结构液压被动耗能与直驱主动控制系统
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土木工程结构振动控制的研究与应用经过半个多世纪的发展已日臻成熟,已有多种振动控制装置在实际工程中得到应用。结构简单、性能可靠的新型被动控制装置,主动质量阻尼器/驱动器控制系统中的新型作动器,结构振动主动控制实现中的时间滞后及其补偿方法等问题仍将是当前乃至今后一段时间内土木工程结构振动控制技术领域发展的热点研究课题。本文就以上三方面的有关问题展开研究,主要内容如下:
     1.基于流体力学中流体沿程能量损失方程和局部能量损失方程,分别推导了以牛顿流体、幂律流体和宾汉姆流体为阻尼介质的孔隙式油缸阻尼器的力学模型。根据所建立的相关理论研制开发了四个系列粘滞流体阻尼器,进行了系统的力学性能试验,通过数据分析回归了阻尼力—速度、阻尼力—阻尼介质参数、阻尼力—阻尼孔直径、阻尼介质—流动指数等阻尼器设计最为重要的关系曲线,为粘滞流体阻尼器的定型化、参数化提供必要的基础。
     2.针对传统液压驱动AMD (Active Mass Damper/Driver)控制系统装置复杂、体积大、能源利用效率低等缺点,提出了采用无阀电液伺服作动器(直驱容控电液伺服作动器)驱动的AMD控制系统的概念。分别建立了无阀电液驱动系统的电机控制、液压动力机构和液压执行机构等子系统的力学模型,进一步建立无阀电液伺服作动器的数学模型。通过数值仿真,较全面分析了影响系统动态特性的因素及作用特征,分析了系统各组成部件的动态特性并提出系统性能改进的措施与策略。
     3.提出以无阀电液伺服作动器为驱动装置的主动质量驱动器DAMD (Direct driving Active Mass Driver)控制系统,给出了以泵的转速(伺服电机的控制电压)为输入量、系统主动控制力为输出量的系统转速-驱动力关系模型,建立了受控结构-DAMD控制系统的状态方程,最后以顶层设置DAMD控制系统的结构为研究对象进行地震荷载作用下结构响应控制的数值分析,结果表明DAMD控制系统在一定范围内可以代替传统的液压驱动AMD控制系统,实现结构振动的主动控制。
     4.针对DAMD控制系统响应时间稍长的问题,研究了DAMD控制系统应用于土木工程结构振动控制的适用范围。结合主动控制系统时滞的稳定性分析,给出单自由度系统最大允许时滞量(系统第一次出现不稳定的时滞量)的解析解,该值用来确定何时应用时滞补偿技术,并给出增益与系统最大允许时滞量的关系,给出一种基于变量代换的直接补偿方法,理论仿真结果表明了该方法的有效性。
     5.与传统的主动控制时滞补偿问题研究思路不尽一致,提出利用时滞补偿控制策略—主动增加时滞补偿方法,给出该方法的数学原理证明。提出了分别基于速度反馈增益和基于位移反馈增益的主动增加时滞补偿方法。定量结合定性分析总结了AMD系统控制参数对时滞量与控制效果的影响规律。数值模拟和试验验证了本文所提主动增加时滞补偿方法的可行性。
The research and application of structural control in civil engineering have made a great progress during the development of last several decades. A lot of innovative control devices are widely applied in actual projects. Up to now, passive control with simple structure and good performance, innovative active mass driver (AMD) system and time delay phenomenon that arises unavoidable regarding active control, are still the focus of study of structure control. In accordance with the above consideration, the main studies of this dissertation are as follows:
     1. Based on the equations of the route loss and local loss of fluid mechanics, the mechanical model of cylinder-with-holes damper using Newton fluid, exponent law fluid and Bingham fluid as damping medium. According to the theoretical results, four different dampers are designed and analyzed by mechanical experiment. By means of analysis of experimental data, the curve of damping force-velocity, damping force-damping medium, damping force-diameter of damping hole and damping medium-flow index are regressed, which is the key part for the design of damper and also important for the modeling, parameter specification and production of viscous fluid damper.
     2. Aimed at the disadvantages of traditional AMD drive device, such as large volume, high cost, complex system, more energy consumption, an innovative driver-Direct Driving Volume Control(DDVC) servo system for AMD is proposed based on the volume control of electro-hydraulic servo system. From the structure of DDVC servo system, the mathematical models of motor control, hydraulic power mechanism and hydraulic actuator of DDVC servo system are set up, which leads to the whole mathematical model of DDVC servo system. Through numerical simulation, the influence factor of system dynamics is analyzed in detail. Furthermore, the dynamical characteristic of each component of whole system as well as how to improve it is studied and proposed.
     3. Based on DDVC servo system, direct driving active mass driver (DAMD) is developed. The equation of rotation speed-drive force is derived and the corresponding rotation speed-force model using rotational speed of the pump (the driving voltage of servo motor) as input and the active control force as output is provided. From the above derivation and analysis, the state equation for controller structure-DAMD control system is presented. Numerical simulation is made on a structure under earthquake excitation with DAMD control system at the top floor. Results show that in some degree, DAMD control system can be used to substitute the traditional AMD control system to realized active control of structural vibration.
     4. Because the response time of DAMD control system is relative slow, the influence of this phenomenon under wind and earthquake excitation is analyzed. The stability analysis of time-delayed system is conducted and the analytical solution of maximum allowable delayed time of SDOF (Single Degree of Freedom) system is provided. This maximum allowable delayed time can be utilized to specify when to use the compensation for time delay. Meantime, the relationship between control gain and maximum allowable delayed time is presented. A direct compensation method based on mathematical analysis of time-delayed system is developed and corresponding numerical simulation verifies the effectiveness of proposed method.
     5. Almost all studies about how to control time-delayed system is to mitigate or remove the time delay. On the other hand, time delay can be regarded as the useful compensation for control system to a certain extent. In this dissertation, a novel compensation method for time-delayed system that directly utilizes time delay is developed. Based on the mathematical derivation, two methods using velocity feedback and displacement feedback are presented, respectively. Analysed and summarized the influence law between control effect and time delay control parameters by AMD control system. Furthermore, the effectiveness of the foregoing control methods that utilize time delay is verified by numeral simulation and experiment.
引文
1 T. T. Soong and G. F. Dargush. Passive Energy Dissipation Systems in Structural Engineering [M].John Wiey&Sons Ltd.1997
    2 J. P. Ou, Bo Wu and T. T. Soong. Recent Advances in Research on Application of Passive Energy Dissipation Systems. Earthquake Engineering and Engineering Vibration. 1996, 16(3):72~96
    3欧进萍.结构振动控制:主动、半主动和智能控制[M].科学出版社, 2003
    4李立.隔震与减振技术.中国工程抗震研究四十年.地震出版社, 1989:107~114
    5周福霖.工程结构减振控制[M].地震出版社, 1997:5~13
    6 J. M. Kelly. Aseismic Base Isolation: Review and Bibliography. Soil Dynamics and Earthquake Engineering. 1986, 5(3):202~217
    7唐家祥,刘再华.建筑结构基础隔震[M].华中理工大学出版社, 1991
    8周锡元,马东辉.组合橡胶支座及橡胶支座与柱串联系统的水平刚度计算方法.地震工程与工程振动. 1999, 19(4):67~75
    9刘文光,周福霖,庄学真等.大直径夹层橡胶隔震装置力学性能试验研究.世界地震工程. 1999, 1:62~68
    10 Fu Lin Zhou. Seismic isolation of civil buildings in the People's Republic of China. Structural Control and Health Monitoring. 2001, 3(3):268~276
    11王英榜,楼永林.滑移减震技术在多层砌体房屋中的应用山西建筑. 2005, 31(24):72~73
    12 R. I. Skinner, W. H. Robinson and G. H. McVerry. An Introduction to Seismic Isolation. John Wiey&Sons.UK. 1993
    13楼永林,王英榜.滑移减振建筑的研究与推广[C].第五届全国地震工程会议论文集(Ⅱ),北京, 1998:804~807
    14欧进萍,王永富.设置TMD、TLD控制系统的高层建筑风振分析与设计方法.地震工程与工程振动. 1994, 2:61~75
    15龙复兴,张旭.调谐质量阻尼器系统控制结构地震反应的若干问题.地震工程与工程振动. 1996, 2:87~94
    16王肇民.电视塔结构TMD风振控制研究与设计.建筑结构学报. 1994, 2:2~11
    17李宏男,宋有本.高层建筑利用悬吊质量摆的研究.地震工程与工程振动. 1995, 4:55~61
    18罗仁,何玉敖.地震作用下高层建筑平移与扭转耦联振动的控制.建筑结构学报. 1997, 6:65~73
    19张敏政,丁世文,郭迅.利用水箱减振的结构控制研究.地震工程与工程振动. 1993, 4:40~48
    20瞿伟廉,李肇胤,李桂青. U型水箱对高层建筑和高耸结构风振控制的试验和研究.建筑结构学报. 1993, 5:37~44
    21瞿伟廉,宋波,陈妍桂等. TLD对珠还海金山大厦主楼风振控制的设计.建筑结构学报. 1995, 3:21~28
    22李惠.液压质量控制系统(HMS)对底层柔性建筑的抗震控制研究[D].哈尔滨建筑大学博士学位论文. 1994
    23李桂青,熊火清.结构鞭梢效应的控制与分析.地震工程与工程振动. 1987, 4:1~13
    24欧进萍,吴斌.摩擦型和软钢屈服型耗能器的性能与减振效果的试验比较.地震工程与工程振动. 1995, 15(3):73~87
    25 J. M. Kelly, R. I. Skinner and A. J. Heine. Mechanisms of Energy Absorption in Special Devices for Use in Earthquake-Resistant Structures. Bull. N. Z. National Society for Earthquake Engineerning. 1972, 5(3):63~88
    26 A. Tena-Colunga and A. Vergara. Comparative Study on the Seismic Retrofit of A Mid-Rise Steel Building: Steel Bracing vs Energy Dissipation. Earthquake Engineering and Structural Dynamics. 1997, 26:637~655
    27 C. L. Perry, E. A. Fierro and R. E. Scholl. Seismic Upgrade in San Francisco Using Energy Dissipation Devices. Earthquake Spectra. 1993, 9(3):559~579
    28 E. Martinez-Romero. Experiences on the Use of Supplemental Energy Dissipators on Building Structures. Earthquake Spectra. 1993, 9(3):581~625
    29 K. C. Tsai, H. W. Chen, and Y. F. Su. Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction. Earthquake Spectra. 1993, 9(3): 505~528
    30 A. S. Pall, C. Marsh. Friction Joints for Seismic Control of Large Panal Structures. Journal of Prestressed Concrete Institute. 1980, 25(6):38~61
    31 A. S. Pall and C. Marsh. Response of Friction Damped Braced Frames. Journal of the Structural Division. ASCE. 1982,VOL.108,No.ST6:1313~1323
    32 A. Filiatrault, S. Cherry. Performance Evaluation of Friction Damped Braced Steel Frames under Simulated Earthquake Loads. Earthquake Spectra. 1987, 3(1):57~78
    33吴斌,欧进萍. Pall摩擦耗能器的设计方法.哈尔滨建筑大学学报. 1997, 30(4):9~14
    34吴斌,欧进萍.拟粘滞摩擦耗能器的试验与分析.世界地震工程. 1999, 15(1):1~11
    35 V. Pall, S. Vezina and P. Proulx. et al. Friction-dampers for seismic Control of Canadian Space Agency. Earthquake Spectra. 1993, 9(3):547~558
    36 I. D. Aiken and J. M. Kelly. Earthquake Simulator Testing and Analytical Studies of Two Energy-Absorbing Systems for Multistory Structures. Report No.UCB /EERC-90/03, University of Califonia, Berkeley, CA. 1990
    37 D. K. Nims, P. J. Richter and R. E. Bachman. The Use of the Energy Dissipating Restrain for Seismic Hazard Mitigation. Earthquake Spectra. 1993, 9(3):467~489
    38 D. K. Nims, J. A. Inaudi and P. J. Richter. Application of the Energy Dissipation Restrain to Buildings. Proc.ATC 17-1 on Seismic Isolation, Energy Dissipation, and Active Control. 1993, 2:627~638
    39 K. Kasai, J. A. Munshi and M. L. Lai. Viscoelastic Damper Hysteretic Model: Theory, Experiment and Application. Proc. ATC 17-1 on Seismic Isolation, Energy Dissipation, and Active Control. 1993, 2:521~532
    40 C. S. Tsai, H. H. Lee. Application of Viscoelastic Dampers to High-Rise Buildings. Journal of Structural Engineering, ASCE. 1993, 119(4):1222~1233
    41 N. Makris. Complex-Parameter Kelvin Model for Elastic Foundation. Earthquake Engineering and Structural Dynamics. 1994, 23:268~274
    42 N. Makris. The Imaginary Counterpart of Recorded Motions. Earthquake Engineering and Structural Dynamics. 1994, 23:265~274
    43 K. C. Chang, T. T. Soong, S. T. Oh. et al. Seismic Response of a 2/5 Scale Steel Structure with Add Viscoelastic Dampers. Report No.NCER-91-0012, National Center for Earthquake Engineering Research, Buffalo, NY. 1991
    44 K. C. Chang, T. T. Soong and M. L. Lai. Seismic Retrofit of a Reinforced Concrete Frame with Adding Viscoelastic Dampers. 5NCEE, Chicago, IL. 1994, 3:707~716
    45 K. C. Chang, M. L. Lai. Application of Viscoelastic Dampers in Millitary-Related Structures. Proceedings of the 4th Conference on Military Engineering, Taiwan, 1994
    46欧进萍,邹向阳.粘弹性耗能器的性能试验研究.振动与冲击. 1999, 18(3):12~19
    47邹向阳,欧进萍.粘弹性耗能器的性能与结构减振试验研究.振动工程学报. 1999, 12(2):237~243
    48吴波,郭安薪.设有粘弹性阻尼器的结构体系的受力分析.世界地震工程. 1998, 14(3):6~14
    49周云,徐赵东,邓雪松.粘弹性阻尼器的性能试验研究.振动与冲击. 2001, 20(3):71~75
    50 P. Mahmoodi, C. J. Keel. Performance of Structural Damper for the Columbia Center Building. ASCE, 1986, 112(1):83~106
    51 P. Mahmoodi, C. J. Keel. Analysis and the Design of Multilayar Viscoelastic Damper for Tall Structure. Proceeding of ASCE Structures Congress, San Francisco, CA. 1989
    52 H. Yokota, M. Saruta and Y. Nakamura. et al. Structural Control for Seismic Load Using Viscoelastic Dampers. Proceeding of 10WCEE, Madrid, Spain. 1992
    53 J. R. Hayes, D. A. Foutch and S. L. Wood. Influence of Viscoelastic Dampers on the Seismic Response of a Lightly Reinforces Concrete Flat Slab Structure. Earthquake Spectra. 1999, 15(4):681~710
    54周云,徐赵东,赵鸿铁.粘弹性阻尼器的性能、分析方法及工程应用.地震工程与工程振动. 1998, 18(3):96~107
    55魏文晖,瞿伟廉,杨志勇.粘弹性阻尼器对桥面铺装层的减振作用.武汉工业大学学报. 1999, 21(6):47~49
    56 M. C. Constantinou, M. D. Symans and D. P. Taylor. Fluid Viscous Dampers in Applications of ATC-17-1 on Seismic Isolation, Passive Energy Dissipation and Active Control. 1993, 2:581~591
    57 M. C. Constantinou, M. D. Symans. Seismic Response of Structures with Supplemental Damping. Struct. Design Tall Bldgs. 1993, 2:77~92
    58 M. C. Constantinou, M. D. Symans. Experimental Study of Seismic Response of Buildings with Supplemental Fluid Dampers. Struct. Design Tall Bldgs. 1993, 2:93~132
    59 N. Markris. Theoretical and Experimental Investigation of Viscous Dampers in Applications of Seismic and Vibration Isolation. Ph.D. Dissertation, State University of New York at Buffalo, NY
    60 N. Markris, M. C. Constantinou. Viscous Dampers: Testing, Modeling and Application in Vibration and Seismic Isolation. Technical Report NCEER-90-0028, National Center for Earthquake Engineering Research, Buffalo, NY
    61 N. Markris, M. C. Constantinou. Fractional Derivative Model for Viscous Dampers. J. Struct. Engrg., ASCE, 1991, 117:2708~2724
    62 N. Markris, M. C. Constantinou and G.F. Dargush. Analytical Model of Viscoelatic Fluid Dampers. Journal of Structural Engineering. ASCE, 1993, 119(11):3310~3325
    63 N. Markris, G. F. Dargush and M. C. Constantinou. Dynamic Analysis of Generalized Viscoelastic Fluid. J. Struct. Engrg., ASCE, 1993,119(7): 1453~1464
    64 N. Markris, G. F. Dargush and M. C. Constantinou. Dynamic Analysis of Viscoelastic Fluid Dampers. J. Engrg. Mech., ASCE, 1995,121(10): 1114~1121
    65 A. Grenier. Seismic Protection of Bridges by the Viscoelastic Technique. Proc. Third Congress Joint and Bearings, Toronto, Canada. 1991, 1205~1223
    66 G. K. Huffmann. Full Base Isolation for Earthquake Protection by Helical Springs and Viscodampers. Nuclear Engrg. Desing. 1985, 84(2):331~338
    67 K. J. Schwahn, K. Delinic. Verification of the Reduction of Structural Vibrations by Means of Viscous Dampers, Seismic Engineering, ASME, Pressure Vessel and Piping Conf., Pittsburgh, PA, 1988, 144:87~95
    68 D. P. Taylor, M. C. Constantinou. Fluid Dampers for Applications of Seismic Energy Dissipation and Seismic Isolation. Proceedings of the Eleventh World Conference on Earthquake Engineering, Acapulco, Mexico, 1996:875~885
    69中华人民共和国建筑工业行业规范.建筑消能阻尼器(JGT 209-2007), 2007
    70李忠献,徐守泽.高层建筑水平地震反应阻尼器控制理论及试验研究.地震工程与工程振动. 1994, 14(3):97~104
    71李忠献,何玉敖.高层结构地震反应的优化阻尼器控制.建筑结构学报. 1994, 15(4):53~61
    72欧进萍,丁建华.油缸间隙式粘滞阻尼器理论与性能试验.地震工程与工程振动. 1999, 19(4):53~61
    73丁建华,欧进萍.油缸孔隙式粘滞阻尼器理论与性能试验.世界地震工程. 2001, 17(1):30~35
    74丁建华.结构的粘滞流体阻尼减振系统及其理论与试验研究.哈尔滨工业大学博士学位论文. 2001
    75杨国华,李爱群,程文瀼等.工程结构粘滞流体阻尼器的减振机制与振控分析.东南大学学报(自然科学版). 2001, 31(1):57~61
    76叶正强,李爱群,徐幼麟.工程结构粘滞流体阻尼器减振新技术及其应用.东南工业大学学报(自然科学版). 2002, 32(3):466~473
    77杨国华,李爱群,程文瀼.某化工厂房结构采用粘滞流体阻尼器的减振设计研究.工业建筑. 2003, 33(6):7~9
    78张志强,李爱群,陈政道等.某钢筋混凝土结构高层钢塔分针控制及其应用.特种结构. 2003, 20(4):37~39
    79叶正强.粘滞流体阻尼器消能减振技术的理论、试验与应用研究.东南大学博士学位论文. 2003
    80范峰,沈世钊.网壳结构的粘滞阻尼减振分析与试验研究[J].地震工程与工程振动. 2000, 20(1):105~111
    81范峰,沈士钊.单层球壳模拟地震振动台试验及结构减振试验研究.哈尔滨建筑大学学报. 2000, 33(3):18~21
    82吴波,李惠,陶全兴等.安装粘滞阻尼器结构的抗震设计方法研究.地震工程与工程振动. 2001, 20(1):87~93
    83杨国华,李爱群,程文瀼.结构控震设计中流体阻尼器的指数选择与控制系统设计.工业建筑. 2003, 33(6):3~6
    84欧进萍,吴斌,龙旭.结构被动耗能减振效果的参数影响.地震工程与工程减振. 1998, 18 (1):60~70
    85李正英,李正良,汪之松等.粘滞阻尼器拱桥结构减振控制研究.振动与冲击. 2007, 26(1):57~60
    86翁大根,卢著辉,徐斌等.粘滞阻尼器力学性能试验研究.世界地震工程. 2002, 18(4):30~34
    87王亚勇,薛彦涛,欧进萍等.北京饭店等重要建筑的消能减振抗震加固设计方法.建筑结构学报. 2001, 22(2):35~39
    88 F. Casciati, T. Yao. Comparison of Strategies for the Active Control of Civil Structures. Proc., First World Conf. Struct. Control. Los. Angeles, USA, 1994, WA1:3~12
    89 S. F. Masri, G. A. Bekey. Optimum Pulse Control of Flexible Structures. Journal of Applied Mechanics. 1981, 48:619~626
    90 J. N. Yang, Z. Li and S. Vongchavalitkul. Generalization of Optimal Control Theory: Linear and Nonlinear Control. Journal of Engineering Mechanics, 1994, 120(2):266~283
    91 J. N. Yang. New Optimal Control Algorithms for Structural Control. Journal of Engineering Mechanics. 1987, 113(9):1369~1381
    92 C. C. Chang, L. O. Yu. A Simple Optimal Pole Location Technique for Structural Control. Engineering Structures. 1998, 20:792~804
    93 G. Song. et al. Robust Hinfinity Control for Aseismic Structures with Uncertainties in Model Parameters. Earthquake Engineering and Engineering Vibration. 2007, 6(4):409~416
    94 R. Guclu and A. Sertbas. Evaluation of Sliding Mode and Proportional- integral-derivative Controlled Structures with an Active Mass Damper. Journal of Vibration and Control. 2005, 11(3):397~406
    95 R. A. Burdisso, L. E. Suarez and C. R. Fuller. Feasibility Study of Adaptive Control of Structures under Seismic Excitation. Journal of Engineering Mechanics. 1994, 120(3):582~593
    96 M. Hoshiya, Y. Saito. Predictive Control of SDOF System. Journal of Engineering Mechanics. 1995, 121(10):1049~1055
    97 R. Kumar, S. P. Singh and H. N. Chandrawat. Predictive Optimal Linear Control of Elastic Structures during Earthquake. PartI. Journal of Engineering Mechanics. 2005, 131(2):131~141
    98李芦钰.结构非线性振动的智能控制方法与试验研究.哈尔滨工业大学博士学位论文. 2008
    99 T. T. Soong. Active Structural Control: Theory and Practice. Longman Scientific and Technical, 1990:116~155
    100 J. K. Hale. Introduction to Functional Differential Equations. New York: Springer-Verlag, 1993
    101秦元勋,刘永清,王联等.带有时滞的动力系统的运动稳定性.科学出版社, 1989
    102黄琳.稳定性与鲁棒性的理论基础.科学出版社, 2003
    103 K. Gu, V. L. Kharitonov and J. Chen Stability of Time Delay Systerms. NewYork, Springer-Verlag, 2003
    104舒仲周.运动稳定性.西南交通大学出版社, 1989
    105王亚刚,邵惠鹤.一种自整定最优PI控制器.上海交通大学学报, 2000, 34(5):650~653
    106徐鉴,陆启韶,王乘. Van der pol-Duffing时滞系统的稳定性和HoPf分岔.力学学报, 2002, 32(1):112~116
    107徐鉴.时滞位移反馈引起系统周期和混沌振动.力学学报,2002, 34(增刊):122~126
    108 J. Xu, Q. S. Lu. Hopf bifurcation of time-delay Lienard equations. International Journal of Bifurcation and Chaos, 1999, 9(5):939~951
    109徐鉴,陈予恕.时滞速度反馈对强迫自持系统动力学行为的影响.应用数学和力学, 2004, 25(5):455~466
    110裴利军,徐鉴.神经网络时滞系统非共振双Hopf分岔及其广义同步.力学季刊, 2005, 26(2):269~275
    111戴护军,徐鉴.时滞对于参数激励系统周期运动的影响.力学学报, 2004, 25(3):69~76
    112 Z. H. Wang, H. Y. Hu. Delay-independent stability of retarded dynamic systems of multiple degrees of freedom. Journal of Sound and Vibration, 2000, 226(1):57~81
    113 H. Y. Hu. Using delayed state feedback to stabilize periodic motions of an oscillator. Journal of Sound and Vibration,2004, 275(3-5):1009~1025
    114 Z. H. Wang, H. Y. Hu. Dimensional reduction for nonlinear time-delayed systems composed of stiff and soft substructures. Nonlinear Dynamics, 2001, 25(4):317~331
    115 Z. H. Wang, H. Y. Hu. Stability switches of time delayed dynamic systems with unknown parameters. Journal of Sound and Vibration, 2000, 233(2):215~233
    116周岱,郭军惠.空间结构风振控制系统的神经网络时滞补偿.空间结构. 2008, 14(2):8~13
    117 S. Mcgreevy, T. T. Soong and A. M. Reinhorn An experimental Study of Time Delay Compensation in Active Structural Control. Proceedings of the SEM 6th International Modal Analysis Conference, Orlando, FL, 1988:733~739
    118 L. L. Chung, R. C. Lin, T. T. Soong. et al. Experimental Study of Active Control for MDOF Seismic Structures. Journal of Engineering Mechanics. ASCE, 1989, 115(8):1609~1627
    119柴天佑,张贵军.基于给定的相角裕度和幅值裕度的PID参数自整定新方法.自动化学报. 1997, 23(2):167~172
    120 K. J. Astrom, T. Hagglund. Revisiting the Ziegler-Nichols Step Response Method for PID Control. Journal of Process Control. 2004, 14:635~650
    121赵曜.内模控制发展综述.信息与控制. 2000, 29(6):526~531
    122汤莉莉,刘开培.基于IMC的不稳定时滞过程PID控制.武汉大学学报. 2003, 36(5):118~122
    123 W. Tan, H. J. Marquez and T. Chen. IMC Design for Unstable Processes with Time Delays. J. Process control. 2003, 13:203~213
    124 W. Tan. Tuning of a Modified Smith Predictor for Processes with Time Delay. Control Theory&Application. 2003, 20(2):297~301
    125 E. B. Dahlin. Designing and Tuning Digital Controller. Instrument & Control Systems. 1968, 41(7):77~83
    126 S. Majhi, D. P. Atherton. A new Smith Predictor and Controller for Unstable and Integrating Processes with Time Delay. Proceedings of the IEEE conference on control and decision, Tampa, USA, 1998, 1341~1345
    127张卫东,何星,许晓明.自衡和非自衡时滞对象Smith预估器解析设计.自动化学报. 2000,26(4):485~491
    128 T. Liu, Y. Z. Cai, D. Y. Gu. et al. New modified Smith Predictor Scheme for Integrating and Unstable Processes with Time Delay. IEEE Proc. Control Theory Appl.. 2005, 152(2):238~246
    129龚晓峰,高拎畅,周春辉.时滞系统PID控制器内模整定方法的扩展.控制与决策. 1998, 13(4):337~341
    130王连铮,张建华,孟庆贤.增益预估自适应纯滞后补偿控制器.自动化学报. 1997, 23(1):139~142
    131田玉楚.大时滞工业过程的双控制器结构.自动化学报. 1999, 25(6):824~827
    132鲁照权,韩江洪.对象参考参数自适应时滞补偿器.控制与决策. 2001, 16(2):239~241
    133屈百达.黄小原.多时滞系统H鲁棒控制.控制理论与应用. 1999, 16(6):836~841
    134刘粉林,刘媛,王银河等.时滞不确定组合大系统的鲁棒分散镇定.控制与决策. 2001, 16(1):47~50
    135 E. Fridman. Stability of Systems with Uncertain Delays: a New“Complete”Lyapunov-Krasovskii Functional. IEEE Trans. Autom. Control. 2006, 51: 885~890.
    136 K. Gu. A Further Refinement of Discretized Lyapunov Functional Method for the Stability of Time Delay-systems. International Journal of Control. 2001, 74:967~976
    137 K. Gu. An Improved Stability Criterion for systems with Distributed Delays. International Journal Robust Nonlinear Control. 2003, 13:819~831
    138 W. H. Chen, W. X. Zheng. Delay-dependent Robust Stabilization for Uncertain Neutral Systems with Distributed Delays. Automatica. 2007, 43: 95~104.
    139 E. Fridman. New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems. Systems & Control Letters. 2001, 43: 309~319
    140 E. Fridman. Descriptor Discretized Lyapunov Functional Method: Analysis and Design. IEEE, Trans.Autom.Control. 2006, 51:890~897
    141 K. Gu. Discretized LMI Set in the Stability Problem of Linear Time Delay Systems. International Journal of Control. 1997, 68(10):923~934.
    142 K. Gu. Partial Solution of LMI in Stability Problem of Time-delay Systems. Proceedings of the 38th IEEE conference on decision and control. 1999: 227~232
    143李文章,吴凌尧,郭雷.基于LMI的结构振动鲁棒H∞控制.振动工程学报.2008, 21(2):157~161
    144俞立.鲁棒控制—线性矩阵不等式处理方法.北京,北京清华大学出版社, 2002
    145俞立.一类时滞系统的绝对稳定性问题研究.自动化学报. 2003, 29(5):780~784
    146张先明,吴敏,何勇.线性时滞系统的时滞相关稳定性新判据.中南大学学报. 2004, 35(3):438~442
    147张先明,吴敏,何勇.线性时滞广义系统的时滞相关稳定性新判据.工程数学学报. 2005, 22(6):983~988
    148谢湘生,刘洪伟.滞后广义系统反馈控制器设计的LMI方法.系统工程与电子技术. 2000, 22(11):35~38
    149 L. Yu, J. Chu. An LMI Approach to Guaranteed Cost Control of Linear Uncertain Time-delay Systems. Automatiac. 1999, 35(6):1155~1159
    150 S. Y. Xu, L. James, C. W. Yang, et al. An LMI Approach to Guaranteed Cost Control for Uncertain Linear Neutral Delay Systems. International Journal of Robust and Nonlinear Control. 2003, 13(1):35~53
    151 J. Chen, G. Gu, and N. C. Nett. A New Method for Computing Delay Margins for Stability of Linear Delay Systems. Systems & Control Letters. 1995, 26(2): 107~117.
    152 S.-I. Niculescu, P. Fu and J. Chen. On the Stability of Linear Delay-differential algebraic Systems: Exact Conditions via Matrix Pencil Solutions. Proc.45th IEEE Conf, Decision Control, San Diego, CA, 2006, 834~839
    153 G. D. Hu, M. Liu. Stability Criteria of Linear Neutral Systems with Multiple Delays. IEEE, Trans. Autom. Control. 2007, 52(3):720~724
    154 G.-Da. Hu, G.-Di Hu and X. Zou. Stability of Linear Neutral Systems with Multiple Delays: Boundary Criteria. Applied Mathematics and Computation. 2004, 148(3):707~715
    155 N. Olgac, R. Sipahi. An Exact Method for the Stability Analysis of Time-Delayed Lineartime-invariant (LTI) Systems. IEEE, Trans. Autom. Control. 2002, 47(5): 793~797.
    156 N. Olgac, R. Sipahi. An Improved Procedure in Detecting the Stability Robustness of Systems with Uncertain Delay. IEEE, Trans. Autom. Control. 2006, 51(7): 1164~1165
    157 R Sipahi, N. Olgac. Complete Stability Robustness of Third-order LTI Multiple Time-delay Systems. Automatica. 2005, 41(8):1413~1422
    158 R Sipahi, N. Olgac. A Unique Methodology for the Stability Robustness of Multiple Time Delay Systems. Systems & Control Letters. 2006, 55(10): 819~825
    159 R. Sipahi, N. Olgac. Stability Robustness of Retarded LTI Systems with Single Delay and Exhaustive Determination of their Imaginary Spectra. SIAM J. Control Optim.. 2006, 45(5):1680~1696
    160 A. F. Ergenc, N. Olgac and H. Fazelinia. Extended Kronecker Summation for Cluster Treatment of LTI Systems with Multiple Delays. SIAM J. Control Optim.. 2007, 46(1):143~155
    161 M. Abdel-Rohman, Time Delay Effects on Actively Damped Structures. ASCE, J. Eng. Mech. 1987, 113(11):1709~1719
    162 C. H. Loh, P. Y. Lin. Kalman Filter Approach for the Control of Seismic-induced Building Vibration Using Active Mass Damper System. The Structural Design of Tall Buildings. 1997, 6:209~224
    163 S. Mcgreevy, T. T. Soong and A. M. Reinhorn. An Experimental Study of Time Delay Compensation in Active Structural Control. Proc. SEM 6th Int. Modal Anal. Conf., Orlando, 1988:733~739
    164 H. Higashihara and I. Benjamin. Efficient Active Vibration Control Based upon Explicit Treatment of Actuator’s Limit. Bull. Earthquake Res. Inst.. Tokyo Univ. 1991, 66:517~552
    165 Y. Yamada, H. Iemura and K. Izuno. Phase-delayed Active Control of Structures with Identification of Random Earthquake Ground Motion. Proc. 8th Japan Earthquake Eng. Symp., Tokyo, 1990:1917~1922
    166 H Block, J. P. Kelly. Electro-rheology. Applied Physics. 1988,21(12): 1661~1677
    167 L. L. Chung, A. M. Reinhorn and T. T. Soong. Experiments on Active Control of Seismic Structures. ASCE, Journal of Engineering Mechanics. 1988, 114:241~256
    168 L. L. Chung, R. C. Lin, T. T. Soong. et al Experiments on Active Control for MDOF Seismic Structures. ASCE, Journal of Engineering Mechanics. 1989, 115(8):1609~1627
    169郭大蕾,周文,胡海岩.具有可调增益的模糊PID电液主动控制悬架.振动工程学报. 2001, 14(3):273~277
    170张春巍.结构振动的电磁驱动AMD控制系统及其相关理论与试验研究.哈尔滨工业大学博士学位论文. 2005
    171盖玉先,李旦,董申.电磁作动器动态特性对隔振性能的影响.航空精密制造技术. 2006, 36(4):1~4
    172盖玉先,滕燕,董申.超精密机床磁致伸缩作动器隔振系统.制造技术与机床. 2001, 1:29~40
    173 B. F. Spencer Jr. and S. Nagarajaiah. State of the act of Structural Control. ASCE Journal of Structural Engineering. 2003, 129(7):845~856
    174 T. T. Soong, A. M. Reinhorn and J. N. Yang. Active Response Control of Building Structures under Seismic Excitation. Proceedings of 9th World Conference on Earthquake Engineering, Tokyo, Japan, 1988, 8:453~458
    175 T. T. Soong, A. M. Reinhorn and Y. P. Wang. et al. Full Scale Implementation of Active Control I: Design and Simulation. Journal of Engineering Mechanics. 1991, 117(11):3516~3536
    176 A. M. Reinhorn, T. T. Soong. Full Scale Implementation of Active Control II: Installation and Performance. Journal of Engineering Mechanics. 1993, 119(6):1935~1960
    177 S. J. Dyke, B. F. Spencer. Implementation of an Active Mass Driver Using Acceleration Feedback Control. Microcomputers in Civil Engineering: Special Issue on Active and Hybrid Structural Control. 1996, 11:305~323
    178 J. N. Yang, J. C. Wu. Control of Sliding-Isolated Building Using Sliding Mode Control. Journal of Structural Engineering. 1996, 122(2):179~186
    179 C. H. Loh, P. Y. Lin and N. H. Chung. Experimental Verification of Building Control Using Active Bracing System. Earthquake Engineering and Structural Dynamics. 1999, 28:1099~1119
    180 J. C. Wu. Experiment on a Full-Scale Building Model using Modified Sliding Mode Control. Journal of Engineering Mechanics. 2003, 129(4):363~372
    181 B. F. Spencer and S. Nagarajaiah. State of the Art of Structural Control. Journal of Structural Engineering. 2003, 129(7):845~856
    182宋根由.结构主动控制(AMD)系统试验分析.哈尔滨建筑大学博士学位论文. 1996
    183田石柱,刘季.结构模型的AMD主动控制试验.地震工程与工程振动. 1999, 19(4):90~94
    184欧进萍,王刚,田石柱.海洋平台结构振动的AMD主动控制试验研究.高技术通讯. 2002, 10:85~90
    185刘庆和.直接驱动容积控制液压传动系统(DDVC系统), 2007
    186黎勉,罗勇武.交流变频调速在液压系统中的应用.机床与液压. 1997, (6):16~17
    187 H. Sun, T. George and C. Chiu. Nonlinear Observer Based Force Control of Electro-Hydraulic Actuators. Proceedings of the American Control Conference, San Diego, California. 1999: 764~768
    188 M. ITO, H. SATO and Y. Maeda. Direct Drive Volume Control of Hydraulic System and its application to the Steering System of Ship. FLUCOME’97, Hayama. 1999, 1:445~450
    189 Masanori ITO, Noriki, HiROSE. Main Engine Revolution Control for Ship with Direct Drive Volume Control System. ISME TOKYO, 2000, 2:26~31
    190徐兵,欧阳小平,杨华勇.配置蓄能器的变频液压电梯节能控制系统.浙江大学学报(工学版). 2002, (9):521~525
    191苏文海.电液混合动力机构及其位置控制系统研究.哈尔滨工业大学硕士学位论文. 2003
    192张健民,杨华勇.变频调速液压电梯.起重运输机械. 1998, (4): 30~32
    193陈钢,杨华勇.电机变频控制液压电梯系统的自校正自适应控制.浙江大学学报. 1997, 131(5):662~667
    194付永领,徐步力,那波.一种新型无伺服阀电液伺服执行器.机床与液压. 2002, (7):44~45
    195徐步力,付永领.一种新型电液作动系统.机床与液压. 2002, (5):52~53
    196姜继海,涂婉丽.曹健.直驱式容积控制电液伺服系统动态性能研究.液压与气动. 2005:13~16
    197姜继海,苏文海,张洪波.直驱式容积控制电液伺服系统及其在船舶舵机上的应用.中国造船. 2004, 45(4):54~57
    198许宏光,曹健,赵阳.直驱式电液伺服系统及其在注塑机上的应用.机床与液压. 2005, (3):119~120
    199庞雪蕾,唐芳琼.电流变液体的研究进展.化学进展. 2004, 16(6):849~857
    200 W.J. Wen, X.X. Hang. The Giant Electrorheological Effect in Suspensions of Nanoparticles. Nature Materials. 2003, 2(11):727~730
    201李金海.磁流变液及其智能阻尼器的研究与应用.哈尔滨工业大学博士学位论文. 2006
    202盛敬超.工程流体力学.北京:机械工业出版社, 1988
    203李军,付永领,王占林等.一种新型机载一体化电液作动器的设计与分析.北京航空航天大学学报. 2003, 29(12):1101~1104
    204 Stephen C. Jensen, Gavin D. Jenney and David Dawson. Flight Test Experience with an Electromechanical Actuator on the F-18 Systems Research Aircraft. NASA/H-2425, 2000
    205 N. Olgac, McFarland DM, B.T. Holm-Hansen. Position feedback-induced resonance: the delayed resonator. ASME Winter Annual Meeting, 1992, 38:113~119
    206 N. Olgac, B. T. Holm-Hansen. A novel active vibration absorption technique: delayed resonator. Journal of Sound and Vibration, 1994, 176(1):93~104
    207 N. Olgac, B. T. Holm-Hansen. Design considerations for delayed-resonator vibration absorbers. Journal of Engineering Mechanics, 1995, 121:80~89
    208赵艳影.时滞反馈控制对振动系统减振的影响.同济大学博士学位论文. 2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700