胰岛素对犬自体移植静脉的保护及其新生内膜过度增生抑制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     近年来,随着社会经济发展、人民生活水平提高、就业压力增大、生活方式改变、人口急速老龄化和易患因素发病率的逐年上升,心血管疾病已成为危害人们健康的“第一杀手”。由于科技进步,针对心血管疾病的药物和介入治疗取得了长足进步,然而,冠状动脉旁路移植术(CABG)和周围动脉旁路移植术在复杂心血管病变的处理上仍有着不可替代的作用。自体静脉移植物,尤其是大隐静脉移植物(SVG),由于方便取材和管段较长,是动脉旁路移植术中最常用移植物。但是,较之乳内动脉移植物(IMAG),较低的通畅率严重降低了SVG的临床应用价值。因此,如何提高SVG通畅率,仍是众多学者研究的热点。越来越多的临床证据表明极化液(GIK)/胰岛素应用可明显改善CABG术后糖尿病和非糖尿病患者的预后,而且,减少CABG术后糖尿病患者缺血性心血管事件的发生率。我们的前期实验发现GIK不仅对缺血/再灌注(I/R)心肌细胞有保护作用,而且对I/R冠脉内皮细胞具有显著的抗凋亡作用,而其中胰岛素起着关键作用,它是通过PI3K/Akt-eNOS-NO发挥对上述细胞的保护作用。研究发现动脉旁路移植术后早期,移植静脉的内皮细胞(ECs)和血管平滑肌细胞(VSMCs)的凋亡与早中期SVG的失败关系密切:ECs凋亡是SVG附壁血栓形成、新生内膜增生的始动因素,而VSMCs大量凋亡又可促进别的VSMCs增殖和迁移,导致新生内膜过度增生。有学者发现在非胰岛素抵抗状态下,应用胰岛素可抑制大鼠球囊损伤后颈动脉新生内膜过度增生。然而,极化液/胰岛素对I/R移植静脉有何影响,尤其是对I/R移植静脉ECs和VSMCs是否有直接的保护作用及其机制尚不明确。
     另外有学者发现较持久的胰岛素刺激可促进ECs中eNOS表达的上调,我们推测由此带来的血管内皮功能改善、一氧化氮(NO)释放增加,对动脉血管损伤后新生内膜过度增生有着抑制作用。但胰岛素应用后对在体的SVG新生内膜过度增生有无抑制效应尚未见报道。
     研究目的
     1.明确给予胰岛素治疗是否可以减轻在体I/R后移植静脉内皮细胞和血管平滑肌细胞的凋亡程度;
     2.探讨胰岛素对抗移植静脉ECs和VSMCs凋亡的信号转导机制,尤其是胰岛素与移植静脉PI3K/Akt信号转导途径之间的关系;
     3.观察动脉旁路移植术后短期内应用胰岛素是否对移植静脉新生内膜过度增生有抑制作用,并探讨可能机制。
     材料和方法
     杂种犬40只,雌雄不拘,体重12 ~ 15 kg,随机分为5组,每组8只,以3%戊巴比妥钠静脉注射麻醉后,行颈部单侧倒置颈外静脉-颈总动脉端端吻合模拟动脉旁路移植术模型,分别于移植静脉再灌注前5分钟直到之后4小时,给予以下4种液体以2 mL/kg/h静脉输注:(1)假手术组(Sham:0.9% NaCL);(2)生理盐水(Vehicle: 0.9%氯化钠);(3) GK(葡萄糖-钾液:葡萄糖: 250g/L,氯化钾:80 mmol/L);(4) GIK(葡萄糖: 250g/L,胰岛素: 60U/L,氯化钾:80 mmol/L);(5) GIK+Wort (Wortmannin,2.0μg/kg/h,再灌注前5 min开始,持续1 h静脉输注)。之后取出颈外静脉移植物行TUNEL凋亡染色和激活的caspase-3免疫组化染色,用Western blot法检测颈外静脉移植物中caspase-3活性、Akt和eNOS磷酸化水平。在另一组实验中,杂种犬16只,随机分为2组,每组8只,建立同样模型,分别于移植静脉再灌注前5分钟直到之后4小时,给予以下2种液体以2 mL/kg/h静脉输注:(1)生理盐水;(2) GIK;之后分别给予生理盐水0.5 mL和胰岛素4 U (并按此分为两组),2次/日,皮下注射,连续1月,于术后29天,腹腔注射BrdU(50 mg/kg),24小时后处死犬,取出静脉移植物和正常颈外静脉,分别行BrdU掺入和eNOS免疫组化染色,用Western blot法检测其中α-平滑肌肌动蛋白表达状况,用Verhoeff-van Gieson染色法衡量新生内膜增生程度。
     实验结果
     第一部分实验:
     1.术后短期内移植静脉中存在ECs和VSMCs的大量凋亡;
     2. GK处理可加重ECs和VSMCs的凋亡(与生理盐水组比较,P < 0.05 );
     3. GIK可显著降低I/R后移植静脉ECs和VSMCs的凋亡指数(分别与生理盐水组和GK组比较,P < 0.001)和中/内膜caspase-3的激活程度(分别与生理盐水组和GK组比较,P < 0.01);
     4. GK处理后明显抑制移植静脉中Akt和eNOS的磷酸化,并刺激caspase-3的活化(与生理盐水组比较,P < 0.05),GIK处理后则明显增强了Akt和eNOS的磷酸化(分别与生理盐水组和GK组比较,P < 0.001),并明显抑制caspase-3的活化(P < 0.05);加用Wortmannin后,GIK的这种效应被明显消除;
     第二部分实验:
     1.在术后1月,应用胰岛素可明显促进犬移植静脉中α-平滑肌肌动蛋白的表达(分别与犬正常颈外静脉和生理盐水组比较,P < 0.001);
     2.应用胰岛素后明显抑制犬移植静脉中/内膜的细胞增殖(细胞增殖指数11.15%±0.93%与生理盐水组的25.55%±2.02%比较,P < 0.001);
     3.应用胰岛素后明显促进犬移植静脉内膜eNOS的表达(分别与正常静脉组和生理盐水组比较,P < 0.05);
     4.胰岛素应用可减轻移植静脉新生内膜增生程度(中/内膜厚度136.51±8.97μm,与生理盐水组的185.92±8.34μm比较, P < 0.05)。
     结论
     1.再灌注期间高血糖症损伤自体移植静脉,应用胰岛素可有效保护自体移植静脉;
     2.胰岛素保护自体移植静脉的效应是通过PI3K-Akt信号转导途径抑制I/R后ECs和VSMCs凋亡来实现的;
     3.术后短期内连续应用胰岛素治疗可有效抑制自体移植静脉新生内膜过度增生;
     4.胰岛素减轻犬自体移植静脉新生内膜过度增生的效应可能有赖于抑制VSMCs的增殖和血管内皮功能的改善。
Background
     With the change of life-style, enhancement of social stress, increase of risk factors such as hypertension, dyslipidemia, diabetes mellitus and smoking, and aging of population, recent decades have seen that cardiovascular disease has been becoming the first killer of people in China. Regardless of a great progress of medicinal and intervational therapies, peripheral and coronary artery bypass grafing (CABG) is still in an indispensible position of treating complex and multiple vascular lesions because of demand of complete revascularization. However, compared with the arterial conduit, especially, internal mammary artery graft, saphenous graft (SVG) is more prone to neointimal hyperplasia and atherosclerosis, subsequently, easy to restenosis. Thus, a lower long-term patency of SVG than that of the arterial graft greatly limits its therapeutic property in arterial bypass grafting.
     Growing evidence from clinical and experimental studies indicates that endothelial cell (EC) injury resulting in endothelial dysfuction due to ischemia/repefusion (I/R) induced injury, increased stretch stress under arterialization initiates the thrombosis and neointimal hyperplasia in autologous vein grafts. Additionally, the death of vascular smooth muscle cells (VSMCs) can provoke migration of another VSMCs into tunica intima and infiltration of inflammatory cells into the vein graft wall, and cytokines and growth factors released from the inflammatory cells, in turn, inducing the migration and proliferation of VSMCs, resultly, enhancing neointimal hyperplasia.
     Considerable studies have demonstrated that glucose-insulin-potassium (GIK) /insulin remarkably improves the prognosis of pateints undergoing CABG; furthermore, a recent clinical trial indicated that insulin (GIK) infusion significantly reduces reccurent ischemic episodes in post-CABG patients with diabetes. Our previous studies have demonstrated that insulin, as the key compound of GIK, plays a pivotal role in inhibiting the apoptosis of both I/R cardiac myocytes and coronary arterial endothelial cells via PI3K/Akt-eNOS -NO cell survival signaling pathway. Importantly, recent studies indicated that insulin markedly inhibits neointimal hyperplasia induced by balloon injury in the rat carotid artery.
     Nevertheless, it is still to be evaluated whether GIK/insulin plays a protective role in vein grafts and inhibits neointimal hyperplasia in autologous vein grafts.
     Aims
     The purposes of this study were (1) to verify whether apoptotic phenomenon of ECs and VSMCs exists in vein grafts at the earlier stage of postoperation; (2) to assess whether the administration of GIK/ insulin plays a protective role in I/R vein grafts; and if so, (3) to elucidate the invovled mechanisms; (4) to investigate influence of a short-term continuous insulin administration on neointimal hyperplasia in autologous vein grafts.
     Materials and methods
     Thirty-two mongrel dogs were subjected to external jugular-carotid interposition bypass grafting, and underwent infusions of vehicle (saline), GIK (glucose, 250 g/L; insulin, 60 U/L; potassium, 80 mmol/L), GK or GIK plus wortmannin (i.v., 2.0μg/kg/min for 1 hour immediately after reperfusion) 5 minutes before and 4 hours after reperfusion, respectively (n = 8, in each group). Other 8 sham I/R dogs underwent the same operation except the excision of the external jugular vein. All dogs were euthanized at 4 hours postoperationally to harvest vein grafts. Active caspase-3 immunohistochemistry and TUNEL stainings were used to detect apoptosis of ECs and VSMCs in vein grafts, and Western blotting was used to determine Akt/phosphorylated Akt (pAkt), eNOS/phosphorylated eNOS (peNOS) and active caspase-3 levels in vein grafts. In a separate study, 16 dogs undergoing the same operation were randomly administered with subcutaneous injection of 0.5-mL saline or 4-U insulin two times per day for 30 days postoperatively(n = 8, in each group).At 1 month postoperationally, dogs were sacrificed for sampling vein grafts. BrdU incorporation immunohistochemistry and Verhoeff-Van Gieson stainings were used for cell proliferation and intimal/medial thickness assays. Western blotting of alpha-smooth muscle actin was used to assess the phenotype of VSMCs, and immunohistochemistry staining of eNOS was utilized to evaluate endothelial function of vein grafts.
     Results
     1. Much apoptosis of ECs and VSMCs existed in canine vein grafts at the early stage after reperfusion in vivo;
     2. Treatment with GK aggravated apoptosis of both ECs and VSMCs (P < 0.05 vs vehicle ); however, treatment with GIK significantly reduced the apoptosis of both ECs and VSMCs, evidenced by decrease of apoptotic index (P < 0.001 vs vehicle and GK) and inhibition of caspase-3 activation in canine vein grafts (P < 0.01 vs vehicle and GK);
     3. Treatment with GK attenuated the phosphorylation of Akt and eNOS in canine vein grafts (P < 0.05, respectively vs vehicle); meanwhile, treatment with GIK enhanced the phosphorylation of Akt and eNOS nearly by 2 and 2.5 times, respectively (P < 0.001, respectively vs vehicle). However, wortmannin largely abolished the GIK-elicited effects;
     4. At 1 month postoperatively, administration of insulin greatly increased alpha-smooth muscle actin expression in canine vein grafts (P < 0.001 vs normal control and vehicle groups, respectively );
     5. Administration of insulin inhibited the cell proliferation in canine vein grafts (11.15%±0.93% vs 25.55%±2.02%, P < 0.001 vs vehicle);
     6. Administration of insulin increased the eNOS expression in intima of canine vein grafts (P < 0.05, respectively vs vehicle);
     7. Administration of insulin inhibited significantly neointimal hyperplasia of canine vein grafts (intimal/medial thickness 136.51±8.97μm vs 185.92±8.34μm, P < 0.05 vs vehicle).
     Conclusions
     1. Hyperglycemia aggravates the injury to ischemic/reperfused canine autologous vein grafts through provoking the apoptosis of ECs and VSMCs.
     2. Insulin exerts its anti-apoptotic effect on ECs and VSMCs via PI3K/Akt pathway in canine autologous vein grafts.
     3. Administration of insulin at the early stage of postoperation plays an active role in preventing vein grafts from early degeneration.
     4. Postoperational insulin administration exerts an preventive effect on neointimal hyperplasia in autologous vein grafts probably through improvement of endothelial function and inhibition of the proliferation of VSMCs.
引文
1. De Caterina R, Zampolli A, Del Turco S, Madonna R, Massaro M. Nutritional mechanisms that influence cardiovascular disease. American Journal Clinical Nutrition 2006; 83: 421S-6.
    2. Bassuk SS, Manson JE. Epidemiological evidence for the role of physical activity in reducing risk of type 2 diabetes and cardiovascular disease. Journal of Applied Physiology 2005;99:1193-204.
    3. Mackay J, Mensah G. Atlas of Heart Disease and Stroke. 2004 WHO. Geneva.
    4. Rozanski A, Blumenthal JA, Kaplan J. Impact of psychological factors on the pathogenesis of cardiovascular disease and implications for therapy. Circulation 1999;99:2192-217.
    5. Law MR, Morris JK, Wald NJ. Environmental tobacco smoke exposure and ischaemic heart disease: an evaluation of the evidence. British Medical Journal 1997;315:973-980.
    6. De Backer G, Ambrosioni E, Borch-Johnsen K, Brotons C, Cifkova R, Dallongeville J, et al. European guidelines on cardiovascular disease prevention in clinical practice. Third joint task force of European and other societies on cardiovascular disease prevention in clinical practice. European Heart Journal 2003;24: 1601-10.
    7. Nathan DM, Cleary PA, Backlund JY, Genuth SM, Lachin JM, Orchard TJ,et al. Intensive diabetes treatment and cardiovascular disease in patients with type 1 diabetes. New England Journal of Medicine 2005; 353: 2643- 53.
    8. Kearney PM, Whelton M, Reynolds K, Muntner P, Whelton PK, He J. Global burden of hypertension: analysis of worldwide data. Lancet 2005; 365:217-223.
    9. World Health Organization. Obesity and Overweight. 2006 WHO Geneva.
    10.中国心血管病报告2006.北京:中国大百科全书出版社, 2006年,第一版.
    11. Lloyd-Jones D, Adams R, Carnethon M, De Simone G, Ferguson TB, Flegal K, et al. Heart disease and stroke statistics—2009 update: a reportfrom the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2009;119:e21-e181.
    12. Owens CD, Ho KJ, Conte MS. Lower extremity vein graft failure: a translational approach. Vasc Med 2008; 13: 63–74.
    13. Sabik III JF, Lytle BW, Blackstone EH, Houghtaling PL, Cosgrove DM. Comparison of saphenous vein and internal thoracic artery graft patency by coronary system. Ann Thorac Surg 2005;79:544–51.
    14. Loscher TF. Vascular biology of coronary bypass grafts.Coronary Artery Disease 1992; 3: 157-165.
    15. Frischknecht K,Greutert H,Weisshaupt C, Kaspar M,Yang Z,Lüscher TF,et al. Different vascular smooth muscle cell apoptosis in the human internal mammary artery and the saphenous vein:implications for bypass graft disease. J Vasc Res 2006;43:338-46.
    16. Gaudino M, Toesca A, Maggiano N, Pragliola C, Possati G.Localization of nitric oxide synthase type III in the internal thoracic and radial arteries and the great saphenous vein: a comparative immunohistochemical study. J Thorac Cardiovasc Surg 2003;125:1510-5.
    17. Davies MG, Hagen P-O. Pathophysiology of vein graft failure: a review. Eur J Vasc Endovasc Surg1995; 9: 7-18.
    18. Manchio JV, Gu J, Romar L, Brown J, Gammie J, Pierson III RN, et al. Disruption of graft endothelium correlates with early failure after off-Pump coronary artery bypass surgery.Ann Thorac Surg 2005;79:1991–8.
    19. Mills JL, Fujitani RM, Taylor SM. The characteristics and anatomic distribution of lesions that cause reversed vein graft failure: a five year prospective study. J Vasc Surg 1993; 17:195-204.
    20. Bonatti J, Oberhuber A, Schachner T, Zou Y, Hammerer-Lercher A, Mittermair R, et al. Neointimal Hyperplasia in Coronary Vein Grafts: Pathophysiology and Prevention of a Significant Clinical Problem. Heart Surg Forum 2004;7:72-87.
    21. Adcock GD. Vein grafts: implantation injury. J Vasc Surg 1989;10: 587-9.
    22. Quist WC, Logerfo FW. Prevention of smooth muscle cell phenotypic modulation in vein grafts: a histomorphometric study. J Vasc Surg 1992; 16: 225-31.
    23. Cavaliari N, Abebe W, Hunter WJ, et al. University of Wisconsin solution prevents intimal proliferation in canine autogenous vein grafts. VIIth Annual Meeting of the European Society for Vascular Surgery. Barcelona, Spain: 1993:44.
    24. Davies MG, Hagen P-O. Influence of perioperative storage solutions on long term vein graft function and morphology. Ann Vasc Surg 1994; 8: 150-7.
    25. Rao GN, Berk BC. Active oxygen species stimulate vascular smooth muscle cell growth and proto-oncogene expression. Circ Res 1992;70:593-9.
    26. Gao C, Ren C, Li D, Li L. Clopidogrel and aspirin versus clopidogrel alone on graft patency after coronary artery bypass grafting.Ann Thorac Surg. 2009;88:59-62.
    27. Gottlob R. The preservation of the venous endothelium by adissection without touching and by an atraumatic technique of vascular anastomosis. Min Chir 1977; 32: 693-700.
    28. Tsui JCS, Souza DSR, Filbey D, Karlsson MG, Dashwood MR.Localization of nitric oxide synthase in saphenous vein grafts harvested with a novel“no-touch”technique: Potential role of nitric oxide contribution to improved early graft patency rates. J Vasc Surg 2002;35:356-62.
    29. Souza DSR, Bomfim V, Skoglund H, Dashwood MR, Borowiec JW, Bodin L, et al. High early patency of saphenous vein graft for coronary artery bypass harvested with surrounding tissue. Ann Thorac Surg 2001;71:797– 800.
    30. Kurusz M, Christman EW, Derrick JR, Tyers GF, Williams EH. Use of cold cardioplegic solution for vein graft distention and preservation: a light and scanning electron microscopic study. Ann Thorac Surg 1981; 32:68-74.
    31. Bush HL, Mccabe ME, Nabseth DC. Functional injury of vein graft endothelium: role of hypothermia and distension. Arch Surg 1984; 119: 770-774.
    32. Angelini GD, Passani SR, Breckenr1dge IM, Newby AC. Nature and pressure dependence of damage induced by distension of human saphenous vein coronary artery bypass grafts. Cardiovasc Res 1987; 21: 902-907.
    33. Angelini GD, Christie MI, Bryan AJ, Lewis MJ. Surgical preparation impairs release of endothelium-derived relaxing factor from human saphenous vein. Ann Thorac Surg 1989; 48: 417-20.
    34. Dries D, Mohammad SF, Woodward SC, Nelson RIM. The influence of harvesting technique on endothelial preservation in saphenous veins. J Surg Res 1992; 52: 219-225.
    35. Solberg S, Larsen T, J?rgensen L, S?rlie D. Cold induced endothelial cell detachment in human saphenous vein grafts. J Cardiovasc Surg 1987; 28: 571-5.
    36. Cavallari N, Abebe W, Mingoli A, Sapienza P, Hunter III WJ, Agrawal DK, et al.Short-term preservation of autogenous vein grafts: effectiveness of University of Wisconsin solution.Surgery 1997;121:64-71.
    37. Holt CM, Francis SE, Newby AC, Rogers S, Gadsdon PA, Taylor T,et al. Comparison of response to injury in organ culture of human saphenous vein and internal mammary artery. Ann Thorac Surg 1993;55:1522-8.
    38. Kohli V, Selzner M, Madden JF, Bentley RC, Clavien PA. Endothelial and hepatocyte deaths occur by apoptosis after ischemia-reperfusion injury in the rat liver. Transplantation 1999; 67:1099–105.
    39. Ishikawa M, et al. Re-endothelialisation in autogenous vein grafts. Eur J Vasc Endovasc Surg 1996;11:105-11.
    40. Lee MY, Tse HF, Siu CW, Zhu SG, Man RY, Vanhoutte PM. Genomic changes in regenerated porcine coronary arterial endothelial cells. Arterioscler Thromb Vasc Biol 2007;27:2443-9.
    41. Miyakawa AA, Dallan LA, Lacchini S, Borin TF, Krieger JE. Human saphenous vein organ culture under controlled hemodynamic conditions. Clinics 2008;63:683-8. .
    42. Predel HG, Yang Z, von Segesser L, Turina M, Buhler FR, Luscher TF. Implications of pulsatile stretch on growth of saphenous vein and mammary artery smooth muscle. Lancet 1992;340:878-9.
    43. Berguer R, Higgins RF, Reddy DJ. Intimal hyperplasia: an experimental study. Arch Surg 1980;115:332-5.
    44. Nguyen HC, Grossi EA, LeBoutillier M III, Steinberg BM, Rifkin DB, Baumann FG, et al. Mammary artery versus saphenous vein grafts:assessment of basic fibroblast growth factor receptors. Ann Thorac Surg 1994;58:308-10.
    45. Noris M, Morigi M, Donadelli R, Aiello S, Foppolo M, Todeschini M, et al. Nitric oxide synthesis by cultured endothelial cells is modulated by flow conditions. Circ Res1995; 76:536-43.
    46. Bartlett FF, Rapp JH, Goldstone J, Ehrenfeld WK, Stoney RJ. Recurrent carotid stenosis: operative strategy and late results. J Vasc Surg 1987;5:452-6.
    47. Cox JL, Chiasson DA, Gotlieb AI. Stranger in a strange land: the pathogenesis of saphenous vein graft stenosis with emphasis on structural and functional differences between veins and arteries. Prog Cardiovasc Dis 1991;34:45-68.
    48. Allaire E, Clowes AW. Endothelial cell injury in cardiovascular surgery: the intimal hyperplastic response. Ann Thorac Surg 1997;63:582-91.
    49. Rodriguez E, Lambert EH, Magno MG, Mannion JD. Contractile smooth muscle cell apoptosis early after saphenous vein grafting. Ann Thorac Surg 2000;70:1145-52.
    50. Huang G, Luo C, Gu X, Wu Z, Wang Z, Du Z, et al.Mechanical Strain Induces Expression of C-Reactive Protein in Human Blood Vessels.J Pharmacol Exp Ther 2009; 330: 206 - 11.
    51. Hinokiyama K, Valen G, Tokuno S, Vedin JB, Vaage J. Vein graft harvesting induces inflammation and impairs vessel reactivity.Ann Thorac Surg 2006;82:1458–64.
    52. ZouY, Hu Y, Mayr M, Dietrich H, Wick G, Xu Q. Reduced neointima hyperplasia of vein bypass grafts in intercellular adhesion molecule-1–deficient mice. Circulation. 1999;100(suppl)I:333–4.
    53. Miyake T, Aoki M, Shiraya S, Tanemoto K, Ogihara T, Kaneda Y,et al. Inhibitory effects of NFkappaB decoy oligodeoxynucleotides on neointimal hyperplasia in a rabbit vein graft model. J Mol Cell Cardiol 2006;41:431-40.
    54. Fujita H, Banno H, Yamanouchi D, Kobayashi M, Yamamoto K, Komori K. Pitavastatin inhibits intimal hyperplasia in rabbit vein graft. J Surg Res 2008;148:238-43.
    55. Gandhi GY, Nuttall GA, Abel M D, Mullany CJ, Schaff HV, Williams BA, et al. Intraoperative hyperglycemia and perioperative outcomes in cardiac surgery patients. Mayo Clin Proc 2005;80:862-6.
    56. Lazar HL, Chipkin SR, Fitzgerald C A, Bao Y, Cabral H, Apstein CS. Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events. Circulation 2004; 109:1497-502.
    57. Carvalho G, Schricker T. Letter regarding article by Lazar et al, " Tight glycemic control in diabetic coronary artery bypass graft patients improves perioperative outcomes and decreases recurrent ischemic events ". Circulation 2004;110:e505 - e505.
    58. Chello M, Spadaccio C, Lusini M, Covino E, Blarzino C, De Marco F,et al. Advanced glycation end products in diabetic patients with optimized glycaemic control and their effects on endothelial reactivity: possible implications in venous graft failure.Diabetes Metab Res Rev. 2009 Jul;25:420-6.
    59. Brilakis ES, Lichtenwalter C, de Lemos JA, Roesle M, Obel O, Haagen D, et al.A randomized controlled trial of a paclitaxel-eluting stent versus a similar bare-metal stent in saphenous vein graft lesions the SOS (Stenting of Saphenous Vein Grafts) trial.J Am Coll Cardiol. 2009;53:919-28.
    60. Daida H, Yokoi H, Miyano H, Mokuno H, Satoh H, Kottke TE,et al. Relation of saphenous vein graft obstruction to serum cholesterol levels. J Am Coll Cardiol1995;25:193–7.
    61. Campeau L, Enjalbert M, Lesperance J, Bourassa MG, Kwiterovich P Jr,Wacholder S, et al. The relation of risk factors to the development of atherosclerosis in saphenous vein bypass grafts and the progression of disease in the native circulation: a study 10 years after aortocoronary bypass surgery. N Engl J Med 1984;311:1329–32.
    62. Mureebe L, Turnquist SE, Silver D. Inhibition of intimal hyperplasia by direct thrombin inhibitors in an animal vein bypass model. Ann Vasc Surg 2004;18:147–50.
    63. Huynh TT, Davies MG, Thompson MA, Ezekowitz MD, Hagen P, Annex BH. Local treatment with recombinant tissue factor pathway inhibitor reduces the development of intimal hyperplasia in experimental vein grafts. J Vasc Surg 2001;33:400–7.
    64. Nakao A, Murase N, Ho C, Toyokawa H, Billiar TR, Kanno S, et al. Biliverdin administration prevents the formation of intimal hyperplasia induced by vascular injury.Circulation 2005;112:587-91.
    65. Lemson MS, Tordoir JH, Daemen MJ, Kitslaar PJ. Intimal hyperplasia in vascular grafts. Eur J Vasc Endovasc Surg 2000;19:336–50.
    66. Tanner FC, Largiadèr T, Greutert H, Yang Z, Lüscher TF.Nitric oxide synthase gene transfer inhibits biological features of bypass graft disease in the human saphenous vein. J Thorac Cardiovasc Surg 2004;127:20-6.
    67. Sajgure, Choudhury A, Ahmed Z, Choudhury D. Angiotensin converting enzyme inhibitors maintain polytetrafluroethylene graft patency.Nephrol Dial Transplant 2007; 22: 1390 - 8.
    68. Wallitt EJW, Jevon M, Hornick PI. Therapeutics of vein graft intimal hyperplasia:100 years on.Ann Thorac Surg 2007;84:317–23.
    69. Muniyappa R, Montagnani M, Koh KK, Quon MJ. Cardiovascular Actions of Insulin. Endocrine Reviews 2007; 28:463–491.
    70. Li G, Barrett EJ, Wang H, Chai W, Liu Z. Insulin at physiological concentrations selectively activates insulin but not IGF-1 or insulin/IGF-1 hybrid receptors in endothelial cells. Endocrinology 146:4690–6.
    71. Isenovic ER, Fretaud M, Koricanac G, Sudar E, Velebit J, Dobutovic B,et al. Insulin regulation of proliferation involves activation of AKT and ERK 1/2 signaling pathways in vascular smooth muscle cells. Exp Clin Endocrinol Diabetes 2009;117:214-9.
    72. Chisalita SI,Arnqvist HJ. Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 2004; 286: E896 - E901.
    73. Kuboki K, Jiang ZY, Takahara N, et al. Regulation of endothelial constitutive nitric oxide synthase gene expression in endothelial cells and in vivo: a specific vascular action of insulin. Circulation. 2000;101:676–81.
    74. Zeng G, Quon MJ. Insulin-stimulated production of nitric oxide is inhibited by wortmannin: direct measurement in vascular endothelial cells. J Clin Invest. 1996;98:894–8.
    75. Steinberg HO, Paradisi G, Hook G, et al. Free fatty acid elevation impairs insulin-mediated vasodilation and nitric oxide production. Diabetes. 2000;49:1231–8.
    76. Toba H, Gomyo E, Miki S, Shimizu T, Yoshimura A, Inoue R,et al. Hyperinsulinaemia increases the gene expression of endothelial nitric oxide synthase and the phosphatidylinositol 3-kinase/Akt pathway in rat aorta. Clin Exp Pharmacol Physiol 2006;33:440-7.
    77. Rask-Madsen C, Ihlemann N, Krarup T, Christiansen E, Kober L, Nervil Kistorp C, et al. Insulin therapy improves insulin-stimulated endothelial function in patients with type 2 diabetes and ischemic heart disease.Diabetes 2001; 50: 2611-8.
    78. Vehkavaara S, Yki-Jarvinen H. 3.5 Years of insulin therapy with insulin glargine improves in vivo endothelial function in type 2 diabetes. Arterioscler. Thromb. Vasc. Biol 2004; 24: 325 - 30.
    79. Johansson GS, Arnqvist HJ. Insulin and IGF-I action on insulin receptors, IGF-I receptors, and hybrid insulin/IGF-I receptors in vascular smooth muscle cells. Am J Physiol Endocrinol Metab 2006; 291: E1124–30.
    80. Engberding N, San Martin A, Martin-Garrido A, Koga M, Pounkova L, Lyons E, et al. Insulin-like growth factor-1 receptor expression masks the antiinflammatory and glucose uptake capacity of insulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 2009; 29 : 408-15.
    81. Jamali R, Bao M, Arnqvist HJ. IGF-I but not insulin inhibits apoptosis at a low concentration in vascular smooth muscle cells. Journal of Endocrinology 2003;179:267-74.
    82. Goetze S, Blaschke F, Stawowy P, Bruemmer D, Spencer C, Graf K. TNFalpha inhibits insulin's antiapoptotic signaling in vascular smooth muscle cells. Biochem Biophys Res Commun 2001;287:662-70.
    83. Jacob A, Molkentin JD, Smolenski A, Lohmann SM, Begum N. Insulin inhibits PDGF-directed VSMC migration via NO/ cGMP increase of MKP-1 and its inactivation of MAPKs. Am J Physiol Cell Physiol 2002; 283: C704 - 13.
    84. Zhuang D, Pu Q, Ceacareanu B, Chang Y, Dixit M, Hassid A. Chronic insulin treatment amplifies PDGF-induced motility in differentiated aortic smooth muscle cells by suppressing the expression and function of PTP1B. Am J Physiol Heart Circ Physiol 2008; 295: H163–73.
    85. Potenza MA, MarasciuloFL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ,et al. Insulin resistance in spontaneously hypertensive rats is associatedwith endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol 2005;289: H813-H822.
    86. Wang CCL, Gurevich I, Draznin B.Insulin affects vascular smooth muscle cell phenotype and migration via distinct signaling pathways. Diabetes 2003;52:2562–9.
    87. Huang B, Dreyer T, Heidt M, Yu JCM, Philipp M, Hehrlein FW, et al. Insulin and local growth factor PDGF induce intimal hyperplasia in bypass graft culture models of saphenous vein and internal mammary artery. Eur J Cardiothorac Surg 2002; 21:1002–8.
    88. Leonetti F, Iozzo P, Giaccari A, Sbraccia P, Buongiorno A, Tamburrano G, Andreani D. Absence of clinically overt atherosclerotic vascular disease and adverse changes in cardiovascular risk factors in 70 patients with insulinoma. J Endocrinol Invest 1993;16:875-80.
    89. Mellbin LG, Malmberg K, Norhammar A, Wedel H, Rydén L; DIGAMI 2 Investigators.The impact of glucose lowering treatment on long-term prognosis in patients with type 2 diabetes and myocardial infarction: a report from the DIGAMI 2 trial. Eur Heart J 2008;29:166-76.
    90. Fath-Ordoubadi F, Beatt KJ. Glucose-insulin-potassium therapy for treatment of acute myocardial infarction: an overview of randomized placebo-controlled trials. Circulation 1997;96:1152–6.
    91. Diaz R, Paolasso EA, Piegas LS, et al. On behalf of the ECLA Collaborative Group. Metabolic modulation of acute myocardial infarction. The ECLA glucose-insulin-potassium pilot trial. Circulation 1998;98:2227–34.
    92. Malmberg K, Ryden L, Efendic S, Herlitz J, Nicol P, Waldenstr?m A, et al. Randomized trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 1995;26:57–65.
    93. Albacker TB, Carvalho G, Schricker T, Lachapelle K. Myocardial protection during elective coronary artery bypass grafting using high-dose insulin therapy.Ann Thorac Surg 2007;84:1920–7.
    94. Furnary AP, Gao G, Grunkemeier GL, Wu Y, Zerr KJ, Bookin SO, et al.Continuous insulin infusion reduces mortality in patients with diabetesundergoing coronary artery bypass grafting. J Thorac Cardiovasc Surg 2003;125:1007-21
    95. Jonassen AK, Brar BK, Mjos OD, Sack MN, Latchman DS, Yellon DM. Insulin administered at reoxygenation exerts a cardioprotective effect in myocytes by a possible anti-apoptotic mechanism. J Mol Cell Cardiol 2000;32:757–64.
    96. Jonassen AK, Sack MN, Mjos OD, Yellon DM. Myocardial protection by insulin at reperfusion requires early administration and is mediated via Akt and p70s6 kinase cell-survival signaling. Circ Res 2001;89:1191–8.
    97. Gao F, Gao E, Yue TL, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion: the roles of PI3-kinase, Akt, and endothelial nitric oxide synthase phosphorylation. Circulation 2002;105:1497–502.
    98. Ma H, Zhang HF, Yu L, Zhang QJ, Li J, Huo JH,et al. Vasculoprotective effect of insulin in the ischemic/ reperfused canine heart: role of Akt-stimulated NO production. Cardiovasc Res 2006;69:57– 65.
    99. Kim T, Chan KK, Dhaliwall JK, Huynh N, Suen R, Uchino H, Naigamwalla D, Bendeck MP, Giacca A. Anti-atherogenic effect of insulin in vivo. J Vasc Res 2005;42:455-62.
    100.Breen DM, Chan KK, Dhaliwall JK, Ward MR, Al Koudsi N, Lam L,et al. Insulin increases reendothelialization and inhibits cell migration and neointimal growth after arterial injury. Arterioscler Thromb Vasc Biol 2009;29:1060-6.
    101. Murthy SN,Sukhanov S, McGee J, Greco JA, Chandra S, Delafontaine P, Kadowitz PJ, McNamara DB, Fonseca VA. Insulin glargine reduces carotid intimal hyperplasia after balloon catheter injury in Zucker fatty rats possibly by reduction in oxidative stress. Mol Cell Biochem 2009 Apr 10. [Epub ahead of print]
    102. Chaudhuri A, Janicke D, Wilson MF, Tripathy D, Garg R, Bandyopadhyay A, et al. Anti-inflammatory and pro-fibrinolytic effect of insulin in acute ST-segment-elevation myocardial infarction. Circulation 2004;109:849–54.
    103. Langouche L, Vanhorebeek I, Vlasselaers D, et al. Intensive insulin therapy protects the endothelium of critically ill patients. J Clin Invest 2005;115:2277– 86.
    104. Visser L, Zuurbier CJ, Hoek FJ, Opmeer BC, de Jonge E, de Mol BA, et al. Glucose, insulin and potassium applied as perioperative hyperinsulinaemic normoglycaemic clamp: effects on inflammatory response during coronary artery surgery. Br J Anaesth 2005;95:448–57.
    105. Van den Berghe G, Wouters P, Weekers F, Verwaest C, Bruyninckx F, Schetz M, et al. Intensive insulin therapy in the critically ill patients. N Engl J Med 2001;345:1359-67.
    106. Koskenkari JK, Kaukoranta PK, Rimpilainen J, et al. Anti- inflammatory effect of high-dose insulin treatment after urgent coronary revascularization surgery. Acta Anaesthesiol Scand 2006;50:962–9.
    107. Pepys MB, Hirschfield GM, Tennent GA, et al. Targeting C-reactive protein for the treatment of cardiovascular disease. Nature 2006;440:1217–21.
    108. Vanhorebeek I, De Vos R, Mesotten D, Wouters PJ, De Wolf-Peeters C, Van den Berghe G. Protection of hepatocyte mitochondrial ultrastructure and function by strict blood glucose control with insulin in critically ill patients. Lancet 2005;365:53–9.
    109. de Oliveira C, Colette C, Monnier L, Descomps B, Pares-Herbute N. Insulin alters nuclear factor-κB and peroxisome proliferator-activated receptor-γprotein expression induced by glycated bovine serum albumin in vascular smooth-muscle cells. J Lab Clin Med 2005;145:144-50.
    110. Mohanty P, Hamouda W, Garg R, Aljada A, Ghanim H, Dandona P. Glucose challenge stimulates reactive oxygen species (ROS) generation by leukocytes. J Clin Endocrinol Metab 2000;85:2970–3.
    111. Dhindsa S, Tripathy D, Mohanty P, Ghanim H, Syed T, Aljada A, et al. Differential effects of glucose and alcohol on reactive oxygen species generation and intranuclear nuclear factor-kappaB in mononuclear cells. Metabolism 2004; 53:330–4.
    112. Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyper- glycemia in humans: role of oxidative stress. Circulation 2002;106:2067–72.
    113. Monnier L, Mas E, Ginet C, Villon L, Cristol JP, et al. Activation of oxidative stress by acute glucose fluctuations compared with sustained chronic hyperglycemia in patients with type 2 diabetes. JAMA 2006;295:1681–7.
    114. Song P, Wu Y, Xu J, Xie Z, Dong Y, Zhang M,et al. Reactive nitrogen species induced by hyperglycemia suppresses Akt signaling and triggers apoptosis by upregulating phosphatase PTEN (phosphatase and tensin homologue deleted on chromosome 10) in an LKB1-dependent manner. Circulation 2007;116:1585-95.
    115. Su H, Sun X, Ma H, Zhang HF, Yu QJ, Huang C,et al.Acute hyperglycemia exacerbates myocardial ischemia/reperfusion injury and blunts cardioprotective effect of GIK. Am J Physiol Endocrinol Metab 2007;293:E629-35.
    116. Capes SE, Hunt D, Malmberg K, Gerstein HC.Stress hyperglycaemia and increased risk of death after myocardial infarction in patients with and without diabetes: a systematic overview. Lancet 2000; 355:773-8.
    117. Ascione R, Rogers CA, Rajakaruna C, Angelini GD. Inadequate blood glucose control is associated with in-hospital mortality and morbidity in diabetic and nondiabetic patients undergoing cardiac surgery. Circulation 2008; 118: 113- 23.
    118. Aljada A, Ghanim H, Saadeh R, Dandona P. Insulin inhibits NFkappaB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metab 2001;86:450–3.
    119. Das UN. Is insulin an antiinflammatory molecule? Nutrition 2001; 17:409-3.
    120. Aljada A, Ghanim H, Mohanty P, Kapur N, Dandona P. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr)-1 expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002; 87:1419–22.
    121. Dandona P, Aljada A, Mohanty P, Ghanim H, Hamouda W, Assian E, et al. Insulin inhibits intranuclear nuclear factor kappaB and stimulates IkappaB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001;86:3257– 65.
    122. Ljungqvist O, Nygren J, Thorell A.Insulin resistance and elective surgery. Surgery 2000; 128:757-60.
    123. Rao V, Merante F, Weisel RD, Shirai T, Ikonomidis JS, Cohen G,Tumiati LC, Shiono N, Li R-K, Mickle DAG, Robinson BH: Insulin stimulatespyruvate dehydrogenase and protects human ventricular cardiomyocytes from simulated ischemia. J ThoracCardiovasc Surg 1998;116:485-94.
    124. Nygren J, Carlsson-Skwirut C, Brismar K, Thorell A, Ljungqvist O, Bang P: Insulin infusion increases levels of free IGF-1 and IGFBP-3 proteolytic activity in patients after surgery. Am J Physiol 2001; 281:E736-E41.
    125. Aikin R, Rosenberg L, Maysinger D.Phosphatidylinositol 3-kinase signaling to Akt mediates survival in isolated canine islets of Langerhans. Biochem Biophys Res Commun. 2000;277:455-61.
    126. Scherrer U, Randin D, Vollenweider P, Vollenweider L, Nicod P. Nitric oxide release accounts for insulin’s vascular effects in humans. J Clin Invest 1994;94:2511–5.
    127. Li R, Wang WQ, Zhang H, Yang X, Fan Q, Christopher TA, et al. Adiponectin improves endothelial function in hyperlipidemic rats by reducing oxidative/nitrative stress and differential regulation of eNOS/iNOS activity. Am J Physiol Endocrinol Metab 2007 ;293:E1703-8.
    128. Zhang HX, Zang YM, Huo JH, Liang SJ, Zhang HF, Wang YM,et al. Physiologically tolerable insulin reduces myocardial injury and improves cardiac functional recovery in myocardial ischemic/reperfused dogs. J Cardiovasc Pharmacol 2006;48:306-13.
    129. Jin ZG, Wong C, Wu J, Berk BC.Flow shear stress stimulates Gab1 tyrosine phosphorylation to mediate protein kinase B and endothelial nitric-oxide synthase activation in endothelial cells. J Biol Chem 2005;280:12305-9.
    130. Sasaki Y, Suehiro S, Becker AE, Kinoshita H, Ueda M. Role of endothelial cell denudation and smooth muscle cell dedifferentiation in neointimal formation of human vein grafts after coronary artery bypass grafting: therapeautic implications. Heart 2000; 83:69-75.
    131. Zhang WD, Bai HZ, Sawa Y, Yamakawa T, Kadoba K, Taniguchi K, et al. Association of smooth muscle cell phenotypic modulation with extracellular matrix alterations during neointima formation in rabbit vein grafts. J Vasc Surg 1999;30:169-83.
    132. Allard D, Figg N, Bennett MR, Littlewood TD. Akt regulates the survival of vascular smooth muscle cells via inhibition of FoxO3a and GSK3. J Biol Chem 2008;283:19739-47.
    133. Qiujun Yu, Ning Zhou, Jiefang Bian, Xiaoke Hao, Yuemin Wang, Wenyi Guo, Haichang Wang, Feng Gao. Insulin-titrated maintenance of normoglycemia and glycemia-independent cardioprotection in ischemic/ reperfused dogs. Circulation 2008;118:S498-9.
    134. Hall JL, Matter CM, Wang X, Gibbons GH.Hyperglycemia Inhibits Vascular Smooth Muscle Cell Apoptosis Through a Protein Kinase C–Dependent Pathway.Circ Res. 2000;87:574-580.
    135. Zhang Q, Paria BC. Importance of uterine cell death, renewal, and their hormonal regulation in hamsters that show progesterone-dependent implantation. Endocrinology 2006;147:2215-27.
    136. Wang CCL, Goalstone ML,Draznin B. Molecular mechanisms of insulin resistance that Impact cardiovascular biology. Diabetes 2004;53:2735–40.
    137. Hassantash S-A, Bikdeli B, Kalantarian S, Sadeghian M, Afshar H. Pathophysiology of aortocoronary saphenous vein bypass graft disease. Asian Cardiovasc Thorac Ann 2008;16:331-6.
    138. Nakaki T, Nakayama M, Kato R. Inhibition by nitric oxide and nitric oxide-producing vasodilators of DNA synthesis in vascular smooth muscle cells.Eur J Pharmacol Mol Pharmacol 1990;189:347-53.
    139. Cook SJ, McCormic F.Inhibition by cAMP of Ras-dependent activation of Raf. Science 1993; 262:1069-72.
    140. Ignarro LJ,Buga GM,Wei LH, Bauer PM, Wu G, del Soldato P. Role of the arginine-nitric oxide pathway in the regulation of vascular smooth muscle cell proliferation.Proc Natrl Acad Sci USA 2001;98:4202-8.
    141. Shi Y, O'Brien JE, Fard A, Mannion JD, Wang D, Zalewski A.Adventitial myofibroblasts contribute to neointimal formation in injured porcine coronary arteries. Circulation 1996;94:1655-64.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700