    89 王启宝.稻壳合成β-SiC晶须催化作用的研究.中国矿业大学北京研究生部博士学位论文.1993
    90 闵乃本.晶体生长的物理基础.上海,上海科技出版社,1982:339~415
    91 蔡宗河(编译).陶瓷的机械加工.台湾,全华科技图书有限公司,199l:21
    92 R. Samuel, S. Chandrasekar. Deformation Mechanisms and Constitutive Modeling for Silicon Nitride undergoing Laser-Assisted Machining. J. Am. Ceram. Soc. 1986, 72(10): 1960~1965
    93 赵万康.工程陶瓷镜面加工.天津大学博士论文,1993:25~74
    94 H. R Kirchner and R. Gruver. Metal. The Science of Ceramic Machining and Surface Finishing. Ed by B. T. Hockey and R. W. Rice, Washington, DC., NBS Special Publication 562, U.S. Government Printing Office, 1979:23~28
    
    
    95 B. Mikijelj. Effects of Machining on Si3N4 Strength. Am. Ceram. Soc. Bull. 2003, 82(4): 57~60
    96 R.F. Cook and B. R. Lawn. Machining of Fragile Materials. J. Am. Ceram. Soc. 1986, 64 (9): 121~127
    97 H. Frei and G. Grathwohl. Effects of Machining Parameters on Properties of Materials. Ceram. Int. 1993, 19:93~97
    98 R.W. Rice and J. J. Mecholsky. Effects of Cutting on Properties on Ceramic. J. Mater. Sci. 1981, 16:853~859

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700