灌喂大豆蛋白、面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
一、大豆蛋白、面筋蛋白胃蛋白酶酶解生物活性肽的制备
     经碱提酸沉法和氯化钠缓冲液洗涤法分别制备大豆蛋白和面筋蛋白。以蛋白底物:胃蛋白酶=30:1的比例,在pH1.4,37℃,水解2小时。茚三酮法测定水解液水解度。结果显示:大豆蛋白和面筋蛋白水解液含氮量分别为2.15±0.04mg/mL(n=2)和1.20±0.00mg/mL(n=2),水解度分别为14.49%和12.92%,平均肽链长度分别为6.9和7.7。
     二、大豆蛋白、面筋蛋白胃蛋白酶酶解物对大鼠体重的影响
     四组饲喂基础日粮的28日龄SD大鼠,每组25只(雄15只、雌10只)。每天分别灌喂未经水解的大豆蛋白液(对照Ⅰ组)、未经水解的面筋蛋白液(对照Ⅱ组)和大豆蛋白胃蛋白酶酶解液(实验Ⅰ组)、面筋蛋白胃蛋白酶酶解液(实验Ⅱ组)各1mL,折合蛋白含量均为5mg/mL。实验共21天。在35日龄和49日龄分别称重。体重经协方差分析表明,35日龄时各组体重无显著性差异;49日龄大鼠,实验Ⅰ组较对照Ⅰ组增加了10%;实验Ⅱ组比对照Ⅱ组高出了9.3%;实验Ⅱ组体重与对照Ⅰ组差异极显著(p<0.01)。
     三、大豆蛋白、面筋蛋白胃蛋白酶酶解生物活性肽对大鼠免疫功能的影响
     灌喂两种酶解活性肽的大鼠于实验结束(49日龄)处死,取相关材料。
     系列Ⅰ两种蛋白酶解物对大鼠免疫脏器重量的影响
     实验结束后,取胸腺和脾脏称重。发现:实验Ⅰ组的胸腺和脾脏重量分别比对照Ⅰ组高40%和29.7%,差异极显著(p<0.01);实验Ⅱ组的胸腺和脾脏重量比对照Ⅱ组高37.1%和43%,差异极显著(p<0.01)。经多重比较两个对照组间和两个实验组之间胸腺和脾脏重量均无显著性差异。胸腺和脾脏相对重量(占体重百分比)差异性与绝对重量结果相一致。
     系列Ⅱ两种蛋白酶解物对大鼠腹腔巨噬细胞吞噬功能的影响
     49日龄处死大鼠,于无菌条件下取腹腔巨噬细胞。用MTT法检测其活性,结果显示:灌喂大豆蛋白水解液能显著促进大鼠腹腔巨噬细胞吞噬活性;该组比对照Ⅰ组A_(570)上升67%(p<0.01);实验Ⅱ组较对照Ⅱ组的A_(570)上升了12%。实验Ⅰ组比实验Ⅱ组高出了42.5%,差异显著(p<0.05)。表明大豆蛋白水解液和面筋蛋白水解液均能促进大鼠的腹腔巨噬细胞吞噬功能,且二者活性上存在不同。
     系列Ⅲ两种蛋白酶解物对大鼠血液淋巴细胞转化的影响
     无菌条件下采血,用~3H-TdR掺入微量全血法检测两种蛋白水解物对大鼠T淋巴细
    
     杨小军 灌喂大豆蛋白、面筋蛋白的胃蛋白酶酶解物对大鼠免疫功能的影响
    胞转化的影响。结果表明:灌喂大豆蛋白水解液能显著促进大鼠外周血淋巴细胞增殖,
    该组与对照1组的SI值差异极显著h的.01);实验*组的SI值较对照*组上升
    了 16.7%,但差异不显著。实验 I组比实验 11组高出了 12.2%,无显著性差异。两个
    对照组间,面筋蛋白对照组比大豆蛋白对照组高23%,但差异不显著。表明经胃蛋白
    酶水解的大豆蛋白水解液和面筋蛋白水解液均能促进大鼠的T细胞转化,大豆蛋白水
    解液活性较强。
     系列IV两种蛋白酶解物对大鼠产生抗体的影响
     对灌喂蛋白液的四组大鼠(每组则只)于实验结束前一周(42日龄),皮下注射
    新城疫疫苗 0.5 mL/只,一周后进行血凝抑制实验。结果表明:灌喂大豆蛋白水解
    液和面筋蛋白水解液能显著提高大鼠血清抗体的血凝抑制效价hem
    inhibition titer);实验 1组比对照 1组 HI值上升了 33.3%,差异极显著(p<0.01);
    实验*组较对照*组HI值上升了38.5%,差异极显著(P<0.of)。表明经胃蛋白酶
    水解的大豆蛋白水解液和面筋蛋白水解液均能极显著促进大鼠B细胞免疫,两种水解
    液在促进体液免疫上未见显著性差异。
     系列 V两种蛋白酶解物对大鼠肠道粘膜分泌 SI gA的影响
     取灌喂实验中四组大鼠的整个肠道内容物,经等比例(W/V)生理盐水稀释后,
    离心取上清。用放射免疫分析法门IA)检测肠腔SIgA水平。结果显示:实验1组的
    SIgA水平较对照 1组上升了 34.3%,差异极显著(P<0.of);实验*组比对照 11组
    高出了 28.6九差异显著…钥.05*两个实验组间无显著性差异,但实验 1组比实验
    11组高出了四个百分点;对照I组和对照*组间几乎无变化。表明经胃蛋白酶水解
    的大豆蛋白水解液和面筋蛋白水解液均能显著促进大鼠肠道粘膜分泌 SI gA,且大豆蛋
    白水解液表现出更强的活性。
     五个系列实验结果表明灌喂两种蛋白酶解物可显著促进大鼠免疫脏器的生长、增
    进腹腔巨噬细胞吞噬能力、提高血液淋巴细胞转化,并促进肠道 SI gA的分泌,强化
    粘膜免疫。
    四、大豆蛋白、面筋蛋白胃蛋白酶酶解物对大鼠几种血清激素和细胞因子水平的影
     响
     上述实验组大鼠49 日龄处死,无菌条件下采血,分离血清,用放射免疫分析法
     (RIA)分别测定血液Insulin、T3、T4、LePtin和 IL-2水平。结果表明:实验 1组
    的几上水平比对照I组高出了38.1见 差异极显著…幻.of\ 实验11组的儿{水
    平较对照*组增加了38.4%,差异极显著(P(.01)。无论是两个对照组间,还是两
    个实验组间,IL-2水平都无显著性变化?
Part I Preparation of soybean and gluten hydrolytic peptides
    soybean and gluten were prepared with the method of alkali extraction and acid precipitation and sodium chloride buffer washing respectively. Both of them were hydrolyzed at 37℃, pH1.4 for 2hs with pepsin at the ratio 30 : 1 between substance and enzyme. Then the degree of hydrolysis ( DH ) was measured with the method of triketohydrindene hydrate. The results showed that the nitrogen concentration of soybean and gluten protein in hydrolyzate were 2.15 ±0.04 mg/mL and 1.20±0.00 mg/mL respectively (n=2). The DH of soybean and gluten hydrolysates were 14.49% and 12.99%, respectively. The average length of peptides of two hydrolysates were 6.9 and 7.7 . Part II Effects of feeding hydrolysates from soydean and gluten with pepsin on body weight in rats
    100 rats ( 28days old ) were divided into 4 groups randomly, every group including 15 male rats and 10 female rats. The four groups had been fed soybean (control I group, con I), gluten (control II group, con II), soybean hydrolysates (experiment I group, exp I) and gluten hydrolysates (experiment II group, exp II) respectively, for 21 days successively. On the base of general diet the feeding dose is 1 mL hydrolyzate, and the concentration of protein is 5 mg/ mL. The rats was weighed on the 35th day and the 49th day respectively. With univariate analysis, the results showed there was no significant difference among 4 groups on 35th days. Compared with that of con I, weight of exp I was increased by 10%. Compared with that of con II, exp II was raised by 9.3% than that of con II. Both of them had no significant variation. But on the 49th day there existed greatly significant difference between exp II and con I (p<0.05).
    Part III Effects of hydrolysates from soydean and gluten with pepsin on immunity in rats
    Series I Effects of hydrolysates from two kinds of protein on weight of immune viscera in rats
    4 groups rats from Part II were killed for analyzing weight changes of thymus and spleen at the end of Part II experiment. The results showed that the thymus and spleen weight of exp I were 40% (p<0.01) and 29.7% (p<0.01) higher than those of con I respectively, and those in exp II increased 37.1% and 41.0% (p<0.01) than those in conll . Meanwhile , analysis results of thymus and spleen relative weight are similar to those of absolute weight of immune viscera.
    Series II Effects of hydrolysates from two kinds of protein on phagocytosis ability of celiac macrophagus in rats
    4 groups of rats from Part II were killed and harvested celiac macrophages aseptically.
    
    
    Phagocytosis of celiac macrophages test (MTT) was performed. The results of the MTT showed that soybean hydrolysates can enhance the phagocytosis significantly . The As7o value increased 67% (p<0.01) than in con I. Compared with that of con II, the A570 value of exp II was increased by 12% , but no significant difference. The A570 in exp I was 42.5% (p<0.05) higher than in exp II. The results showed that hydrolysates from two kinds of protein can improve phagocytosis of celiac macrophagus, but activity of them exists in difference.
    Series III Effects of hydrolysates from two kinds of protein on lymphocytic transformation in rats
    Blood lymphocytes were sampled from rats treated by Part II experiment aseptically. Lymphocytic transformation test (LTT) was performed by 3H-TdR method. The results showed that the stimulated index (SI) of exp I was greatly higher than that of con I (p<0.01). Compared with that of con II, SI of exp II was improved by 16.2%. but the difference was not significant. Through multi-compared analysis, the SI in exp I increased by 12.2% than in exp II with no significant difference, and that in con II was 23% higher than con I with no significant difference. The results showed that hydrolysates from two kinds of protein can accelerate lymphocytic transformation, and soybean peptides are better than gluten peptides .
    Series IV Effects of hydrolysates from two kinds of protein on HI titer in serum in rats
引文
[1] 王梅,沈辉.食物蛋白酶解物中的生物活性肽[J].氨基酸和生物资源,1997,19(1):40-43
    [2] Susumiu M, Shinsuke M. Angiotensin I coverting enzyme inhibitory activities of synthetic peptides related to the tandem repeated sequence of a maize endosperm protein [J].Agric Biol Chem, 1994,53(4): 1077-1081
    [3] Yoshiyuki S, Keiko W. Structure and activity of angiotensin I converting enzyme inhibitory peptides frome sake and sake lees [J]. Biosci. Biotech. Biochem., 1994, 58(10): 1767-1771
    [4] Walz F.; Wieser H.; et al. In vitro hydrolysis of gliadin and casein peptides: secondary defect in celiac disease shown by organ culture [J]. Scand J Gastroenterol, 1996, 31(3):240-246
    [5] Tsuchita H, Goto T, Shimizu T, et al, Dietary casein phosphopeptides prevent bone loss in aged ovariectomized [J]. J Nutr, 1996,126(1):86-93
    [6] Yoshikawa M, Takahashi M. Isolation and characterization of oryzatensin: a novel bioactive peptide with ileum---contracting and immunomodulating activities derived from rice alubumin [J]. Biochem and Molecular Biol. International, 1994, 33(6): 1151-1158
    [7] Yoshikawa M, Yoshikawa M. Immunomodulating peptide derived from soybean protein Annals [M]. New york Acad. Of Sci, 1993, 375-376
    [8] Takahashi M, Yoshikawa M. Studies on the ileum contracting mechanism and identification as a complement C3a receptor agonist of oryzatensin, a bioactive peptide derived from rice albumin [J]. Peptides, 1996, 17(1):5-12
    [9] Kurek M, Przybilla B, Hermann K, et al. A naturally occurring opiod peptide from cow's milk, beta-casomorphine-7, is a direct histamine releaser in man [J]. Int Arch Allergy Immunol, 1992, 97(2):115-120
    [10] Chiba H, Tani F, Yoshikawa M. Opiod anlagnist peptides deerived k-Casein [J].Dairy Resarch, 1989,56:363-366
    [11] Flat M A, Levy toledano S, Caen J P, et al. Tani F et al. Biologically active peptides of Casein and lactotransferrin implieated in platelet function [J]. Dairy Research, 1989, 56: 351-355
    [12] Miglioresamour D, Floch F, Jojjes P. Biologically active casein peptides implieated in immunodulation [J]. Dairy Research, 1989, 56:357-362
    [13] 葛轶群,俞建瑛,欧伶.生物活性肽的研究进展[J].中国生化药物杂志,1998,19(6):404-406
    [14] 李虹奇.活性多肽蛋白质研究进展[J].中草药.1993,7(23):373-378
    [15] Nishimura T, Kato H.Taste of free amino acids and peptides [J]. Food Rev Int,1988,4:175-194
    [16] Atiyoshi Y. Angiotensin-converting enzyme inhibitors derived from food proteins [J].Trends Food Sci Technol, 1993,4:139-144
    [17] A-M F. Biologically active peptides from milk proteins with emphasis on two examples concerning antithrombotic and immunodulating activities [J].J Dairy science, 1993,76(1):301-310
    [18] 石岗.生物活性肽研究进展[J].北京农业科学,2002,3:9-13
    [19] 林藩平.生物活性肽在食品及饲料业中的开发利用.福建畜牧兽医[J],2000,22(2):38-42
    [20] Yamasmki Y, Mackawa K. A peptide with delicious taste [J]. Agric Biol Chen, 1978, 42:1761-1765
    [21] RE Price. Modulation of the intracellular survival of Brucella abortus by tuftsin and dipeptide [J]. Vet Immuno Immunopath, 1993, 36:265-279
    [22] Kawasaki Y, Seki T, Tamura M, et al. Glycine methyi of ethyl ester hydrochloride as the simplest of
    
    salty peptides and their derivatives [J]. Agric Biol Chem, 1988,52:2679-2681,
    [23] Arai SA.The bitter flavour due to peptides or protein hydrolysates and its control by bitterness masking with acidic oligopeptides [J]. Undesirable Flavours Symposium. Washington Charlambous G Ed,1980:133-137
    [24] Chan KM,Decher EA, Means WJ. Extraction and activity of carnosine, a naturally occuring antioxidant in beef muscle [J]. J Food Sci, 1993, 58:1-4
    [25] Lyengar R, Meevily AJ. Anti-browning agents:alternatives to the use of sulfites in foods [J]. Trends Food Sci Technol, 1992, 3:60-64
    [26] Kato A, ShimokawaK,Kobayashi k.Improvement of the functional properties of insoluble gluten by pronase digestion followed by dextran conjugation [J].J Agric Food Chen,1991,39:1053-1056
    [27] Dale CJ. Raw materials and beef quality [J]. Brewer,1986,72:468-470
    [28] Gill L, Lopez-Fandino R,Jorba X,et al.Biologically active peptides and enzyme approaches to their production [J]. Enzyme Microb Technol, 1996,18:162-183
    [29] 董国忠.动物营养中肽的代谢特点和营养作用[J].饲料研究,1999,5:15-17
    [30] 罗氟芸,刘勇,曹普荣.蛙属Rana活性肽研究进展[J].天然产物研究与开发,1998,18(2):99-103
    [31] Pershin. B, Kuzmin, S.N, et al. Immunological prognosis of the efficiency of a soyabean diet [J]. Voprosy Pitaniya, 1999, 4:14-20
    [32] 吴建平.生物活性肽的研究进展[J].食品与机械,1998,1:6-8
    [33] 唐传核,彭志英.功能性食品基料蛋白质及多肽类开发现状.粮食与油脂,2001,1:39-41
    [34] 李里特.大豆加工与利用[M].北京:化学工业出版社(第一版),2003,55-59
    [35] 雷耔耘,李丹,周书华等,大豆蛋白功能特性的利用及改性技术研究,李荣和,大豆新加工技术原理与应用[M].北京:科学技术文献出版社,1999.83-97
    [36] 潘翠玲.添喂蛋白酶解产物对早期断奶仔猪消化生理及机体免疫功能的影响[D].南京:南京农业大学,2002
    [37] 张学忠,黄玉珍等,大豆功能短肽的制备及生理活性的研究,李荣和,大豆新加工技术原理与应用[M].北京:科学技术文献出版社,1999,181-200
    [38] Suetsuna, K. Separation and identification of peptides derived from soya protein, and their active oxygen scav enging activity [J]. Journal of the Japanese Society of Nutrition and Food Science. 1999. 52(4):225-228
    [39] Huebner FR, Lieberman KW, et at. Demonstration of high opioid-like activity in isolated peptides from wheat gluten hydrolysates [J]. Peptides, 1984. 5(6): 1139-1147
    [40] Watanabe M, Tanabe S, et al. Primary structure of an allergenic peptide occurring in the chymotryptic hydrolysate of gluten[J]. Biosci Biotechnol Biochem, 1995, 59(8): 1596-1597
    [41] Jos J, Lenoir G, et al. In vitro pathogenetic studies of coeliac disease: effects of protein digests on celiac intestinal biopsy specimens maintained in culture for 48 hours [J].Scand J Gastroenterol, 1975. 10(2):121-128
    [42] 张宏福,卢庆萍.仔猪消化功能、免疫功能的发育及营养对策[J].中国饲料,2000,22:15-17
    [43] 汪玉松,邹思湘主编.乳生物化学[M],吉林大学出版社,1995,136-150
    [44] Koldovsk O. Search for role of milk-borne biologically active peptides for the suckling [J]. J Nutr, 1989, 119(11):1543-51.
    [45] 付轻泉,左斌海,李天全.几类生物活性肽的研究进展[J].航天医学与医学工程,2002,15(3):
    
    227-230
    [46] Webb,K.E.Jr, et aI.Recent developments in gastrointestinal absorption and tissue utilization of peptides [J].A Review.J.DairySci,1993,76:351-361
    [47] Fei,Y.J.,et al. Expression cloning of a mammalian proton-coupled oligo-peptide transporter [J].Nature(lond), 1994,368:563-566
    [48] Daniel H. Et al. Physiological Importance and Characteristics of Peptide Transport in Intestinal Epithelial Cells[A].The 6th International Symposium on Digestive Physiology in Pigs. Dummerstorf Publ,1994(1):1-7
    [49] 王岗,卢德勋.敖明.反刍动物肽吸收的研究方法[J].饲料博览,2003,1:8-10
    [50] Rerat, et al. Amino Acid Absorption and production of Pancreatic Hormones in Non-Anaesthetized Pigs After Duodenakl Infusion of a Milk Enzyme Hydrolysate of Free AMINO Acids[J]. Brit J Nutr,1988,60:121-136
    [51] 晏向华,瞿明仁,黎观红.动物营养中小肽的营养研究新进展[J].上海饲料,2000,1:5-7
    [52] Teschemacher-H, Koch-G, Brantl-V, et al. Milk protein-derived opioid receptor ligands. Biopolymers, 1997,43:2,99-117.
    [53] 王进波,刘建新.寡肽的吸收机制及其生理作用[J].饲料研究,2000,6:1-5
    [54] 庞广昌,王秋韫,陈庆森.生物活性肽的研究进展理论基础与展望[J].食品科学,2001,22(2):80-84。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700