分布反馈式激光器中的光学布洛赫波和半导体激光器的理论、结构和工艺创新探索研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
上世纪六十年代,随着第一个半导体激光器的问世以及低损耗光纤的研制成功,光通讯的时代降临。在之后短短的几十年间,半导体激光器从最简单的法布里珀罗腔发展到如今需要多次外延技术以及几十次的复杂制作工艺流程才能完成的单片集成大范围可调谐激光器。随着如今通讯系统的需求不断增加,光通讯系统对高性能半导体激光器的需求也在增加,半导体激光器的研发对系统的发展也至关重要,并且针对其他应用领域的研究也在不断进行。
     本文研究了应用于光网络以及其他领域的半导体激光器的新理论,结构以及制作方法。本文的一个理论研究重点是分布反馈式半导体激光器中的光子寿命计算,分布反馈式半导体激光器由于内部含有光栅结构,其谐振腔的光子寿命一般无法用简单的理论方法来估算。本文将两个相对传播的光学布洛赫波的概念引入到分布反馈式半导体激光器中,用布洛赫波理论分析了分布反馈式激光器中的光子寿命以及激光器的阈值条件。光学布洛赫波的引入不仅可以给我们一个更加清晰的物理概念来理解分布反馈式激光器的物理本质,还可以更加容易得到分布反馈式半导体激光器简单速率方程模型中必须的光子寿命参数的解析表达式,使其计算更加简单。
     本文的另一个研究重点是低成本大范围可调谐激光器的新结构和工艺方法。大范围低成本可调谐激光器一直是光通讯系统中的核心器件,现有的商用大范围可调谐激光器从性能上可以满足系统的需求,但其制作以及封装成本一直很高。本文提出了两种低成本可调谐激光器,并分别对它们进行了理论分析,器件设计,实验制作以及验证测试。第一种是基于半波耦合器的环形谐振腔可调谐半导体激光器。本文结合V型耦合腔激光器的游标效应以及环谐振腔提出了半波耦合环形谐振腔可调谐激光器。与传统的环形谐振腔激光器原理不同,半波耦合环形谐振腔激光器利用游标效应选模,不需要半径非常小的环形谐振腔作为滤波器选模,大大放宽了工艺限制,从而降低芯片制作成本。第二种低成本可调谐激光器是可以用普通接触式光刻技术制作的深亚微米刻蚀槽半导体激光器。传统刻蚀槽激光器一般需要非常昂贵而且耗时的高精度的光刻设备(电子束光刻)来制作深亚微米刻蚀槽,也有用普通的接触式光刻技术在法布里珀罗腔上制作1μm左右宽的刻蚀槽进行选模,但同时也会引入较大的损耗,所以两种方式都不适合低成激光器使用。本文研发出一种全新的用普通低成本接触式光刻技术制作深亚微米刻蚀槽的工艺,降低了亚微米深刻蚀槽的制作成本。运用该新工艺我们制作并测试了单模长刻蚀槽激光器以及周期性分布反馈刻蚀槽可调谐激光器,证明了该工艺可以作为低成本半导体激光器的一个可选方案。
In the1960s, the successful development of the first semiconductor laser together with the low-loss optical fiber enabled the optical communications networks. After a few decades, the semiconductor lasers used in the optical communication systems today are far more complex than the simplest FP lasers. The monolithic integrated widely tunable semiconductor lasers often require multiple epitaxy growth as well as dozens of complex fabrication steps With the advancement of the communication systems today, the demand for high performance semiconductor lasers is rapidly increasing, and the development of semiconductor lasers is critical for system improvements. The researches of semiconductor lasers for other applications also received great interest.
     This thesis explores new theory, structure and fabrication method of semiconductor lasers, for applications in optical networks and beyond. The theoretical study of this thesis is focused on a new analytical method for calculating photon lifetime in distributed feedback semiconductor lasers. There is generally no simple theoretical approach to calculate the photon lifetime of the distributed feedback semiconductor lasers due to the periodic grating structures inside the laser cavity. We introduced the concept of conterpropagating optical Bloch waves in a distributed feedback laser and derived the photon lifetime and laser threshold condition. The introduction of the optical Bloch wave concept and the analytical expression of the photon lifetime in distributed feedback lasers not only give us a clearer physical insight but also make the calculation of photon lifetime much easier, which is essential for applying simple rate-equation based models.
     Another focus of this thesis is to explore new structures and fabrication methods of low-cost widely tunable semiconductor lasers. Widely tunable semiconductor lasers is critical for next generation optical communication systems. The performance of existing commercial wide-range tunable lasers can meet the system requirements, but their production and packaging costs have been too high, limiting their use mainly to long-haul fiber-optic links. In this thesis, two types of low-cost tunable lasers are proposed, and the theoretical analysis, design, fabrication and characteriztion are studied. The first one is a tunable semiconductor laser based on half-wave coupled ring resonators with vernier effect. Different from the traditional ring resonator coupled lasers which need a ring resonator with very small radius as the mode-selection filter, the half-wave coupled ring resonator laser emplys the vernier effect, thereby reducing the cost of the chip fabrication by avoiding rings with small radius. The second low-cost tunable laser is the deep-submicron etched-slot semiconductor lasers based on standard UV lithography. Previously investigated etched-slot semiconductor lasers need high resolution lithography equipments (Electron Beam Lithography) to produce the deep-submicron slots which is very expensive and time-consuming. Some groups developed etched-slots around1μm wide into the Fabry-Perot cavity as mode selection defects which also introduce large optical loss in the cavity. In this thesis we developed a new low-cost process to fabricate deep-submicron slots with standard contact lithography. Based on this newly developed process, a single-mode etched-slot laser and a wavelength tunable laser with periodically distributed slots are fabricated and characterized. The new method has excellent potential for low cost fabrication of semiconductor lasers with deep-submicron features.
引文
[1]S. Chandrasekhar and X. Liu, "Enabling components for future high-speed coherent communication systems", OFC/NFOEC.OMU5,2011.
    [2]A. L. Schawlow and C. H. Townes, "Infrared and optical masers", Phys. Rev., vol.112, pp.1940-1949, 1958.
    [3]R. N. Hall, G. E. Fenner, J. D. Kingsley, T. J. Soltys, and R. O. Carlson, "Coherent light emission from GaAs junctions", Phys. Rev. Lett., vol.9, pp.366-368,1962.
    [4]Alferov. Z. I, Andreev. V. M, Portnoi, E. L, Trukan. M. K, "AlAs-GaAs heterojunction injection lasers with a low room-temperaturethreshold",Sov. Phys. Semiconductors, vol.3, pp.1107-1110,1970.
    [5]H. Kogelnik and C. V. Shank, "Coupled wave theory of distributed feedback lasers," J. Appl. Phys., vol. 43,pp.2327-2335,1972.
    [6]K. Iga, Laboratory Notebook,1977.
    [7]J. P. van der Ziel, R. Dingle, R. C. Miller, W. Wiegman, and W. A. Nordland, Jr., "Laser oscillation from quantum states, in very thin GaAs-A Ga As multilayer structures." Appl. Phys. Lett., vol.26, pp. 463-465,1975.
    [8]E. A. Rezek, N. Holonyak, Jr.. B. A. Vojak, G. E. Stillman, J. A. Rossi, D. L. Keune, and J. D. Fairing, "LPE In1-xGaxP1-z Asz (x=0.12; z= 0.26) DH laser with multiple thin-layer (< 500A) active region.' Appl. Phys. Lett., vol.31, pp.288-290,1977.
    [9]G. C. Osbourn, "InxGa1-xAs-InyGa1-yAs strained-layer superlattices:A proposal for useful, new electronic materials," Phys. Rev. B, vol.27, pp.5126-5128,1983.
    [10]J. Faist, F. Capasso, D. L. Sivco, C. Sirtori, A. L. Hutchinson, and A. Y. Cho, "Quantum cascade laser,' Science, vol.264, pp.553-556,1994.
    [I11]Di Liang and John E. Bowers, "Recent progress in lasers on silicon," Nature Pohtonics, vol.4.511-517> 2010.
    [12]Yasuharu Suematsu and Kenichi Iga, "Semiconductor Lasers in Photonics," J. Lightwave Technol..vol. 26.1132-1144,2008.
    [13]Fabry, C.,and A. Perot, Theorie et applications d'une nouvelle methode de spectroscopie interferentielle. Ann. Chim. Phys.16:115 (1899).
    [14]Katrien De Vos, Roel Baets etc, "Silicon-on-Insulator micro-ring resonator for sensitive and label-free bio-sensing",Optics Express, Vol.15,7610-7615.2007.
    [15]Vilson R. Almeida, Michal Lipson etc. "All-optical control of light on a silicon chip", Nature, vol.431, 1081-1084,2004.
    [16]P. P. Absil, J. V. Hryniewicz, P.-T. Ho.etc, "Wavelength conversion in GaAs micro-ring resonators," Optics Lett., vol.25,554-556,2000.
    [17]Martin T. Hill, Meint. K. Smit, "A fast low-power optical memory based on coupled micro-ring lasers'", Nature,Vol.432,206-209.2004.
    [18]Bin Liu. Ali Shakouri, and John E. Bowers, "Passive microring-resonator-coupled lasers," Appl. Phys. Lett., vol.79,3561-3563,2001.
    [19]Larry A. Coldren, G. A. Fish, Y. Akulova. J. S. Barton, L. Johansson, and C.W. Coldren,"Tunable Semiconductor Lasers:A Tutorial," J. Lightwave Technol..vol.22.193-202.2004.
    [20]B. Kelly. R. Phelan, D. Jones, C. Herbert, J. O'Carroll, M. Rensing, J. Wendelboe, C. B. Watts, A. Kaszubowska-Anandarajah, P. Perry, C. Guignard, L. P. Barry, and J. O'Gorman, "Discrete mode laser diodes with very narrow linewidth emission," Electron. Lett., vol.43,1282-1284.2007.
    [21]H. Soda. Y. Kotaki,H. Sudo, H. Ishikawa, S. Yamakoshi, and H. Imai, "Stability in single longitudinal mode operation in GaInAsP/lnP phase-adjusted DFB lasers,"IEEE J. Quantum Elecrron., vol.23, 804-814,1987.
    [22]G. Morthier, P. Vankwikelberge, K. David, and R. Baets, "Improved performance of AR-coated DFB lasers by the introduction of gain coupling," IEEE Photon. Technol. Lett., vol.2,170-172,1990.
    [23]K. Sato, S. Kuwahara, Y. Miyamoto, and N. Shimizu, "40 Gbit/s direct modulation of distributed feedback laser for very-short-reach optical links," Electron. Lett., vol.38,816-817,2002.
    [24]K. Nakahara, T. Tsuchiya, T. Kitatani, K. Shinoda, T. Taniguchi. T. Kikawa, M. Aoki. and M. Mukaikubo, "40-Gb/s direct modulation with high extinction ratio operation of 1.3-μm InGaAlAs multiquantum well ridge waveguide distributed feedback lasers," IEEE Photon. Technol. Lett., vol.19. pp.1436-1438.2007.
    [25]U. Troppenz, J. Kreissl,W. Rehbein, C. Bornholdt, T. Gaertner, M. Radziunas, A. Glitzky. U. Bandelow, and M.Wolfrum. "40 Gb/s directly modulated InGaAsP passive feedback DFB laser," presented at the Eur. Conf. Opt. Fiber Commun., Cannes, France,2006, Paper Th4.5.5.
    [26]M. Radziunas. A. Glitzky, U. Bandelow, M. Wolfrum, U. Troppenz, J. Kreissl, and W. Rehbein, "Improving the modulation bandwidth in semiconductor lasers by passive feedback." IEEE J. Sel. Topics Quantum Electron., vol.13,136-142, Jan./Feb.2007.
    [27]W. Hofmann, N. H. Zhu, M. Ortsiefer, G. B"ohm, Y. Liu, and M.-C. Amann, "High speed (>11 GHz) modulation of BCB-passivated 1.55μm InGaAlAs-InP VCSELs," Electron. Lett., vol.42, pp.976-978, 2006.
    [28]F. Mederer, M. Grabherr, F. Eberhard,I. Ecker, R. Jager, J. Joos, C. Jung, M. Kicherer, R. King, P. Schnitzer, H. Unold, D. Wiedenmann, and K. J. Ebeling, "High performance selectively oxidized VCSELs and arrays for parallel high-speed optical interconnects." in Proc.50th Electron. Compon. Technol. Conf..1242-1251.2000.
    [29]B. Corbett and D. McDonald, "Single longitudinal mode ridge waveguide 1.3μm Fabry-Perot laser by modal perturbation." Electron. Lett., vol.31,2181-2182,1995.
    [30]N. Natakeyama, K. Naniwae, K. Kudo. N. Suzuki, S. Sudo. S. Ae, Y. Muroya. K. Yashiki. S. Satoh, T. Morimoto, K. Mori, and T. Sasaki, "Wavelength-Selectable microarray light sources for S-, C-, and L-band WDM systems," IEEE Photon. Technol. Lett., vol.15,903-905,2003.
    [31]"Lasers for Scientific Challenges," Toptica Photonics, Catalog 2009/2010.
    [32]"Automated Optical Packaging Technology for 10 Gb/s Transceivers and its Application to a Low-Cost Full C-Band Tunable Transmitter," Intel Technology Journal, vol.08,101-114.2004.
    [33]J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato. K. Sato, and K. Kudo, "Full C-Band External Cavity Wavelength Tunable Laser Using a Liquid-Crystal-Based Tunable Mirror," IEEE Phton. Tech. Lett., vol.17,681-683.2005.
    [34]C. J. Chang-Hasnain, J. P. Harbison, C. E. Zah, M. W. Maeda, L. T. Florez, N. G. Stoffel, and T. P. Lee, "Multiplewavelength tunable surface emitting laser arrays,'" IEEE J. Quantum Electron., vol.27 1368-1376,1991.
    [35]K. J. Knopp, D. Vakhshoori, P. D.Wang, M. Azimi, M. Jiang, P. Chen, Y. Matsui, K. McCallion, A. Baliga, F. Sakhitab, M. Letsch, B. Johnson, R. Huang, A. Jean, B. DeLargy, C. Pinzone, F. Fan, J. Liu, C. Lu, J. Zhou, H. Zhu, and R. Gurjar, "High power MEMs-tunable vertical-cavity surfaceemitting lasers," in Proc. Advanced Semiconductor Lasers, Dig. LEOS Summer Topical Meet., Copper Mountain, CO,31-32,2001.
    [36]C. J. Chang-Hasnain, "Tunable VCSEL's," IEEE J. Select. Topics Quantum Electron., vol.6, pp. 978-987, Nov.-Dec.2000.
    [37]Steven C. Nicholes, Milan L. Masanovic, Biljana Jevremovic, Erica Lively, Larry A. Coldren, and Daniel J. Blumenthal, "An 8*8 InP Monolithic Tunable Optical Router (MOTOR) Packet Forwarding Chip," IEEE J. Lightwave Technol., vol.28,641-650,2010.
    [38]Andrew J. Ward, David J. Robbins, Giacinto Busico, Elena Barton, Lalitha Ponnampalam, Jeremy P. Duck,Neil D. Whitbread, Peter J. Williams, Douglas C. J. Reid, Andrew C. Carter, and Michael J. Wale, "Widely Tunable DS-DBR Laser With Monolithically Integrated SOA:Design and Performance,' IEEE J. Select. Topics Quantum Electron., vol.11,149-156,2005.
    [39]Jan-Olof Wesstrom, Stefan Hammerfeldt, Jens Buus, Robert Siljan, Reinhard Laroy, and Harry de Vries, "Design of a Widely Tunable Modulated Grating Y-branch Laser using the Additive Vernier Effect for Improved Super-Mode Selection," http://photonics.intec.ugent.be/download/pub_1603.pdf。
    [40]Jialiang Jin, Lei Wang, Tingting Yu, Yin Wang, and Jian-Jun He, "Widely wavelength switchable V-coupled-cavity semiconductor laser with ~40 dB side-mode suppression ratio," Optics Letters, vol. 36,4230-4232,2011.
    [41]T. Segawa, S. Matsuo, T. Kakitsuka, T. Sato, Y. Kondo and H. Suzuki, "Full C-Band Tuning Operation of Semiconductor Double-Ring Resonator-Coupled Laser With Low Tuning Current," IEEE Photn. Tech. Lett., vol.19,1322-3124,2007.
    [42]S. Hansmann, H. Walter, H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-A detailed comparison between experiment and theory," IEEE J. Quantum Electron., vol.30, pp.2477-2484, Nov.1994.
    [43]Dekun Liu, Lei Wang, and Jian-Jun He, "Rate Equation Analysis of High Speed Q-Modulated Semiconductor Laser," J. Lightw. Technol.,vol.28, pp.3128-3135,2010.
    [44]Gunnar Bjork and Olle Nilsson, "A New Exact and Efficient Numerical Matrix Theory of Complicated Laser Structures:Properties of Asymmetric Phase-Shifted DFB Lasers," J. Lightwave Technol., vol.5, 140-146,1987.
    [45]W. Zheng and G. W. Taylor, "Determination of the photon lifetime for DFB lasers," IEEE J. Quantum Electron.43,295-302,2007.
    [46]H. Kogelnik and C. V. Shank. "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys.43, 2327-2355,1972.
    [47]S. Hansmann. H. Walter. H. Hillmer, and H. Burkhard, "Static and dynamic properties of InGaAsP-InP distributed feedback lasers-a detailed comparison between experiment and theory," IEEE J. Quantum Electron.30.2477-2484,1994.
    [48]L. A. Coldren and S. W. Corzine, "Dynamic effects." in Diode Lasers and Photonic Integrated Circuits (Wiley,1995), pp.185-261.
    [49]P. St. J. Russell, "Optics of Floquet-Bloch waves in dielectric gratings," Appl. Phys. B:Photophys. Laser Chem.39,231-246,1986.
    [50]A. V. Maslov and C. Z. Ning, "Interpretation of distributedfeedback-laser spectrum using reflection properties of Bloch waves," J. Appl. Phys.101,053117,2007.
    [51]F. Bloch, "Uber die Quantenmechanik der Elektronen in Kristallgittern," Z. Phys.52,555-600 (1928).
    [52]A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley,1983).
    [53]K. Sakoda, "Eigenmodes of photonic crystals," in Optical Properties of Photonic Crystals (Springer. 2004), pp.13-41.
    [54]M. G. Davis and R. F. O'Dowd, "A transfer matrix method based large-signal dynamic model for multi-electrode DFB lasers." IEEE J. Quantum Electron.30,2458-2466 (1994).
    [55]J. W. Raring and L. A. Coldren, "40Gb/s Widely-Tunable Transceivers". IEEE J. Sel. Top.Quantum Electron.13.3-14(2007).
    [56]A. Q. Liu and X. M. Zhang, "A review of MEMS external-cavity tunable lasers", J. Micromech. Microeng.,17, R1-R13, (2007).
    [57]O. K. Kwon, J. H. Kim, and K. H. Kim et al., "Widely tunable multi-channel grating cavity laser" IEEE Photon. Technol. Lett,18,1699-1701, (2006).
    [58]V. Jayaraman, A. Mathur. and L. A Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electron,.29,1824-1834, (1993).
    [59]L. A. Coldren, "Monolithic tunable diode lasers," IEEE J. Sel. Top. Quantum Electron.,6,988-999, (2000).
    [60]N. Nunoya et al, "Wideband tuning of tunable distributed amplification distributed feedback laser array",Electron. Lett.,44,205-207,(2008).
    [61]B. Liu. A. Shakouri, and J. E. Bowers. "Passive micro-ring resonator coupled lasers", Appl. Phys. Lett., 79,3561-3563,(2001).
    [62]D.G. Rabus, "Integrated Ring Resonators". Springer-Verlag,Berlin (2007).
    [63]J.Heebner, R. Grover. and T. Ibrahiml, "Optical microresonators:theory, fabrication, and applications" Springer-Verlag, Berlin (2007).
    [64]S. Park, S. Kim, and L. Wang et al, "Single-mode lasing operation using a microring resonator as a wavelength selector", IEEE J. Quantum Electron.38,270-272, (2002).
    [65]T. Segawa. S. Matsuo, T. Kakitsuka, et. al. "Full C-band tuning operation of semiconductor double-ring resonator-coupled laser with low tuning current", Photon. Technol. Lett.19,1322-1324 (2007).
    [66]L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentschler,"Monolithic two-section GalnAsP/InP active-optical-resonator devices formed by reactive ion etching," Appl. Phys. Lett. vol.38,315 317,1981.
    [67]W. T. Tsang, "The cleaved-coupled-cavity (C3) laser," Semiconductors and Semimetals 22,257 (1985).
    [68]Min Lou, Tingting Yu and Jian-Jun He,"Monolithic Integrated Intracavity Biosensors Based on Interferometric Lasers," Asia Communications and Photonics Conference (ACP2009), Paper TuG7, Shanghai, November 2-6,2009.
    [69]王磊,[博士学位论文],杭州浙江大学,2010.
    [70]X. Lin, D. Liu and J.-J He, "Design and Analysis of 2x2 Half-Wave Optical Couplers", Applied Optics, 48, F19-24, (2009).
    [71]J.-J. He and D. Liu, "Wavelength switchable semiconductor laser using half-wave V-coupled cavities", Optics Express,16,3896-3911, (2008).
    [72]M. Bachmann, P. Besse and H.Melchior, "Overlapping-image multimode interference coupler with a reduced number of self-images for uniform and nonnuiform power splitting", Applied Ooptics 34. 6898-6910,(1995).
    [73]L. M. Miller, J. T. Verdeyen, J. J. Coleman, R. P. Bryan, J. J. Alwan, K. J. Beernink, J. S. Hughes, and T. M. Cockerill, "A Distributed Feedback Ridge Waveguide Quantum Well Heterostructure Laser," IEEE Photn. Tech. Lett., vol.3,6-8,1991.
    [74]R. M. Lammert, A. M. Jones, C. T. Youtsey, J. S. Hughes, S. D. Roh, I. Adesida, and J. J. Coleman, "InGaAsP-InP ridge-waveguide DBR lasers with first-order surface gratings fabricated using CAIBE," IEEE Photon. Technol. Lett., vol.9,1445-1447,1997.
    [75]R. D. Martin,S. Forouhar, S. Keo, R. J. Lang, R. G. Hunsperger, R. C. Tiberio and P. F. Chapman, "CW Performance of an InGaAs-GaAs-AlGaAs Laterally-Coupled Distributed Feedback (LC-DFB) Ridge Laser Diode," IEEE Photon. Tech. Lett., vol.7,244-246,1995.
    [76]L. Bach, S. Rennon, J. P. Reithmaier, A. Forchel, J. L. Gentner, and L. Goldstein, "Laterally coupled DBR Laser emitting at 1.55 mfabricated by focused ion beam lithography," IEEE Photon. Technol. Lett., vol.14,1037-1039,2002.
    [77]J. Telkkala, J. Viheriala, A. Aho, P. Melanen, J. Karinen, M. Dumitrescu and M. Guina, "Narrow linewidth laterally-coupled 1.55μm DFB lasers fabricated using nanoimprint lithography," Electroincs Letters, vol.47,2011.
    [78]J. De Merlier, K. Mizutani, S. Sudo, K. Naniwae, Y. Furushima, S. Sato, K. Sato, and K. Kudo, "Full C-band external cavity wavelength tunable laser using a liquid-crystal-based tunable mirror," IEEE Photon. Technol.Lett.17,681-683 (2005).
    [79]Y. A. Akulova, G. A. Fish, P.-C. Koh, C. L.Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa,M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T.Wipiejewski, and L. A. Coldren, "Widely tunable electroabsorption-modulated sampled-grating (DBR) laser transmitters," IEEE J. Sel. Topics Quantum Electron.8,1349-1357 (2002).
    [80]A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D.Whitbread, P. J.Williams. D. C. J. Reid, A. C. Carter, and M. J.Wale. "Widely tunable DS-DBR laser with monolithically integrated SOA:Design and performance," IEEE J. Sel. Topics Quantum Electron.11. 149-156(2005).
    [81]H. Ishii, H. Oohashi. K. Kasaya. K. Tsuzuki, and Y. Tohmori.'"Highpower (40 mW) L-band tunable DFB laser array module using current tuning," in Optical Fiber Communication (OFC), Anaheim,CA, OTuE1 (2005).
    [82]B. Pezeshki, E. Vail, J. Kubicky, G. Yoffe, S. Zou, J. Heanue, P. Epp. S. Rishton, D. Ton,B. Faraji, M. Emanuel.X. Hong, M. Sherback, V. Agrawal, C. Chipman, and T. Razazan,20-mW Widely Tunable Laser Module Using DFB Array and MEMS Selection, IEEE Photon. Technol.Lett.,14(10),1457-1459, (2002)
    [83]J.P. Engelstaedter et al, "Wavelength Tunable Laser Using an Interleaved Rear Reflector", IEEE Photon. Technol. Lett.22,54-56 (2009).
    [84]D. Byrne, J. Engelstaedter. W. Guo, Q. Lu, B. Corbett, B. Roycrof,J. O'Callaghan, F. H. Peters, and John Donegan, "Discretely tunable semiconductor lasers suitable for photonic integration",IEEE J. Sel. Topics Quantum Electron.15,482-487 (2009).
    [85]L. Hou, R. Dylewicz. M. Haji, P. Stolarz, B. Qiu, and A. Bryce, "Monolithic 40-GHz passively mode-locked AIGaInAs-InP 1.55-μm MQW laser with surface-etched distributed Bragg reflector," IEEE Photon. Technol. Lett.22,1503-1505 (2010)
    [86]Q. Y. Lu, W. H. Guo. R. Phelan. D. Byrne. J. F. Donegan, P. Lambkin, and B. Corbett, "Analysis of slot characteristics in slotted single-mode semiconductor lasers using the 2-D scattering matrix method" IEEE Photon. Technol.18,2605-2607 (2006)
    [87]Y. Shi. S. He, and S. Anand, "Ultracompact directional couplers realized in InP by utilizing feature size dependent etching," Opt. Lett.33,1927-1929 (2008)
    [88]E. Michielssen, W. C. Chew, D. S. Weile, "Genetic algorithm optimized perfectly matched layers for finite difference frequency domain applications". Antennas and Propagation Society International Symposium,1996. AP-S. Digest 3,2106-2109 (1996).
    [89]B. Corbett, C. Percival, and P. Lambkin, "Multiwavelength array of single-frequency stabilized Fabry-Perot lasers," IEEE J. Quantum Electron.41.490-494 (2005).
    [90]D. Mahgerefteh. Y. Matsui. X. Zheng. K. McCallion. "Chirp managed laser and applications." IEEE Journal of Selected Topics in Quantum Electronics, vol.16, pp.1126-1139,2010.
    [91]J. H. Teng, E. L. Lim, S. J. Chua, S. S. Ang, L. F. Chong, J. R. Dong, and R. Yin. "Self-aligned metal-contact and passivation technique for submicron ridge waveguide laser fabrication", J. Vac. Sci. Technol. B,26(5), pp.1748-1752,2008.
    [92]M. M. Dummer, J. R. Raring, J. Klamkin, A. T. Pedretti, and L. A. Coldren, "Selectively-undercut traveling-wave electroabsorption modulators incorporating a p-InGaAs contact layer", Opt. Express, vol.16, pp.20388-20394,2008.
    [93]P. Miska, M. Beaugeois, C. Lethien, A. Beaurain, H.-W. Li, J.-P. Vilcot, D. Decoster, J. Chazelas. M. Bouazaoui, L. Dobrzynski, A. Akjouj, B. Djafari-Rouhani, and J. O. Vasseur, "Characterization of InP semiconductor waveguides coupled to disk microcavity optical resonators via optomicrowave technique". Microwave Opt. Technol. Lett., Vol.45, pp.315-317.2005.
    [94]J. H. Teng, E. L. Lim, S. J. Chua, S. S. Ang, L. F. Chong, J. R. Dong, and R. Yin, "Self-aligned metal-contact and passivation technique for submicron ridge waveguide laser fabrication," J. Vac. Sci. Technol. B, vol 26,1749-1752,2008.
    [95]J. F. Zheng, H. V. Demir, V. A. Sabnis, O. Fidaner, J. S. Harris, and D. A. B. Miller,"Self-aligned via and trench for metal contact in Ⅲ-Ⅴ semiconductor devices," J. Vac. Sci. Technol. B, vol.24. 1117-1122,2006.
    [96]T. C. Peng, C. C. Yang, Y.H. Huang, M. C. Wu, C. L. Ho and W. J. Ho," Self-terminated oxide polish technique for the waveguide ridge laser diode fabrication," J. Vac. Sci. Technol. B, vol.23,1060-1063. 2005.
    [97]C. S. Harder, W. Herberger, P. D. Hoh, and D. J. Webb, "Process for forming the ridge structure of a self-aligned semiconductor laser," U.S. Patent No.5059552,1991.
    [98]A. Katz, S. J. Pearton, and M. Geva, "Self-aligned technology for tungsten-contacted InP-based etched mesa laser devices," 1991, Appl. Phys. Lett., vol.59,286-288,1991.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700