低电压电磁铆接过程数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁铆接是基于电磁成形技术并结合传统铆接工艺发展起来的一种新型工艺。本文建立了电磁铆接过程的分析模型,并基于ANSYS有限元分析软件对电磁铆接过程进行了动态仿真,通过实验验证了理论和数值模拟分析结果的正确性。
     在ANSYS程序中,用一个共同的节点把电路和电磁场区域连接起来,使用直接耦合法,建立了电磁铆接的电路—磁场模型。用ANSYS/Multiphysics模块求解出充电电流、充电电压、放电电流、放电电压和感应电流以及这些参数随时间变化的规律:然后利用两个回路的电流耦合出电磁场,并仿真出磁矢量、磁通密度。ANSYS仿真的结果表明:两个回路的电流的频率相同,感应回路的电流强度非常大,与初级回路处于同一数量级,只是落后一个相位角。
     将仿真出的电流和电磁场结果作为初始条件,采用间接/顺序耦合方法分析铆钉结构单元的塑性动力响应。用ANSYS/LS-DYNA求解器动态模拟出铆钉成形过程中塑性单元的变形过程,并计算出铆钉各个单元的应力、应变。利用后处理程序分析了铆钉塑性变形的应力、应变的变化规律,单项最大应力区和单项最大应变区的分布特点。
     仿真结果表明:最大应变和最大应力均出现在铆钉顶部中心区域附近,但是二者并不重合,此处的应变变化幅度最大。对φ5mm的铝合金铆钉,铆接变形区最小径高比为5:4。
     使用铝合金和不锈钢铆钉进行电磁铆接实验。实验结果与仿真结果基本一致,从而验证了数值仿真结果的正确性。
Electromagnetic riveting is a new kind of technology that is based on electromagnetic forming and traditional riveting technologies. In this paper, the analytic model of process of electromagnetic riveting has been established, and the process of riveting has been simulated by ANSYS software. The correctness of analysis results has been proved by corresponding experiments in the end.
    The circuit and electromagnetic field is connected by one node, and the circuit and electromagnetic field model is built by direct coupling. From the model, we can solve and gain the values and change orders of charging current, charging voltage, discharging current, discharging voltage and inductive current. After that, the electromagnetic fields can be created from two circuits' currents, and their magnetic rector and flux can be simulated from ANSYS solver. The simulation results indicate that the two circuits' currents have the same frequency and the inductive current is at the same quantity class as the discharging current.
    The plastic kinetic response of rivet is analyzed by sequentially coupling which take the first step's result as initial conditions. The process of forming and changing of plastic elements is simulated by ANSYS/LS-DYNA solver, and also computes the distributing of element stresses and element strains. The postprocessor analyze the distributing characteristic and the changing orders of stresses and strains, as well as maximal stress fields and maximal strain fields.
    ANSYS simulation results indicate that both the maximal stress and maximal strain locate nearby the central forming field but they are not superposition. The forming extent of the central forming field is very large. From ANSYS solver, aluminum alloy rivet's minimal ratio is 5 to
    
    
    Finally, we have made some experiments by using aluminum alloy and stainless steel rivets. The result of experiments is very like the simulation. This powerfully proves the correctness of the digit simulation result of electromagnetic riveting.
引文
[1]Proctor. Paul, Aviation Week & Space Technology, New York, May 6, 1996,Vol.144.1ss 19:pg.51
    [2]赵国群,金属体积塑性成形过程数值模拟技术与仿真系统,金属成形工艺,2003,4(21):1~5
    [3]王祖唐,关廷栋等,金属塑性成形理论,北京:机械工业出版社,1989.
    [4]周克定,工程电磁场专论,武汉:华中理工大学出版社,1985.
    [5][美]M.V.K.查利,[加拿大]P.P.席尔凡斯特,电磁场问题的有限元法,北京:科学出版社,1985.3
    [6]李文彬等,磁力应用工程,北京:兵器工业出版社,1991.10
    [7]秦曾煌,电工学,北京:高等教育出版社,1986.
    [8]杨桂通,熊祝华,塑性动力学,北京:清华大学出版社,1984.
    [9]王冒成、邵敏,有限单元法基本原理和数值方法,北京:清华大学出版社,1096
    [10]Min D-K and Kim D-W. A Finete-Element Analysis of the Electromagnetic Tube-Compression Process, Journal of Materials Processing Technology, 1993, 38: 29.
    [11]W. H. Gourdin. Analysis and Assessment of Electromagnetic ring Expansion as a High-Strain-Rate Test, J. Appl. Phys., 1989, 65(2): 411.
    [12]Sung Ho Lee and Dong Nyung Lee. Estimation of the Magnetic Pressure in Tube Expansion by Electromagnetic Forming, Journal of Materials Processing Technology, 1996, 57:311.
    [13]张守彬,李硕本,圆管在脉冲电磁力作用下的动力响应,锻压技术,1997,22(3):30.
    [14]G. K. Fenton and G. S. Daehn. Modeling of Electromagnetically Formed Sheet Metal, Journal of Materials Processing Technology, 1998, 75: 6.
    [15]Huang Shangyu, Chang Zhihua, Wang Z. R., et al. A Finete-Element Analysis of Electromagnetic Sheet Metal Expansion Process, Trans. Nonferrous Met.Soc. China, 1998, 8(3): 490.
    [16]黄尚宇,常志华,王立峰等,板坯电磁成形载荷计算方法及分布特性,中国有色金属学报,1998,8(3):441.
    [17]黄尚宇,常志华,吴妮花等,板坯磁脉冲成形系统几何参数对终态变形影
    
    响的有限元分析,中国机械工程,1998,9(9):72~74.
    [18]黄尚宇、常志华、田贞武、杨梅,管件电磁成形电磁力分布特性分析,塑性工程学报,2000,7(2):30~34.
    [19]黄尚宇、常志华、田贞武,管坯电磁成形电磁力解析,中国机械工程,2000,11(10):1169~1172.
    [20]杨应平、黄尚宇,电磁成形的物理学原理,工科物理,1999,9(5):35~36.
    [21]舒行军,电磁成形计算机数值模拟及工艺参数优化研究:[硕士学位论文].武汉:武汉理工大学材料学院,2002.3
    [22]余本刚,基于ANSYS对电磁平板翻边的仿真研究及二次开发:[硕士学位论文].武汉:武汉理工大学材料学院,2003.3
    [23]舒行军、余本刚、张棋飞、黄尚宇、常志华,电磁成形放电电流及磁场的计算机仿真,武汉理工大学学报(管理信息版),2002,24(1):47~50.
    [24]吕宏军、王琪,LF3铝合金管自由电磁胀形工艺及其形状控制,宇航材料工艺,2000,30(3):49~52.
    [25]周军、马闯、钟志华,基于计算机仿真技术的薄板冲压成形毛坯形状和尺寸反算,计算机仿真,2002,19(1):86~89.
    [26]赵志衡、李春峰、李建辉,电磁成形用螺线管线圈电感的研究,哈尔滨工业大学学报,2000,32(5):64~66.
    [27]李春峰、赵志衡,电磁成形磁场力的研究,塑性工程学报,2001,8(2):70~72.
    [28]杜三明、李金山、沈百令,电磁成形感应器中的磁场分布特性,热加工工艺,2002(1):21~22.
    [29]杜三明、李金山、寇宏超,高温合金样件无接触电磁成形的试验研究,铸造技术,2001(6):58~60.
    [30]寇宏超、杜三明,电磁成形耐热不锈钢的试验研究,钢铁研究报,2001,13(5):1~18.
    [31]邱春城、李洪涛,塑料瓶的电磁成形封口研究,金属成形工艺,2000,18(5):47~49.
    [32]李双明、张丰收、郝启堂、李晓历,高温合金电磁软接触近净成形定向凝固研究,材料科学与工艺,2001,9(2):185~188.
    [33] H.Zhang and M.Murata,H.Suzuki, Effects of Various Working Conditions on Tube Bulging by Electromagnetic Forming; Journal of Materials Processing Technology 48(1995)113-121
    
    
    [34] Gregg K.Fenton, Glenn S.Daehn, Modeling of Electromagnetically Formed Sheet Metal,Journal of Materials Processing Technology 75(1998) 6-16
    [35] Yuichi Hashimoto,Hideki Hata, Miki Sakai,Hideaki Negishi, Local Deformation and Buckling of a Cylindrical Al Tube Under Magnetic Impulsive Pressure; Journal of Materials Processing Technology 85 (1999) 209-212
    [36] Sung Ho Lee, Dong Nyung Lee, Estimation of the Magnetic Pressure in Tube Expansion by Electromagnetic Forming; Journal of Materials Processing Technology 57(1996) 311-315
    [37] 韦方才、王洪亮,中频加热在车辆底架铆接中的应用,铁道机车车辆工人,2002(6):4~5.
    [38] 曹增强、余公藩,不同加载速率下铆钉材料变形研究,西北工业大学学报,2000,18(1):27~30.
    [39] 曹增强、盛熙,低电压电磁铆接,航天制造技术,2000(2):20~22.
    [40] 曹增强,国外电磁铆接技术发展状况,航空科学技术,1997(4):46~48.
    [41] 曹增强、彭雅明、梁鸿森,高模量碳纤维复合材料的电磁铆接工艺研究,西北工业大学学报,2002,20(2):198~202.
    [42] 曹增强,铆接技术发展状况,航空工程与维修,2000(6):41~42.
    [43] 曹增强,电磁铆接理论及应用研究:[博士学位论文],西安,西北工业大学,1999.
    [44] 张俊峰,低电压电磁铆接技术研究:[硕士学位论文],西安,西北工业大学,2001.3.
    [45] 王敏、盛经志、王宸煜,铝制交通标志板电容储能点焊工艺研究,电焊机,2002,32(8):28~30.
    [46] 翟履和,国外电磁铆接技术的进展,航空工艺技术,1997(4):24~25.
    [47] [俄]阿克休金,长寿命密封铆接,航空制造技术,2000(1):40~46.
    [48] 曹建、丁家峰,脉冲电容器在磁力成形及组装工艺中的应用,电力电容器,2000(4):4~6.
    [49] Maofen Fu, P.K.Mallick, Fatigue of self-piering riveted joints in aluminum alloy 6111, University of Michigan-Dearborn, Center for Lightweighting Automotive Materials and Processing, Dearborn, MI 48128, USA,International Journal of Fatigue, 25(2003)183~189.
    [50] T.J.Fetzgerald, J.B.Cohen, Residual stresses in and around rivets in clad aluminum alloy plates, Daperment of Materials Science and Engineering,
    
    McCormick School of Engineering and Applied Science, Northwestern University, Evanston, USA, Material Science and Engineer, A188(1994)51~58.
    [51]Liam Ryan, John Monaghan, Failure mechanism of riveted joint in fiber metal laminates, Journal of Materials Processing Technology, 103(2000)36~43.
    [52]李皓月,周四朋,刘相新,ANSYS.工程计算应用教程,北京,中国铁道出版社,2003.
    [53]潘元,刘伯权,结构工程的计算机仿真研究现状与进展,长安大学学报(自然科学版),2003,23(1):34~38.
    [54]冯惠军,冯允成,面向对象的仿真综述,系统仿真学报,1995,7(3):58~64.
    [55]张扬军,吕振华,汽车空气动力学数值仿真研究进展,汽车工程,2001,23(2):82~91.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700