溪洛渡水电站出线竖井爆破振动效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对于竖井工程的施工开挖,最常采用的手段仍然是钻孔爆破法。岩石一混凝土材料在爆破冲击作用下的断裂破坏问题是一个非常重要的问题。爆破施工在完成岩体开挖的同时,不可避免地对井筒周围衬砌及岩体产生不利影响。井井筒衬砌是混凝土,爆破振动作用下可能导致混凝土与岩体胶结面脱离或者导致混凝土强度下降,使得衬砌效果降低,甚至失去效用。在爆炸产生的应力波作用下,混凝土衬砌会发生剥离现象。周围岩石介质损伤,原有裂隙的贯穿,新裂隙的产生与扩展,从而导致力学性质的劣化。当爆破振动达到一定强度后,有可能导致局部处于临界受力状态的竖井边墙岩体或混凝土衬砌发生局部坍塌和失稳,从而导致安全事故的发生。
     论文通过对溪洛渡水电站左岸出线竖井开挖爆破的振动速度现场测试,运用萨道夫斯基公式对测试数据进行了回归分析,得到了竖井爆破掘进中地震波传播衰减公式,运用衰减公式预测最高处测点速度,并与实测数据进行对比,结果显示竖井爆破振动存在高程放大效应,水平振速放大系数约为1.49~2.24,垂直振速放大系数约为1.78-2.73,相对高差越大,放大系数越大。高程对爆破振动波的放大效应明显。爆破振动速度还受到衰减效应,二者相互作用,爆破振动速度放大系数随高程增高而增大,当增加到一定临界值时,衰减因素占主要因素时,放大系数不再随高程增加而增大。通过对萨道夫斯基公式进行修正,得到考虑高程因素的衰减公式,修正公式线形关系显著,可以对存在高程放大效应的爆破振动速度进行预测。根据考虑高程的修正公示反求得到安全允许最大段药量,进而对爆破网络重新优化设计,降低爆破振动效应。
     运用动力有限元分析方法,对竖井结构在爆炸冲击波荷载作用下的结构响应进行数值模拟,对比数值模拟结果与现场测试结果。研究表明:相对高差不大时,数值模拟结果与实测结果整体趋势比较吻合,距离爆心0~15m,振动速度快速衰减,振动速度峰值衰减幅度超过总体幅度的60%,距离爆心超过30m,衰减不超过总幅度的10%。采用岩石一混凝土强度破坏准则对竖井构筑物在爆炸冲击荷载作用下的稳定性进行强度校核,为竖井后续施工安全提供安全判据。
The most common method used in shaft excavation was still drilling and blasting. Fracturing of rock and concrete materials under blasting impact was a very important issue. Concrete lining and rock around of the shaft was subjected to negative impact while complete the excavation of the shaft. The cement surface of rock and concrete may separated and the strength of concrete may decreased under blasting vibration effect, and the lining effect may drop or even useless. The concrete lining would peel off under blasting wave. The damage of surrounding rock and the original fracture run through and the generation and expansion of the new fracture may lead to the deterioration of mechanical properties. When the blasting vibration reaches certain intensity, it may lead to shaft wall rock or concrete lining which was at critical stress state partially collapse or instability, even lead to the occurrence of accidents.
     By field test on cable shaft of Xiluodu Hydropower Station, Regression analysis according to Sadaovsky empirical formula were using. The seismic wave propagation attenuation was obtained. Use the attenuation formula to forecast the vibration velocity of the highest measured point. Compare the Predicted value with the measured data, Result have shown that there is elevation amplification in shaft blasting vibration. The Magnification factor of Horizontal direction was 1.49~2.24,and the vertical direction was 1.78~2.73. The greater of the relative height, the magnification factor is larger. It was obvious of the blasting vibration wave amplification effects with elevation increase. Blasting vibration velocity is also subject to attenuation effects, the interaction between the two, blasting vibration velocity amplification factor increased with the increase of elevation, as to a certain critical value, the attenuation factor accounting for the main factor, the magnification factor no longer increases with elevation. With Sadaovsky empirical formula amended, attenuation formula was got which consider of the elevation factors, the linear relationship of corrected formula was significantly. It can predict blasting vibration velocity which has elevation amplification factor. The maximum security section of quantity of explosive was obtained according to corrected formula, and then re-optimizing the design of the blasting network, reducing blasting vibration effect.
     Dynamic FEM was used to simulate the blasting effect of the shaft. Shaft structures respond to the action of the blasting seismic wave was analyzed. The regression results were compared with the simulation results. Studies have shown that the numerical simulation results trends was fit with the regression trends when the relative height difference is not significant. The vibration velocity was attenuating fast between 0~15 meters, more than 60% of overall vibration velocity was attenuated. Less than 10% of overall vibration velocity was attenuated at 30 meters out of the blasting center. Strength failure criterion was used to check the stability of the shaft, and a reference for the safety of the following construction was provided.
引文
[1]张雪亮,黄树堂.爆破地震效应[M].北京:地震出版社,1981.56-78
    [2]Longerfors, Westerberg, and Kihlstrom. Ground vibration in blasting. Water power,1958: 334-421
    [3]林学文,王玉兰.隧洞的爆破地震动效应问题[J].岩石力学与工程学报,1997,16(3):274-278
    [4]边克信.爆破地震对地下构筑物的影响[J].中国矿山工程,1981,1(6):25-36.
    [5]吴从根.地下大爆破时地震效应对地下构筑物强度的影响.长沙矿山研究院,1979年12月,22-23.
    [6]李铮,朱瑞庚,胡再龙等.爆炸地震波振速的特征系数与衰减指数的研究[J].爆炸与冲击,1986,6(3):221-228.
    [7]王在泉,陆文兴.高边坡爆破开挖振动传播规律及质量控制[J].爆破,1994,11(3)
    [8]唐海,李海波.岭澳核电站工程基础开挖八婆震动衰减规律[J].岩石力学与工程学报,2008,25(4):88-91.
    [9]张志呈.爆破地震参量与振动持续时间[J].四川冶金,2002,24(3).1042-1045
    [10]Scott A. Ashford, Nicholas Sitar.Analysis of topographic amplification of inclined shear waves in a steep coastal bluff[J]. Bulletin of the Seismological Society of America,1997,87(3): 692-700.
    [11]徐桂兴,杨桂桐,马元林.边坡体内的爆破震动测试及其稳定性分析[JJ.金属矿山,1988,8(3)
    [12]T.H.TAN. Diffraction of time-harmonic elastic waves by a cylindrical obstacle[J].Applied Scientific Research,1976,32(2):97-144.
    [13]DATTA D, KISHORE N, N. Features of ultrasonic wave propagation to identify defects in composite materials modeled by finite element method[J].1996,29(4):213-223.
    [14]Baron,M.L, and A.T.Matthews, Diffraction of a Pressure wave by a cylindrical Cavity in an Elastic Medium[J],J.Appl.Mech,Vol.18,1961.
    [15]N.E.Yasilti, B.Unver.3D numerical modeling of longwall mining with top-coal caving[J].Rock Mechanics and mining sciences,2005,42(2):219-235.
    [16]Cundall PA,Ruest AR,Chitombo G.Evaluation of schemes to improve the efficiency of a complete model of blasting and rock fracture.in:Konietzky H,editor. numerical modeling in micromechanics via particle methods. Lisse:Swets&zeitlinger,2003.p.15-107.
    [17]AK Chopra. Dynamic of structures:theory and applications to earthquake engineering[M].北京:清华大学出版社,2005.
    [18]Ang K.K. Finite element analysis of wave propagation problems [D].the University of New south Wales,1986.
    [19]Javier Torano, Rafael Rodriguez, Isidro Diego, et al FEM models including randomness and its application to the blasting vibration prediction [J].Computer and Geotechnics,2006(33):15-28.
    [20]黄盛铨,刘君,孔宪京.强度折减DDA法及其在边坡稳定分析中的应用[J].岩石力学与工程学报,2008,27(1):2800-2806.
    [21]朱传云,戴晨.DDA方法在台阶爆破仿真模拟中的应用[J].岩石力学与工程学报,2002,21(2):2461~2464.
    [22]J. Henrych. The Dynamics of Explosion and Its Use[M]. New York:Elsevier Scientific Publishing Company,1979.
    [23]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1992.
    [24]戴俊.岩石动力学特性与爆破理论[M].北京:冶金工业出版社,2002.5.(DAI JunDynamic Behaviors and Blasting Theory of Rock[M]. Beijing:Metallurgical Industry Press, May,2002. (in Chinese))
    [25]陈宝心,杨勤荣编著.爆破动力学基础[M].武汉:湖北科技出版社,2005.2(Foundation of demolition dynamics [M]. Wuhan:Hubei Science and Technology Press,2005.2. (in Chinese)).
    [26]王礼立.应力波基础[M].北京:国防工业出版社,1993.4. (WANG Lili. Foundation of stress waves[M]. Beijing:National Defense Industry Press,1993.4. (in Chinese))
    [27]张正宇,张文煊,吴新霞,等.现代水利水电工程爆破[M].北京中国水利水电出版社.2003
    [28]郑强,林从谋,林丽群,黄金山,杨海书.小净距隧道爆破振动对山顶影响测试与分析[J].合肥工业大学学报,2009,32(10)
    [29]吴克刚,邱进芬,谢鹏.爆破地震危害及爆破振动测试[J].采矿技术,2009,9
    [30]沈昌贤.爆破荷载作用下高边坡振动响应试验研究[J].中国水运,2009,9(9)
    [31]平琦,马芹永,徐晓核.水库坝区竖井开挖爆破技术及振动测试分析[J].地下空间与工程学报,2009,5(3)
    [32]顾毅成.对应用爆破振动计算公式的几点讨论[J].爆破,2009,26(4)
    [33]徐海亮,张继春,郭建群.钻孔爆破中质点振动速度的预测公式探讨[J].爆破,2003,20(3):75-78.
    [34]卢文波,Hustrulid W.质点峰值振动速度衰减公式的改进[J].工程爆破,2002,8(3):1-4.
    [35]葛克水爆破振动的计算方法初探[J].探矿工程,2003(增刊):199-300
    [36]高善堂.爆破振动速度计算系数的合理确定[J].矿业研究与开发,1995,15(3):51-53.
    [37]张继春,彭琼芳.岩体爆破地震波衰减规律的现场试验与分析[J].辽宁工程技术大学学报,2001,20(4):399-401.
    [38]姚勇,何川.并设小净距隧道爆破振动响应分析及控爆措施研究[J].岩土力学,2009,30(9)
    [39]谭权,高荫桐,杨运嘏,姬海静.降低单孔爆破振动的试验研究[J].工程爆破,2009,15(2)
    [40]张建平.自由面数量对爆破振动规律影响实验研究[J].现代矿业,2009,7(7)
    [41]王新建.爆破振动公害及其控制研究[J].长安大学学报,2002,3(3):76-79
    [42]史太禄.爆破地震影响区域划分的探讨[J].矿业研究与开发,2001,21(2):45-47
    [43]钱七虎,陈士海.爆破地震效应[J].爆破,2004,21(2):1-5
    [44]吴立,陈建平,舒家华.论爆破的地震效应[J].爆破器材,1999,28(5):24-27
    [45]霍永基,王湘均.爆破震动效应及安全评定方法[A].土岩爆破文集[C].北京:冶金工业出版社,1981.
    [46]卢文波,董振华,赖世骤.确定周边控制爆破围岩影响深度的动力损伤计算方法[J].工程爆破,1996,2(4)
    [47]卢文波,陶振宇.预裂爆破中炮孔压力变化历程的理论分析[J].爆炸与冲击,199414(2):140-147.
    [48]许红涛,卢文波,周小恒.爆破震动场动力有限元模拟中爆破荷载的等效施加方法[J1.武汉大学学报(工学版),2008,41(1)
    [48]夏祥,李俊如,李海波,等.爆破荷载作用下岩体振动特征的数值模拟[J].岩士力学 2005,26(1)
    [49]张建华,李世禄,王玉杰,等.爆炸扩腔数值模拟及分析[J].武汉科技大学学报(自然科学版),2001,24(2):174~177
    [50]易长平,卢文波,舒大强,喻胜春.爆破振动对新浇混凝土灌注桩的数值模拟[J].爆破,2001,18(1)
    [51]陈萌,刘立新,彭少民.预拌混凝士各龄期抗拉和抗压强度换算关系试验研究[J].建筑结构,2010,32(2)
    [52]卢文波,赖世骧,朱传云,等.三峡工程岩石基础开挖爆破震动控制安全标准[J].爆炸与冲击,2001,21(1):67-71
    [53]张洪涛,舒大强.爆破震动衰减规律的影响因素[J].武汉大学学报,2005,38(1):79-82
    [54]杨伟林,杨柏坡.爆破地震动效应的数值模拟分析[J].地震工程与工程振动,2005,25(1): 8-13
    [55]谭多望,陈森华,刘文翰.有限元方法在爆破动力学中的应用[J].爆炸与冲击,1997,17(4): 340-346

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700