深部厚顶煤巷道围岩破坏控制机理及新型支护系统对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤炭开采进一步向超千米深井发展是我国煤炭行业发展的必然趋势,而厚煤层开采又是煤炭深井开采的一个重要内容。巨野矿区深部厚顶煤开采中暴露出的各种问题对我国此类巷道支护提出了更高的要求。
     深部厚顶煤巷道两帮及顶板均为软弱煤体,开挖以后易出现较大范围的破裂区,顶板煤体碎胀严重,极易与基本顶产生明显离层,顶板下沉量大,且持续变形,给巷道围岩控制带来极大困难。目前,有关深部厚顶煤巷道围岩变形破坏及稳定性控制机理方面的研究还很少,且在现有的巷道支护体系中,适合此类巷道经济有效的支护手段还很欠缺。因此,从根本上认识深部厚顶煤巷道的围岩变形破坏机理,提出合理的支护对策,对我国深部厚煤层开采具有重要的理论与现实意义。
     本文以巨野矿区典型的深井煤矿-赵楼煤矿为工程背景,针对深部高地应力作用下厚顶煤巷道支护难题,通过现场实测、理论分析、材料研发、数值分析、模型试验及现场试验等手段相结合的方法,对深部厚顶煤巷道的变形破坏及围岩控制机理进行研究,并研发出适用于该类巷道支护的让压型锚索箱梁支护系统。本文进行的主要工作及创新点如下:
     1.深部厚顶煤巷道变形破坏规律现场实测研究。对赵楼煤矿深部厚顶煤巷道水文地质、地应力、岩石物理力学性质等工程地质条件及原支护条件下矿压、围岩变形破坏与支护构件受力状态等进行现场监测研究。通过研究分析得到赵楼煤矿深部厚顶煤巷道顶板围岩碎胀变形严重、离层量大、变形持久不可控的主要原因及机制。
     2.厚顶煤巷道顶板冒落机理研究。基于塑性力学的极限分析理论,采用广义Hoek-Brown经验强度准则,考虑了巷道顶板围岩应力与支护荷载的作用,推导出了巷道顶板冒落的迹线方程,讨论了不同岩体力学参数、围岩应力水平与支护荷载大小对顶板冒落范围的影响。对赵楼煤矿3302工作面深部厚顶煤矩形巷道进行了算例分析,研究了支护载荷对顶板冒落范围的影响,并根据工程实践,提出了相应的工程技术措施。
     3.让压型锚索箱梁支护系统研发。研究并提出了深部厚顶煤巷道“先控后让再抗”的耦合让压强力支护理念,研制了支护强度高、刚度大、预紧力损失小、具有定量让压性能、护表效果好且经济合理的让压型锚索箱梁支护系统。并根据托梁的不同布置方式设计了让压型锚索箱梁支护系统、工字钢锚索梁支护系统及T型钢带锚索梁支护系统、U型钢带锚索梁支护系统4大类14种试验方案进行对比研究。
     4.支护系统对比评价指标研究。通过研究提出了巷道表征变形量D、围岩控制经济指标I、支护系统组合构件整体性能利用率η、支护系统组合构件耦合效率W四个指标,利用层次分析法确定了巷道围岩变形权重值和支护系统组合构件耦合效率权重值。将上述指标用于巷道支护效果及支护系统组合构件耦合性能的对比评价,使评价工作得以量化。
     5.支护构件耦合性能数值研究。设计了不同支护构件及预紧力组合情况下的13种对比方案,通过数值试验统计分析,对各方案耦合性能进行对比研究。研究表明:耦合效果最好的3种计算方案分别为方案N3(Ⅱ12b+(?)22锚索)、方案N2(Ⅱ12a+(?)17.8锚索)和方案N5(Ⅱ12c+(?)22锚索)。同时分析了锚索型号与预紧力两因素对支护系统耦合性能和支护效果的影响。
     6.支护效果数值试验对比分析。14种支护方案数值试验结果表明:让压型锚索箱梁支护系统各方案比原支护方案效果显著提高;让压型锚索箱梁支护系统围岩控制效果整体优于工字钢锚索梁支护系统且经济性高;让压型锚索箱梁4种支护方案中,巷道围岩控制效果最好的为纵横组合方案,其次为纵向单梁方案,再次为纵向双梁方案,最后为横梁方案。
     7.现场支护构件新型监测手段与评价系统现场应用。研发、制作并在现场试验中应用了测力箱梁、测力工字钢和测力钢带,用于支护构件的受力监测。利用建立的评价系统对现场试验得到的围岩收敛、顶板离层、顶板弯曲沉降、围岩深部位移、锚杆与锚索托锚力、钢梁与钢带受力等监测结果进行综合对比分析,对不同方案优劣进行了量化综合评定。
     8.多方案现场试验对比研究。针对3302工作面顺槽特点,结合理论分析与数值试验结论提出了不同支护系统及其方案的选取原则,并按该原则进行了3大类11种方案的现场试验研究。在每个支护方案试验段设置多个监测测站,通过监测结果综合对比分析得到了与理论分析及数值试验基本一致的结论。让压型锚索箱梁支护系统各方案围岩控制效果整体优于工字钢锚索梁支护系统,明显优于原方案,其中纵横组合方案效果最好,其次为纵向单梁方案。经综合分析给出了在地质条件恶劣的厚顶煤巷道支护时,首选让压型锚索箱梁支护系统纵横组合方案;当地质条件稍好时,选用让压型锚索箱梁支护系统纵向单梁方案的工程建议。
     9.柔性加载系统研发。针对目前地质力学模型试验加载边界条件存在的问题,基于对多类特种柔性橡胶材料进行的研究,结合试验要求,研制出新型柔性均布压力加载装置,并用于本文模型试验研究,使加载系统更真实的满足对原型条件的模拟要求。
     10.地质力学模型试验对比研究。基于赵楼煤矿深部厚顶煤巷道工程地质条件,对两种典型支护方案下的3302工作面顺槽开挖支护过程进行了地质力学模型试验研究。试验采用了光纤光栅和电阻应变测试系统、光栅多点位移数据采集系统、数字照相系统和新型支护构件受力监测系统等监测手段;得到了不同支护方案的巷道围岩应力演化规律、围岩变形规律及支护构件的受力特性。结果表明纵向单梁方案支护效果总体优于横梁支护方案。
     11.锚索梁支护系统作用机制研究。建立了锚索梁支护系统对顶板围岩作用的三维力学模型,通过理论分析和推导得到锚索梁及其不同布置方式、锚杆、锚索单独或联合作用下的顶板围岩围压计算公式。利用该公式,对锚索梁支护系统不同布置方式作用下的顶板围岩应力状态进行算例分析,结果显示:纵横组合方案在顶板围岩中形成的围压状态最佳,其次为纵向单梁方案,纵向双梁方案及横梁方案分列其后。将理论计算、数值试验与现场试验结果进行综合对比分析,得到了锚索梁支护系统的作用机制。
The coal mining are developing towards over1000m is an inevitable trend of mining industry in China. The thick coal mining is an important part of deep coal mining. The problem, which was exposed in deep mining with thick top-coal of Juye mining area, proposes higher demand to support these kinds of roadways in China.
     For the roof and two sides of deep roadway with thick top-coal are soft coal, its easy to apear large range of fratured zone; roof coal breaking and expanding seriously, easily separated from the basic roof; and the roof has large and lasting deformation, all of the above problems bring huge difficulty to control the surrounding rocks of roadway. At present, little study has been carried on for the defomiation failure and stability control mechanism of surrounding rock in deep roadways with thick top-coal. Among existing roadway support systems, economic and efficient support methods are deficient which suitable to these roadways. Therefore, fundamentally recognizing the deformation failure mechanism of surrounding rock in deep roadways with thick top-coal, and proposing reasonable support solution, is of important theoretical and practical meaning for deep and thick coal mining in China.
     Taking typical deep coal mine of Zhaolou in Juye mining area as engineering background, aiming at the difficult support of deep roadways with thick top-coal under high ground stress, methods of field measurement, theoretical analysis, material development, numerical analysis, model test and field test was combined to research deformation failure and control mechanism of surrounding rock in deep roadways with thick top-coal. Pressure relief anchor box beam (PRABB) support system that suitable for these roadways was therefore been developed. The main work and innovative points are list as follows:
     1. Field measurement study on deformation and destruction law of deep roadways with thick top-coal. Field monitor research was carried out on the engineering geological conditions of deep roadways with thick top-coal in Zhaolou mine, such as hydrologic geology, geostress and physical-mechanical properties of rock, as well as the mine pressure, the deformation and failure of surrounding rock, the stress state of support units under conditions of original supporting program. The main reason and mechanism were obtained from these researches and analysis, which of serious bulking deformation, great bed separation amount and uncontrollable lasting deformation on the roof and surrounding rock of deep roadways with thick top-coal in Zhaolou coal mine.
     2. Mechanism research on roof carving in deep roadways with thick top-coal. Based on the limit analysis theory, adopted generalized Hoek-Brown experience strength rule, and considered the effect of strain level and support load of roof and surrounding rock in roadways, the roof carving trace equation was deduced. Meanwhile, the effect to the range of roof carving was discussed, which caused by mechanic parameters of different rocks, strain level of surrounding rocks and support load. Calculation example analysis was carried out on the deep rectangular roadways with thick top-coal in3302work face of Zhaolou coal mine, and the effect to the range of roof carving which caused by support load has been researched. Meanwhile, engineering technology measure has also been put forward according to the engineering practice.
     3. The research and development of pressure relief anchor box beam(PRABB) support system. The support concept of high strength coupling pressure relief was put forward, which is first anti-pressure, second pressure relief, and third anti-pressure. The PRABB support system was developed, which has high strength support pressure, better bending stiffness, lower pre-tightening force loss, quantitative pressure relief, good supporting surface effect and reasonable economic. Fourteen test schemes with different arrange modes were designed, classifying into four kinds of PRABB support system, I-steel anchor beams support system, T-steel strip anchor beams support system and U-steel anchor beams support system.
     4. The evaluation index research on the contrast of support systems. In the research, four indexes were proposed, which of roadway characterization deformation D, the economic index of surrounding rock control I, the whole performance utilization ratio of support system combined units η and the combined units coupling ratio of support system W. By the use of hierarchy analytical method, the deformation weight value of surrounding rock in roadways and coupling ratio weight value of support system combined units were determined. The above indexes were used in the contrastive evaluation of the combined components coupling performance of support system and roadway support effect, and therefore the contrastive evaluation can be quantification.
     5. Numerical research on coupling performance of support members. Thirteen contrastive schemes were designed with different combination of support members and pre-stressing. By means of the statistical analysis of numerical test on these schemes, contrastive research was carried out on the coupling performance of each scheme. Results show that the top three schemes with best coupling effect are scheme N3(Ⅱ12b+(?)22anchor), scheme N2(Ⅱ12a+(?)17.8anchor) and scheme N5(Ⅱ12c+(?)22anchor). Meanwhile, the two factors of anchor type and pre-pressure were analized, which has affected coupling performance and support effect of the support systems.
     6. Contrastive analysis of support effect numerical test. As the support effect analysis of the numerical test on the fourteen support schemes show, the support effect of PRABB support scheme was dramatically enhanced than by original scheme; the PRABB support system has advantage than I-steel anchor beams support system on the support effect and economic; among the four support scheme of PRABB, cross and longitudinal combination scheme was best in surrounding rock controlling, longitudinal single anchor beam scheme was lest best, and then longitudinal double anchor beam scheme, cross anchor beam program was relatively poor.
     7. The field application of new monitoring methods and evaluation system of field support components. Force-measuring box beam, force-measuring I-steel beam and force-measuring steel strip were developed and applied in the field test, to monitor the force on the support components. By use of the established evaluation system, integrating contrastive analysis has been carried out on the monitoring results of surrounding rock convergence, roof abscission layer, bending settlementof roof, deep displacement of surrounding rock, anchor rod acting force, the force on the pad of anchor, steel beam steel strip acting force in the field test and make quantitative comprehensive evaluation of the superiority and inferiority of different schemes.
     8. Contrastive research field test with multi-schemes. Considered the characteristic of3302working face crosshead, combining with theoretical analysis and numerical test results, the choosing rule of support scheme was put forward, which guided the field test research of eleven schemes classified into three kinds. Many monitoring station were set up on the test section for each support scheme, the conclusion which obtained from the integrating contrastive analysis on monitoring result was almost the same with the theoretical analysis and numerical test. All schemes with PRABB were better than I-steel scheme, and had dramatically advantage than original support scheme. Among the schemes of PRABB, longitudinal and cross combination scheme has the best effect, longitudinal single anchor beam scheme been lest best. Meanwhile, the engineering advices after integrative analysis was proposed, which is foist choose longitudinal and cross combination scheme of PRABB under harsh geological conditions, and choosing longitudinal single anchor beam scheme when the geological conditions is better.
     9. Develop of flexible load system. Considering the existing load boundary condition problems of geomechanics model test, based on the research of various kinds of special flexible rubber materials, combined the test requirement, the new flexible uniform distributed pressure load device was developed and used in the model test, which was better stimulate original condition more actual.
     10. Contrastive research of geomechanics model test. Based on the engineering geological condition of deep roadways with thick top-coal in Zhaolou coal mine, the geomechanics model test research was carried out on the excavation and support process of3302wording face crossheading. Advanced monitoring methods were adopted which include fiber grating and resistance strain test system, grating multi-point extensometer measurement and data collection system, digital photography system and new force monitoring system of support component. Meanwhile, the strain evolution law of surrounding rocks with different support schemes, surrounding rocks deformation law and the force character of support units were obtained. The test results show that longitudinal single beam scheme has better support effect than cross beam scheme, which is consistent with field rule.
     11. Function mechanism research of anchor beams support system.3D mechanics model was set up, which simulate the anchor beams support system acting on roof and surrounding rocks. From theoretical analysis and derivation, the confining pressure calculation formula of roof and surrounding rocks was obtained, which is according to different arrangement modes of anchor beams, cables and anchors act alone or combined. By means of the formula, analysis of examples on the strain statement of roof and surrounding rocks in different arrangement modes of anchor beams support system, the result shows that:the confining pressure statement caused by cross and longitudinal combination scheme was the best, longitudinal single beam scheme was lest better, longitudinal double beams scheme and cross beam scheme were relatively poor. From the integrative and contrastive analysis of the results obtained from theoretical calculation, numerical test and field test, function mechanism of anchor beams support system was obtained.
引文
[1]何满潮,钱七虎.深部岩体力学基础[M].北京:科学出版社,2010.
    [2]何满潮.深部开采工程岩石力学的现状及其展望[C]//第八次全国岩石力学与工程学术大会论文集,科学出版社,2004:88-94.
    [3]康红普,王金华,林健.煤矿巷道锚杆支护应用实例分析[J].岩石力学与工程学报,2010,29(4):649-663.
    [4]谢和平.深部高应力下的资源开采:现状、基础科学问题与展望[C]//科学前沿与未来(第六集).北京:中国环境科学出版社,2002:179-191.
    [5]HOU C J. Review of roadway control in soft surrounding rock under dynamic pressure[J] Journal of Coal Science & Engineering(China),2003,9(1):1-7.
    [6]何满潮,谢和平,彭苏萍,等.深部开采岩体力学研究[J].岩石力学与工程学报,2005,24(16):2803-2814.
    [7]何满潮.深部的概念体系和工程评价指标[J].岩石力学与工程学报,2005,24(16):2854-2858.
    [8]谢和平.深部开采基础理论与工程实践[M].北京:科学出版社,2006.
    [9]Diering D.H. Ultra-deep level mining-future requirements [J]. Journal of the South African Institute of Mining and Metallurgy,1997,97(6):249-255.
    [10]Vogel M., Andrast H.P. Alp transit-safety in construction as a challenge, health and safety aspects in very deep tunnel construction [J]. Tunneling and Under Ground Space Technology,2000,15(4):481-484.
    [11]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996.
    [12]Cleary M. Effects of depth on rock fracture [A]. In:Rock at Great Depth[C]. Rotterdam:A. A. Balkema,1989: 1153-1163.
    [13]Marcak H. The structure of seismic events sequences obtained from Polish deep mines[A]. In:Rockburst and Seismicity in Mines[C]. Rotterdam:A. A. Balkema,1997:107-109.
    [14]郜进海.薄层状巨厚复合顶板回采巷道锚杆锚索锚固理论研究[博士学位论文][D].太原:太原理工大学,2005.
    [15]张文勋.煤层顶板事故的防治与实践[J].河北煤炭,2009(3):25-26.
    [16]陈波,梁汉东.地震活动与矿井顶板事故影响关系统计分析[J].地学前缘,2010,17(1):238-245.
    [17]彭成.2004-2008年全国煤矿顶板事故分析[J].中国煤炭,2010(1):104-105.
    [18]张庆春.煤矿顶板事故的预防主体及其行为分析[J].矿业安全与环保,2010,37(增):120-121.
    [19]何满潮,孙晓明.中国煤矿软岩巷道工程支护设计与施工指南[M].北京:科学出版社,2004.
    [20]陈炎光,陆士良.中国煤矿巷道围岩控制[M].徐州:中国矿业大学出版社,1994.
    [21]赵阳升,万志军,康建荣.高温岩体地热开发导论[M].北京:科学出版社,2004.
    [22]李树清.深部煤巷围岩控制内、外承载结果耦合稳定原理的研究[博士学位论文][D].长沙:中南大学,2008.
    [23]王家臣.厚煤层开采理论与技术[M].北京:冶金工业出版社,2009.
    [24]李世平.岩石力学简明教程[M].徐州:中国矿业大学出版社,1986.
    [25]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986(3):77-85.
    [26]刘夕才,林韵梅.软岩巷道弹塑性变形的理论分析[J].岩土力学,1994,15(2):27-35.
    [27]刘夕才,林韵梅.软岩扩容性对巷道围岩特性曲线的影响[J].煤炭学报,1994,21(6):596-600.
    [28]付国彬.巷道围岩破裂范围与位移的新研究[J].煤炭学报,1995,20(3):304-310.
    [29]范文,俞茂宏,孙萍,等.硐室形变围岩压力弹塑性分析的统一解[J].长安大学学报(自然科学版),2003,23(3):1-4.
    [30]吕爱钟.非圆形铜室封闭整体式支护映射函数确定的新方法[J].岩土工程学报,1995,17(4):38-44.
    [31]朱大勇,钱七虎,周早生,等.复杂形状洞室映射函数的新解法[J].岩石力学与工程学报,1999,18(3):279-282.
    [32]朱大勇,钱七虎,周早生,等.复杂形状洞室围岩应力弹性解析分析[J].岩石力学与工程学报,1999,18(4):402-404.
    [33]曾佑富,伍永平.复杂条件下大断面巷道顶板冒落失稳分析[J].采矿与安全工程学报,2009,26(4):423-432.
    [34]刘少伟,徐仁桂.含软弱夹层煤巷层状顶板失稳机理与分类[J].河南理工大学学报(自然科学版),2010,29(1):23-27.
    [35]高明中.锚固体梁的弯曲突变失稳问题分析[J].岩土力学,2004,25(8):1267-1270.
    [36]黄庆享.顶煤弹性深梁力学模型及其应用[J].岩石力学与工程学报,1998,17(2):167-172.
    [37]Buddhima Indraratna, DavidA.F.Oliveira. Effect of soil-infilled joints on the stability of rock wedges formed in a tunnel roof[J]. International Journal of Rock Mechanics & Mining Sciences,2010,47(5):739-751.
    [38]王琦,李术才,李为腾,等.基于地质预报的煤巷顶板事故防治研究[J].采矿与安全工程学报,2012,29(1):14-20.
    [39]刘生龙.煤巷层状软岩顶板破坏规律及支护研究[硕士学位论文][D].西安:西安科技大学,2005.
    [40]M. Fraldi, F. Guarracino. Limit analysis of collapse mechanisms in cavities and tunnels according to the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics & Mining Sciences,2009,46(4):665-673.
    [41]M. Fraldi, F. Guarracino. Analytical solutions for collapse mechanisms in tunnels with arbitrary cross sections [J]. International Journal of Solids and Structures,2010,47(2):216-223.
    [42]M. Fraldi, F. Guarracino. Evaluation of impending collapse in circular tunnels by analytical and numerical approaches[J]. Tunnelling and Underground Space Technology,2011,26:507-516.
    [43]X.L.Yang, F.Huang. Collapse mechanism of shallow tunnel based on nonlinear Hoek-Brown failure criterion [J]. Tunnelling and Underground Space Technology,2011,26:686-691.
    [44]F.Huang, X.L.Yang. Upper bound limit analysis of collapse shape for circular tunnel subjected to pore pressure based on the Hoek-Brown failure criterion [J]. Tunnelling and Underground Space Technology,2011,26:614-618.
    [45]M.奥顿哥特.巷道底鼓的防治[M].王松茂,译.北京:煤炭工业出版社,1985.
    [46]康红普.膨胀岩与巷道底膨[J].阜新矿业学院学报(自然科学版),1994,13(2):44-48.
    [47]D. Zhao, G. Swoboda, F. Laabmayr. Damage mechanics and its application for the design of an underground theater[J]. Tunnelling and Underground Space Technology,2004,(19):567-575.
    [48]Diederichs, M. S. and Kaiser, P. K. Stability of large excavations in laminated hard rock masses:the voussoir analogue revisited. Int. J. Rock Mech. Min. Sci.,1999,36(1):97-117.
    [49]Duplancic, P. and Brady, B. H. Characterisation of caving mechanisms by analysis of seismicity and rock stress. Proc.9th Congr., Int. Soc. Rock Mech., Paris (eds G. Vouille and P. Berest),1999,2:1049-1053.
    [50]Carranza-Torres, C., Alonso, E., Alejano, L. R.,Varas, F. and Fdez-Manin, G. Elasto-plastic analysis of deep tunnels in brittle rock using a scaled form of the Mohr-Coulomb failure criterion. Mining and Tunnelling Innovation and Opportunity, Proc.5th North Am. Rock Mech. Symp. & 17th Tunn. Assn Can. Conf., Toronto (eds R. Hammah, W. Bawden, J. Curran and M. Telesnicki),2002,1:283-293.
    [51]Gale,W. J. and Blackwood, R. L. Stress distributions and rock failure around coal mine roadways. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr.,1987,24(3):165-173.
    [52]Hajiabdolmajid, V., Kaiser, P. K. and Martin, C. D. Modelling brittle rock failure. Int. J. Rock Mech. Min. Sci.,2002,39(6):731-141.
    [53]王仁,梁北援,孙荀英.巷道大变形的粘性流体有限元分析[J].力学学报,1985,17(2):97-105.
    [54]何满潮,齐干,程骋,等.深部复合顶板煤巷变形破坏机制及耦合支护设计[J].岩石力学与工程学报,2007,26(5):987-993.
    [55]康红普.应力状态及围岩性质对巷道底臌的影响[J].矿山压力与顶板管理,1994(2):43-46.
    [56]刘刚,宋宏.煤巷围岩松动圈规律研究[J].煤炭学报,2002,27(1):31-35.
    [57]肖同强,柏建彪,王襄禹,等.深部大断面厚顶煤巷道围岩稳定原理及控制[J].岩土力学,2011,32(6):1874-1880.
    [58]杨峰.高应力软岩巷道变形破坏特征及让压支护机理研究[博士学位论文][D].徐州:中国矿业大学,2009.
    [59]张玉祥,陆士良.破裂岩石的力学性能及在深井软岩控制中的应用[J].岩石力学与工程学报,1995,17(6):622-627.
    [60]王彩根.软岩巷道壁后充填支护机理与技术的研究[博士学位论文][D].徐州:中国矿业大学,1994.
    [61]杨超,陆士良,姜耀东.支护阻力对不同岩性围岩变形的控制作用[J].中国矿业大学学报,2000,29(2):170-173.
    [62]Ma N J, Hou C J. A research into plastic-zone of surrounding strata of gateway affected by mining abutment stress[A]. In:Proceeding of the 31st U.S. Symposium on Rock Mechanics[C]. Rotterda:mA. A. balkema,1990,211-217.
    [63]姜耀东,刘文岗,赵毅鑫.开滦矿区深部开采中巷道围岩稳定性研究[J].岩石力学与工程学报,2005,24(11):1557-1562.
    [64]姜耀东,赵毅鑫,刘文岗.深部开采中巷道底鼓问题的研究[J].岩石力学与工程学报,2004,23(14):2396-2401.
    [65]Aydan O, Akagi T, Kavamoto T. The squeezing potential of rock around tunnels:theory and prediction with examples taken from Japan[J]. Rock Mechanics and Rock Engineering,1996,26(2):125-143.
    [66]张向东,李永靖,张树光,等.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635-1639.
    [67]彭苏萍,王希良,刘咸卫,等.“三软”煤层巷道围岩流变特性试验研究[J].煤炭学报,2001,26(2):149-152.
    [68]杜计平,苏景春.煤矿深井开采的矿压显现及控制[M].徐州:中国矿业大学出版社,2000.
    [69]付国彬,姜志方.深井巷道矿山压力控制[M].徐州:中国矿业大学出版社,1996.
    [70]靖洪文.深部巷道破裂围岩位移分析及应用[博士学位论文][D].徐州:中国矿业大学,2001.
    [71]靖洪文,付国彬,郭志宏.深井巷道围岩松动圈影响因素实测分析及控制技术研究[J].岩石力学与工程学报,1999,15(1):70-74.
    [72]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [73]陈庆敏.软岩巷道支护与围岩相互作用机理及支护技术的研究[博士学位论文][D].徐州:中国矿业大学,1995.
    [74]陈庆敏,张农,赵海云,等.岩石残余强度与变形特性的试验研究[J].中国矿业大学学报,1997,26(3):42-45.
    [75]陈庆敏,袁亮.考虑岩石破裂后变形特性的巷道围岩特征曲线[J].辽宁工程技术大学学报(自然科学版),1998,17(2):151-155.
    [76]靖洪文,李世平,牟宾善.零围压下岩石剪胀性能的试验研究[J].中国矿业大学学报,1998,27(1):19-22.
    [77]靖洪文.峰后岩石剪胀性能试验研究[J].岩土力学,2003,24(1):94-102.
    [78]杨圣奇,温森,李良权.不同围压下断续预制裂纹粗晶大理岩变形和强度特性的试验研究[J].岩石力学与工程学报,2007,26(8):1572-1587.
    [79]萧富元,王建力,邵厚洁.深埋脆性岩石力学参数评估与变形特性探讨[J].岩土力学,2011,32(S2):109-114.
    [80]M. Caia, P.K. Kaisera, Y. Tasakab, M. Minamic. Determination of residual strength parameters of jointed rock masses using the GSI system[J]. International Journal of Rock Mechanics & Mining Sciences,2007,44(2):247-265.
    [81]F. Varas, E. Alonso, L.R. Alejano. Study of bifurcation in problem of unloading a circular excavation in a strain-softening material[J]. Tunnelling and Underground Space Technology,2005,20(5):311-322.
    [82]陆士良,姜耀东.支护阻力对软岩巷道围岩的控制作用[J].岩土力学,1998,19(1):1-6.
    [83]李树清,王卫军,潘长良.深部巷道围岩承载结构的数值分析[J].岩土工程学报,2006,28(3):377-381.
    [84]康红普,王金华,林健.高预应力强力支护系统及其在深部巷道中的应用[J].煤炭学报,2007,32(12):1233-1238.
    [85]康红普.煤巷锚杆支护成套技术研究与实践[J].岩石力学与工程学报,2005,24(21):3959-3964.
    [86]康红普,吴拥政,李建波.锚杆支护组合构件的力学性能与支护效果分析[J].煤炭学报,2010,35(7):1057-1065.
    [87]薛亚东,康天合.回采巷道围岩结构与裂隙分布特征及锚杆支护机理研究[J].煤炭学报,2000,25(6):97-101.
    [88]J. F. T.,Leo J. Gilbride, Wendell A. Koontz. Implication of highly anisotropic horizontal stresses on entry stability at the West ELK Mine, Somerset, Colorado[A]. In:Proceedings of the 24th International Conference on Ground Control in Mining[C].West Virginia:Morgantown,2005,196-202.
    [89]杨双锁.回采巷道围岩控制原理及锚固结构的适应性研究[博士学位论文][D].徐州:中国矿业大学,2001.
    [90]朱德仁,王金华,康红普,等.巷道煤帮稳定性相似材料模拟试验研究[J].煤炭学报,1998,23(1):42-47.
    [91]柏建彪,侯朝炯.深部巷道围岩控制原理与应用研究[J].中国矿业大学学报,2006,35(2):145-148.
    [92]李德忠,夏新川,韩家根.深部矿井回采巷道变形特点及维护对策[J].煤炭科学技术,2005,33(8):24-26.
    [93]朱学军,杜兵,赵方敏.深部高应力巷道矿压显现与控制[J].矿山压力与顶板管理,2000(3):64-67.
    [94]毛光宁摘译.美国锚杆支护综述[J].中国煤炭,2001,27(11):54-58.
    [95]Geoffrey L. Kulak, Peter C. Birkemoe. Field studies of bolt pretension[J]. Journal of Constructional Steel Research,1993,25(2):95-106.
    [96]陈庆敏,金太,郭颂.锚杆支护的“刚性”梁理论及其应用[J].矿山压力与顶板管理,2000(1):1-5.
    [97]陈庆敏,郭颂,张农.煤巷锚杆支护新理论与设计方法[J].矿山压力与顶板管理,2002(1):12-15.
    [98]沈运才,王风.“刚性”梁理论在煤巷锚杆支护中的应用[J].矿山压力与顶板管理,2003(2):41-42.
    [99]沈运才.近距离采空区下松散煤层巷道支护技术研究[硕士学位论文][D].徐州:中国矿业大学,2008.
    [100]何满潮,王晓义,刘文涛,等.孔庄矿深部软岩巷道非对称变形数值模拟与控制对策研究[J].岩石力学与工程学报,2008,27(4):673-678.
    [101]孙晓明,张国锋,蔡峰,等.深部倾斜岩层巷道非对称变形机制及控制对策[J].岩石力学与工程学报,2009,28(6):1137-1143.
    [102]蒋金泉,韩继胜,石永奎.巷道围岩结构稳定性与控制设计[M].北京:煤炭工业出版社,1999.
    [103]樊克恭.巷道围岩弱结构损伤破坏效应与非均称控制机理研究[博士学位论文][D].青岛:山东科技大学,2004.
    [104]常聚才,谢广祥,罗勇,等.急倾斜煤层全煤巷道锚网索支护参数设计[J].煤炭科学技术,2007,35(1):46-48.
    [105]任奋华,来兴平,蔡美峰,等.破碎岩体巷道非对称破坏与变形规律定量预计与评价[J].北京科技大学学报,2008,30(3):221-226.
    [106]陈新,郭宏云,何满潮,等.深部高应力巷道的非对称大变形[J].黑龙江科技学院学报,2007,17(6):415-424.
    [107]Hebblewhite, B. K. and Lu, T. Geomechanical behaviour of laminated, weak coal mine roof strata and the implications for a ground reinforcement strategy. Int. J. Rock Mech. Min. Sci.,2004,41(1).147-157.
    [108]HOU C J. Review of roadway control in soft surrounding rock under dynamic press [J]. Journal of Coal Science & Engineering(China),2003,9(1):1-7.
    [109]H. Witthaus, N. Polysos, H. Witthaus. Applied geomechanics for support designin German deep coal mines[A]. In:Proceedings of the 25th International Conference on Ground Control in Mining[C]. West Virginia: Morgantown,2006,199-208.
    [110]邢光中,尹鹤峰,孙广义.锚网支护技术在深部返修巷道中的应用[J].矿山压力与顶板管理,1995,3(4):149-154.
    [111]王宏,尹鹤峰,于竞敏,等.深部返修巷道矿压显现规律及其控制[J].黑龙江矿业学院学报,1996,6(2):1-4.
    [112]Bawden,W. F. and Tod, J. D. Optimization of cable bolt ground support using SMART instrumentation. ISRM News J.,2003,7(3):10-16.
    [113]王元仁.深井困难条件下的巷道支护技术[J].煤炭科学技术,2003,31(2):9-11.
    [114]王德田,肖尚红.深部破碎围岩巷道锚喷支护修复技术[J].矿山压力与顶板管理,2005(1):68-70.
    [115]孔德森,蒋金泉.深部巷道围岩稳定性预测与锚杆支护优化[J].矿山压力与顶板管理,2002(2):29-32.
    [116]闻利显,郎加平.深部全煤巷道锚梁网支护实践[J].煤矿开采,2000,(4):42-43.
    [117]王彦伦.深部全煤巷道锚梁网支护实践[J].煤炭科学技术,2003,31(11):58-59.
    [118]孙晓明,何满潮,冯增强.深部松软破碎煤层巷道锚网索支护技术研究[J].煤炭科学技术,2005,33(3):47-50.
    [119]沈荣喜,刘长友.锚网索联合支护在深井综放沿空巷道中的应用[J].煤炭科学技术,2004,32(10):4-6.
    [120]谷守生,孙磊,郭景秋.深井软岩穿层巷道支护与施工技术[J].煤矿现代化,2004,10(5):37-38.
    [121]杨祝余.深部开采膨胀型泥岩顶板大断面切眼一次成巷技术[J].能源技术与管理,2006(1):33-34.
    [122]李德忠,夏新川,韩家根.深部矿井回采巷道锚杆联合支护[J].江苏煤炭,2003(2):4-6.
    [123]高慎忠,李宗峰,倪庆均,等.深部复合顶回采巷道预应力锚索支护技术[J].山东煤炭技术,2004(5):14-15.
    [124]王培良.深部回采巷道交岔点支护形式探讨[J].煤矿开采,2001(4):57-59.
    [125]李德忠,夏新川,韩家根.深井回采巷道锚网、锚索联合支护技术[J].矿山压力与顶板管理,2003(4):33-35.
    [126]B. Liu, Z. Q. Yue, L. G. Tham. Analytical design method for a truss-bolt system for einforcement of fractured coal mine roofs-illustrated with a case study. International Journal of Rock Mechanics&Mining Sciences,2005,42(2):195-218.
    [127]孟兆震.煤矿深部地压巷道锚注加固技术研究与应用[J].山东煤炭科技,2003(1):57-58.
    [128]贺荣仓,赵坤.深部巷道锚注加固修复技术[J].建井技术,2003,24(6):9-11.
    [129]王辉.深井高应力巷道支护技术的实践[J].江西煤炭科技,2005(1):30-31.
    [130]黄庆显.高地应力巷道锚喷注二次支护的研究和应用[J].中州煤炭,2006(2):11-12.
    [131]Yue Cai, Tetsuro Esaki, Yujing Jiang. An analytical model to predict axial load in grouted rock bolt for soft rock tunneling[J]. Tunneling and Underground Space Technology,2004 (19):607-618.
    [132]翟新献,李化敏,胡劲松.深井开拓巷道变形与支架的关系[J].煤,3(3):22-24.
    [133]Brummer, R.K. and Swan, G. R. Support and structural use of shotcrete in mines. Underground Mining Methods:Engineering Fundamentals and International Case Studies (eds W. A. Hustrulid and R. L. Bullock), Society for Mining, Metallurgy and Exploration:Littleton, Colorad.2001:593-600.
    [134]Holmgren, B. J. Shotcrete linings in hard rock. Underground Mining Methods:Engineering Fundamentals and International Case Studies (edsW. A. Hustrulid and R. L. Bullock), Society for Mining, Metallurgy and Exploration:Littleton, Colorado.2001,569-577.
    [135]Kaiser, P. K. and Tannant, D. D. The role of shotcrete in hard-rock mines. Underground Mining Methods: Engineering Fundamentals and International Case Studies (eds W. A. Hustrulid and R. L. Bullock), Society for Mining, Metallurgy and Exploration:Littleton, Colorado.2001,579-592.
    [136]Spearing, S. Shotcrete as an underground support material. Underground Mining Methods:Engineering Fundamentals and International Case Studies (edsW. A. Hustrulid and R. L. Bullock), Society for Mining, Metallurgy and Exploration:Littleton, Colorado.2001,563-568.
    [137]Villaescusa, E. An Australian perspective to grouting for cablebolt reinforcement. Rock Support and Reinforcement Practice in Mining, Proc. Int. Symp. Rock Support, Kalgoorlie (eds E. Villaescusa, C. R. Windsor and A. G. Thompson), A. A. Balkema:Rotterdam.1999,91-102.
    [138]Fuller, P. G. Roof strata reinforcement-achievements and challenges. Rock Support and Reinforcement Practice in Mining, Proc. Int. Symp. Rock Support, Kalgoorlie (eds E. Villaescusa, C. R. Windsor and A. G. Thompson), A. A. Balkema:Rotterdam.1999,405-415.
    [139]康红普.高强度锚杆支护技术的发展与应用[J].煤炭科学技术,2000,28(2):1-4.
    [140]侯朝炯,勾攀峰.巷道锚杆支护围岩强度强化机理研究[J].岩石力学与工程学报,2000,19(3):342-345.
    [141]侯朝炯,柏建彪,张农,等.困难复杂条件下的煤巷锚杆支护[J].岩土工程学报,2001,23(1):84-88.
    [142]柏建彪,侯朝炯,杜木民,等.复合顶板极软煤层巷道锚杆支护技术研究[J].岩石力学与工程学报,2001,20(1):53-56.
    [143]张农,侯朝炯,王培荣.深井三软煤巷锚杆支护技术研究[J].岩石力学与工程学报,1999,18(4):437-440.
    [144]赵溟,张农,阚甲广,等.深井松散煤巷超高强预应力组合锚杆支护技术[J].西安科技大学学报,2008,28(2):222-225.
    [145]高明仕,张农,郭春生,等.三维锚索与巷帮卸压组合支护技术原理及工程实践[J].岩土工程学报,2005,27(5):587-590.
    [146]肖亚宁,马占国,赵国贞,等.沿空巷道三维锚索支护围岩变形规律研究[J].采矿与安全工程学报,2011,28(2):187-182.
    [147]刘波,李先炜,陶龙光.锚拉支架中锚杆横向效应分析[J].岩土工程学报,1998,20(4):36-39.
    [148]康红普,王金华.煤巷锚杆支护理论与成套技术[M].北京:煤炭工业出版社,2007.
    [149]李先炜,陶龙光,李晓,等.锚拉支架[J].矿山压力与顶板管理,1995(2):39-41.
    [150]薛顺勋,宋广太,库明欣.煤巷锚杆支护施工指南[M].北京:煤炭工业出版社,1999.
    [151]B. Liua, Z.Q. Yueb, L.G.Tham. Analytical design method for a truss-bolt system for reinforcement of fractured coal mine roofs-illustrated with a case study[J]. International Journal of Rock Mechanics and Mining Sciences,2005,42:195-218.
    [152]张良海,原明星.复合顶板巷道预应力锚杆锚索桁架支护技术[J].煤炭科学技术,2009,37(11):18-20.
    [153]张农,袁亮.离层破碎型煤巷顶板的控制原理[J].采矿与安全工程学报.2006,23(1):34-38.
    [154]柏建彪,王襄禹,姚喆.高应力软岩巷道耦合支护研究[J].中国矿业大学学报,2007,36(4):421-425.
    [155]肖同强.深部构造应力作用下厚煤层巷道围岩稳定与控制研究[博士学位论文][D].徐州:中国矿业大学,2011.
    [156]陈兴和.深井断层破碎带煤巷锚网梁索支护的研究[J].煤炭科技,2007(1):14-15.
    [157]何满潮,胡永光,郭志飚,等.大断面软岩巷道耦合支护技术研究[J].矿山压力与顶板管理,2005,(4):1-3.
    [158]侯朝炯,郭宏亮.我国煤巷锚杆支护技术的发展方向[J].煤炭学报,1996,21(2):113-118.
    [159]何满潮.中国煤矿锚杆支护理论与实践[M].北京:科学出版社,2004.
    [160]陈勇,于新锋,柏建彪.复合顶板巷道锚杆锚索支护技术探讨[J].能源技术与管理,2005(6):6-7.
    [161]张小康,王连国,吴宇,等.高强让压锚杆支护效果数值模拟研究[J].采矿与安全工程学报,2008,25(1):46-49.
    [162]侯朝炯,何亚男.杆体可伸长锚杆的原理及应用[J].岩石力学与工程学报,1997,16(6):544-549.
    [163]何满潮,郭志飚,任爱武,等.柳海矿运输大巷返修工程深部软岩支护设计研究[J].岩土工程学报,2005,27(9):977-980.
    [164]孙晓明,何满潮.深部开采软岩巷道耦合支护数值模拟研究[J].中国矿业大学学报,2005,34(2):166-169.
    [165]康红普,吴拥政,李建波.锚杆支护组合构件的力学性能与支护效果分析[J].煤炭学报,2010,35(7):1057-1065.
    [166]B.H.G.Brady, E.T.Brown. Rock mechanics for underground mining[M]. New York:Kluwer Academic Publishers,2004.
    [167]刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报,2000,19(6):726-730.
    [168]王亚杰.深井高地压、大变形围岩巷道支护技术及锚杆设计[J].煤矿支护,2008(1):8-18.
    [169]何炳银,张土环,尹建国.高地压巷道锚索让压支护技术的探讨[J].煤炭工程,2005(9):22-25.
    [170]刘景书.鸟窝锚索及高强让压锚杆在冲击性全煤巷道中的应用[J].煤矿开采,2010,15(1):62-64.
    [171]朱维申,李术才,程峰.能量耗散模型在大型地下洞群施工顺序优化分析中的应用[J].岩土工程学报,2001,23(3):333-336.
    [172]朱维申,何满潮.复杂条件下围岩稳定性与岩体动态施工力学[M].北京:科学出版社,1995.
    [173]朱维申,李术才,白世伟,等.施工过程力学原理的若干发展和工程实例分析[J].岩石力学与工程学报,2003,22(10):1586-1591.
    [174]余伟健,高谦,张周平,等.深埋大跨度软岩硐室让压支护设计研究[J].岩土工程学报,2009,31(1):40-47.
    [175]侯朝炯,何亚男.杆体可伸长锚杆的原理及应用[J].岩石力学与工程学报,1997,16(6):544-549.
    [176]何满潮,冯吉利.恒阻大变形锚杆:中国,201010196197[P].2010-06-10.
    [177]C.C.Li. Dynamic test of a high energy-absorbing rock bolt. Proc. of the 12th ISRM International Congress on Rock Mechanics,2012:1227-1230.
    [178]Charlie Chunlin Li. A new energy-absorbing bolt for rock support in high stress rock masses[J]. International Journal of Rock Mechanics & Mining Sciences,2010(47):396-404.
    [179]Fumagalli,E. Statical and geomechanical model[M].New York:Springer,Wien,1973.
    [180]陈兴华.脆性材料结构模型试验[M].北京:水利电力出版社,1983.
    [181]张强勇,李术才,焦玉勇.岩体数值分析方法与地质力学模型试验原理及工程应用[M].北京:中国水利水电出版社,2005.
    [182]陈霞龄,韩伯鲤,梁克读.地下洞群围岩稳定的试验研究[J].武汉水利电力大学学报,1994,27(1):17-23.
    [183]李仲奎,徐千军,罗光福.大型地下水电站厂房洞群三维地质力学试验[J].水利学报,2002(5):31-36.
    [184]陈安敏,顾金才,沈俊.岩土工程多功能模拟实验装置的研制及应用[J].岩石力学与工程学报,2004,23(3):372-378.
    [185]闫振东.大断面煤巷支护技术试验研究及新型锚杆机研发应用[博士学位论文][D].北京:中国矿业大学,2010.
    [186]陈陆望.物理模型试验技术研究及其在岩土工程中的应用[博士学位论文][D].武汉:中科院武汉岩土力学研究所,2006.
    [187]曲天智.深井综放沿空巷道围岩变形演化规律及控制[博士学位论文][D].徐州:中国矿业大学,2008.
    [188]陈浩.地下工程围岩与支护体相互作用的模型试验研究与理论分析[博士学位论文][D].武汉:中国科学武汉岩土力学研究所,2008.
    [189]周恒.软岩巷道锚杆和锚注支护共同作用机理研究及应用[硕士学位论文][D].成都:西南交通大学,2006.
    [190]张强勇,李术才,郭晓红.组合式地质力学模型试验系统及其在分岔隧道工程中的应用[J].岩土工程学报,2007,29(9):1337-1343.
    [191]李丹.高地应力条件下交通隧道的模型试验研究及数值模拟[博士学位论文][D].武汉:中国科学武汉岩土力学研究所,2008.
    [192]陈旭光,张强勇,刘德军,等.高地应力深部巷道开挖锚固特性的三维地质力学模型试验研究[J].土木工程学报,2011,44(9):107-113.
    [193]陈卫忠,朱维申,王宝林,等.节理岩体中洞室围岩大变形数值模拟及模型试验研究[J].岩石力学与工程学报,1998,17(3):223-229.
    [194]郭志宏,周劲锋,周荣章,等.综放全煤平巷锚杆支护模拟试验研究[J].中国矿业大学学 报,1999,28(6):569-573.
    [195]管学茂,侯朝炯.桁架锚杆在大断面煤巷中应用的研究[J].矿山压力与顶板管理,1996(3):32-35.
    [196]刘波,吴建亭.厚煤层综放巷道锚索支护模拟试验研究与应用[J].煤炭科学技术,2001,29(10):34-37.
    [197]朱维申,李勇,张磊,等.高地应力条件下洞群稳定性的地质力学模型试验研究[J].岩石力学与工程学报,2008,27(7):1308-1314.
    [198]侯朝炯,康红普.可拉伸锚杆控制巷道围岩变形效果的相似模拟研究[J].矿山压力与顶板管理,1989:46-52.
    [199]夏孝够.煤巷不同支护形式相似模拟研究[J].现代矿,2010(2):87-90.
    [200]张伟.深井高应力软岩巷道支护技术试验研究[硕士学位论文][D].青岛:山东科技大学2007.
    [201]杨厚柱,李效甫.巷道支护形式与围岩稳定性的相似材料模拟研究[J].山压力与顶板管理,1992(3):23-26.
    [202]高明中.模型试验中几个问题的分析[J].西安矿业学院学报,1996,16(4):304-307.
    [203]张涛,高明中.煤巷锚杆支护模型试验研究[J].煤炭科学技术,1999,27(10):43-45.
    [204]L. Q. AnhDan, J. Koseki, K. Hayano, T. Sato. True triaxial apparatuses with two rigid boundaries[C]//Proceedings of the Sessions of the Geo-Frontiers 2005 Congress, Austin,2005.
    [205]陈安敏,顾金才,沈俊,等.地质力学模型试验技术应用研究[J].岩石力学与工程学报,2004,23(22):3785-3789.
    [206]Hoek E, Brown ET. Underground excavations in rock[M]. London:Institute of Mining and Metallurgy,1980.
    [207]Hoek E, Wood D, Shah S. A modified Hoek-Brown criterion for jointed rock masses[J]. Proc. Int. Conf. Eurock'92, Chest, England,1992,209-213.
    [208]陈祖煜.上力学经典问题的极限分析上、下限解[J].岩土工程学报,2002,24(1):1-11.
    [209]王仁,黄文彬,黄筑平.塑性力学引论[M].北京:北京大学出版社,1992.
    [210]A.F. Durand, E.A. Vargas Jr., L.E. Vaz. Applications of numerical limit analysis (NLA) to stability problems of rock and soil masses[J]. International Journal of Rock Mechanics & Mining Sciences,2006 (43): 408-425.
    [211]张农,高明仕.煤巷高强预应力锚杆支护技术与应用[J].中国矿业大学学报,2004,33(5):524-527.
    [212]许树伯.层次分析法原理[M].天津:天津出版社,1988.
    [213]林崇德.层次分析法在回采巷道支护形式选择中的应用[J].岩石力学与工程学报,1990,9(3):244-251.
    [214]李效甫,姚建国,林崇德,等.回采巷道支护形式与参数合理选择的研究[J].煤炭学报,1991,16(1):39-49.
    [215]谭云亮,王泳嘉.回采巷道分类指标的神经网络聚类分析模型[J].岩石力学与工程学报,1995,14(2):139-144.
    [216]朱浮声,郑雨天,谭云亮,等.锚杆支护回采巷道围岩类型的最优模糊识别[J].煤炭学报,1997,22(3):265-269.
    [217]周保生,朱维申,李术才.综放回采巷道围岩稳定性分类的研究[J].煤炭学报,2000,25(5):469-472.
    [218]许振浩,李术才,李利平,等.基于层次分析法的岩溶隧道突水突泥风险评估[J].岩土力学,2011,32(6):1757-1766.
    [219]骆正清,杨善林.层次分析法中几种标度的比较[J].系统工程理论与实践,2004(9):51-60.
    [220]陈兴和.深井断层破碎带煤巷锚网梁索支护的研究[J].煤炭科技,2007(1):14-15.
    [221]张镇,康红普,王金华.煤巷锚杆-锚索支护的预应力协调作用分析[J].煤炭学报,2010,35(6):881-886.
    [222]康红普,姜铁明,高富强.预应力在锚杆支护中的作用[J].煤炭学报,200732(7):680-685.
    [223]张召千.大断面煤巷围岩稳定性控制及动态评价体系研究[博士学位论文][D].太原:太原理工大学,2009.
    [224]熊仲明,冯成帅.大跨钢结构安全性模糊综合评估方法的应用研究[J].工程力学,2011,28(4):128-133.
    [225]李相国.基于改进的层次分析法的深基坑支护方案优选[硕士学位论文][D].济南:山东大学,2011.
    [226]任国辉.软岩地下工程支护方案优化研究[硕士学位论文][D].天津:天津大学,2003.
    [227]翟英达.锚杆预紧力在巷道围岩中的力学效应[J].煤炭学报,2008,33(8):856-859.
    [228]连传杰,韦立德,王阁.高预应力让压锚杆数值模拟方法研究[J].岩土工程报,2008,30(10):1437-1443.
    [229]连传杰,徐卫亚,王亚杰,等.新型高强预应力让压锚杆巷道支护性能的数值模拟[J].岩土力学,2010,31(7):2329-2335.
    [230]沈泰.地质力学模型试验技术的进展[J].长江科学院院报,2001,18(5):32-36.
    [231]袁文忠.相似理论与静力学模型试验[M].西安:西安交通大学出版社.1998.
    [232]张强勇,王汉鹏,李勇,等.铁晶砂胶岩土相似材料及其制备方法:中国,ZL2005101045814[P].2007-09-12.
    [233]王汉鹏,李术才,张强勇,等.新型地质力学模型试验相似材料的研制[J].岩石力学与工程学报.2006,25(9):1842-1847.
    [234]张强勇,李术才,郭小红,等.铁晶砂胶结新型岩土相似材料的研制及其应用[J].岩土力学,2008,29(8):2126-2130.
    [235]马芳平,李仲奎,罗光福NIOS模型材料及其在地质力学相似模型试验中的应用[J].水利发电学报,2004,23(1):48-51.
    [236]王金喜,曹佳良,郝彬彬,等.深埋高应力软岩巷道变形的相似材料模拟研究[J].矿业安全与环保,2008,35(4):11-13.
    [237]陈坤福.深部巷道围岩破裂演化过程及其控制机理研究与应用[博士学位论文][D].徐州:中国矿业大学,2009.
    [238]朱维申,张玉军,任伟中.系统锚杆对三峡船闸高边坡岩体加固作用的块体相似模型试验研究[J].岩土力学,1996,17(2):1-6.
    [239]肖亚宁.潞安矿区沿空巷道三维锚索支护机理及应用研究[博士学位论文][D].北京:中国矿业大学,2011.
    [240]刘钦.软岩隧道大变形机理与控制对策及其应用研究[博士学位论文][D].济南:山东大学,2011.
    [241]王琦,王汉鹏,李术才,等.柔性均布压力加载装置的研制及试验分析[J].岩石力学与工程学报,2012,31(1):133-139.
    [242]孟祥跃,李世海,张均锋.柔性边界加载试验机研制[J].岩石力学与工程学报,2004,23(10):1760-1764.
    [243]邵生俊,罗爱忠,邓国华,等.一种新型真三轴仪的研制与开发[J].岩土工程学报,2009,31(8):1172-1179.
    [244]姜耀东,刘文岗,赵毅鑫.一种新型真三轴巷道模型试验台的研制[J].岩石力学与工程学报,2004,23(21):3727-3731.
    [245]明治清,顾金才,沈俊,等.活塞式均布压力加载器:中国,02213775.0[P].20030122.
    [246]李蔚,高嫌,久米秀树,等.橡胶等静压成型纳米ZrO2(3Y)粉素坯[J].无机材料学 报,2002,17(6):1297-1300.
    [247]徐晓娟,梁雅秋.橡胶等静压技术发展现状[J].辽宁大学学报:自然科学版,2010,37(2):108-112.
    [248]郑明军,王文静,陈政南,等.橡胶Mooney-Rivlin模型力学性能常数的确定[J].橡胶工业,2003,50(8):462-465.
    [249]黄建龙,解广娟,刘正伟.基于Mooney-Rivlin模型和Yeoh模型的超弹性橡胶材料有限元分析[J].橡胶工业,2008,55(8):467-471.
    [250]王伟,邓涛,赵树高.橡胶Mooney-Rivlin模型中材料常数的确定[J].特种橡胶制品,2004,25(4):8-10.
    [251]侯朝炯,郭励生,勾攀峰.煤巷锚杆支护[M].徐州:中国矿业大学出版社,1999.
    [252]李术才,张宁,吕爱钟,等.单轴拉伸条件下断续节理岩体锚固效应试验研究[J].岩石力学与工程学报,2011,30(8):1579-1586.
    [253]Hadjigeorgiou, J. and Charette, F. Rock bolting for underground excavations. Underground Mining Methods: Engineering Fundamentals and International Case Studies (eds W. A. Hustrulid and R. L. Bullock), Society for Mining, Metallurgy and Exploration:Littleton, Colorado.2001:547-554.
    [254]Haile, A. T. and Le Bron, K. Simulated rockburst experiment-evaluation of rock bolt reinforcementperformance. J. S. Afr. Inst. Min. Metall.,2001,101(5):247-251.
    [255]Rachmad, L.,Widijanto, E. and Sinaga, F. An empirical review of extraction bolting design in Deep Ore Zone Mine PT Freeport Indonesia. Growing Our Underground Operations, Proc.8th AusIMM Underground Operators'Conf., Townsville, Aust. Inst. Min. Metall.:Melbourne.2002:249-254.
    [256]Slade, N., Thin, I. and Sheppard, I. Resin encapsulated rock bolt practices at Mount Isa Mines. Growing Our Underground Operations, Proc.8th AusIMM Underground Operators'Conf., Townsville, Aust. Inst. Min. Metall.:Melbourne.2002:255-258.
    [257]吴家龙.弹性力学[M].北京:高等教育出版社,2001.
    [258]李术才,王琦,李为腾,等.深部厚顶煤巷道让压型锚索箱梁支护系统现场试验对比研究[J].岩石力学与工程学报,2012,31(4):656-666.
    [259]陈庆敏,王彩根,孙希奎.极软岩巷道的“高阻-让压”支护原则[J].矿山压力与顶板管理,1998,(4):2-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700