立井井壁温度应力三维数值模拟分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自1987年以来,我国南黄淮地区的矿区,共有80多个井筒发生井壁破裂。近20多年来研究者对井筒破裂机理进行了诸多研究,产生了许多观点和认识,然而温度应力在井筒破裂方面的研究比较少,甚至被忽略。应该加强温度应力的研究,进一步明确温度应力在井壁破裂中所起的作用,这在理论和实践上均具有一定的意义。
     首先,论文结合热量传递的三种基本方式分析了井筒温度场,详细介绍了强迫对流换热模型和热—应力耦合理论。接着,根据临涣矿区的地质环境和矿区井筒破裂情况,以临涣矿副井为原型建立地质模型,分析并给出了矿区井壁和地层物理力学参数、热力学参数以及矿区气温资料。在此基础上,综合考虑井壁温度季节性变化、大气与井壁之间的对流换热和井壁与围岩之间的热传导等因素,以临涣矿副井为原型,采用FLAC~(3D)软件,运用强迫对流—热传导模型和Mohr-Coulomb本构模型,耦合模拟了立井井壁温度与季节性气温变化的对应关系,进而分析了温度应力场分布的动态变化规律。
     结果表明:(1)受气温季节性变化影响,井壁和壁后地层中温度和应力随季节呈周期性变化,温度变化滞后效应明显,应力变化滞后约10天。(2)基岩风化带以上地层井壁中由温度引起的附加应力以竖向应力为主,环向应力较小,径向应力很小。最大主应力约等于竖向应力,与井筒轴向夹角为11.9°~14.25°。进入基岩后,环向应力逐渐增大,竖向应力略微回落;最大主应力受竖、环向应力共同控制,与井筒轴向夹角增大至43.8°~49.5°。(3)4~10月在底含、风化带与基岩交界面附近井壁中最大主应力相对集中,保持在-4.0MPa以上,其中6~8月更是达到-7.0MPa以上。
Since 1987, there has been more than 80 shaft wall ruptures in mining area of Huanghuai, South China. During this nearly 20 years many researchers have been studying on the shaft wall rupture mechanism and lots of perspectives and understandings have come into being. However temperature stress studies on shaft wall were very limited, even ignored. We should strengthen temperature stress studies, and define its role in the shaft wall rupture. There are certain significances in both theory and practice.
     First, shaft temperature field is analyzed combining the three basic ways of heat transfer and details on the model of forced convective heat transfer and thermal - stress coupling theory are given. With Linhuan auxiliary mine shaft as the prototype, a geological model is built based on the geological environment and shaft wall ruptures. Then the physical and mechanical parameters, thermodynamic parameters and temperature data of the shaft wall and strata are analyzed and given. Considering many factors including seasonal temperature changes of the air, convective heat transfer between shaft wall and air and heat conduction between shaft wall and rock, the forced convection - heat conduction model and the Mohr-Coulomb constitutive model are used in FLAC~(3D) to simulate the corresponding relations between the temperature of shaft wall and the seasonal temperature changes which reached the dynamic law of temperature stress distribution in shaft wall.
     The above work shows that: (1) the temperature and stress in the shaft wall and strata cyclically change with the seasons affected by the seasonal temperature changes. Hysteresis Effect of temperature is remarkable and temperature stress delays about 10 days. (2) Above the mantlerock, the Vertical temperature stress in the shaft is dominating, and the Tangential stress is less, and the Radial stress is relatively negligible. The Maximum principal stress equal to Vertical stress approximately, which makes an angle of about 11.9°to 14.25°with the shaft axis. Under the mantlerock, the Tangential stress increases gradually and the Vertical stress goes slightly down. Therefore the Maximum principal stress comes to be controlled by the Vertical and Tangential stress together, which makes the angle increase to about 43.8°to 49.5°with the shaft axis. (3) From Apr to Oct the Maximum principal stress in the shaft is relatively concentrated, maintained above -4.0MPa, which is near the bottom aquifer and the interface with the mantlerock and the bedrock. It is above -7.0 MPa from Jun to Aug.
引文
[1] 滕晓萌.中国煤炭面临极限 能源结构面临调整.北京:http://www.in-en.com/coal/html/coal-1240124016134346.html,2007,11
    [2] 叶湘.冻结法凿井的若干问题研究[J].中国煤炭,2000,26(1):23-27
    [3] 葛晓光.南黄淮新生界底部含水层沉积特征和工程性质[M].合肥:合肥工业大学出版社,2003:105,56-57
    [4] 汪仁和,吕渊.破裂井筒治理方法的评述与选择[J].山东矿业学院学报,1997,16(2):143-147
    [5] 刘环宇,王思敬,倪兴华.煤矿立井井筒非采动破裂治理新方法设计[J].河海大学学报,2005,3(2):190-193
    [6] 王建军,骆念海,白振明.开采引起的层间滑动与黄淮地区煤矿井筒破裂关系研究[J].岩石力学与工程学报,2003,22(7):1072-1077
    [7] 赵志根.井壁破裂研究中应注意的几个问题[J].西部探矿工程,2004,(8):125-126
    [8] 李文平.深部土层失水变形时土与井壁相互作用试验与理论研究[J].岩土工程学报,2000,22(4):475-480
    [9] 陆孝军.立井井壁破裂的原因分析[J].煤炭科学技术,1994,22(12):44-45
    [10] 崔广心.特殊地层条件竖井井壁破裂机理[J].建井技术,1998,19(2):29-32
    [11] 周国庆,崔广心,程锡禄,等.地下工程问题的三轴模拟试验及其应用[J].岩土工程学报,1999,21(6):715-718
    [12] 张印,周玉华,董永青.深厚表土层中的井壁破裂与治理[J].青岛建筑工程学院学报,2001,22(2):10-12
    [13] Yao Zhishu, Yang Junjie, Sun Wenruo. Experimental study on sliding shaft lining mechanical mechanisms under ground subsidence conditions[J]. Journal of Coal Science andEngineering, 2003, 9(1): 95-99
    [14] 李文平,于双忠.深厚表土中煤矿立井非采动破裂的研究[J].工程地质学报,1995,3(1):45-55
    [15] 张建怡,卞政修.黄淮地区新构造活动与井壁损坏[J].煤炭科学技术,1992,(3):31-34
    [16] 周治安.厚松散覆盖层底部机械潜蚀与黄淮地区井筒破裂[J].煤炭科学技术,1993,(9):45-50
    [17] 李定龙,周治安.临涣矿区水文工程地质条件与井筒破裂关系探讨[J].淮南工业学院学报,1994,14(1):31-39
    [18] 刘盛东.矿山振动与立井井筒破裂分析[J].淮南矿业学院学报,1994,14(2):20-25
    [19] 汪仁和.临涣煤矿井壁应力监测与井筒附加力计算[J].煤,1997,6(4):23-26
    [20] 经来旺.表土沉降对井壁强度的影响[J].山东科技大学学报,2000,19(2):104-108
    [21] 李炜.立井井筒的温度应力作用与控制[J].矿山压力与顶板管理,1998,(2):45-47
    [22] 陆军.立井基岩段混凝土井壁温度应力分析[J].中国矿业,2006,15(7):77-79
    [23] 谢洪彬.立井井筒基岩段井壁破坏原因分析[J].煤炭科学技术,2000,28(4):50-51,55
    [24] 许富贵,蒋和洋,倪晓燕,等.热—应力耦合作用下深部软岩隧洞大变形三维数值模拟分析[J].工程建设,2007,39(2):5-9
    [25] 刘波,韩彦辉.FLAC原理、实例与应用指南.北京:人民交通出版社,2005:106-110
    [26] Itasca Consulting Group, Inc. FLAC~(3D) Version 2.1 Online Manual Thermal Option[M]. Minneapolis: ItascaPress, 2003
    [27] 郑颖平.井壁中温度应力的初步研究[D].淮南:安徽理工大学资源与环境工程系,2006
    [28] 李文平.深部土体失水变形及诱发井筒破裂的机理研究[D].徐州:中国矿业大学地质系,1995
    [29] 鲁普泉,刘百臣.立井井壁断裂综合治理[J].煤炭科学技术,1995,23:9-12
    [30] 曹中初,韩宝平,郑世书.临涣矿区井筒破裂影响因素浅析[J].矿业世界,1998,1:20-23
    [31] 黄定华,喻怀君,马嘉容,等.临涣矿区地表沉降对井壁破裂的影响[J].煤炭科学技术,1991,7:47-50
    [32] 许延春,耿德庸.应用有限元研究临涣矿区地层非采动变形沉降[J].煤炭学报,1995,20(6):48-54
    [33] 中国气象局.中国地面国际交换站气候资料旬值数据集.北京:中国气象科学数据共享服务网(http://cdc.cma.gov.cn/shuju/index3.jsp?tpcat=SURF&dsid=SURF_CLI_CHN_MUL_TEN_CES),2005,07
    [34] 史宇,郭丰永,毛毳,等.FLAC3D在土体固结模拟中的应用[J].天津城市建设学院学报,2006,12(1):18-22
    [35] 许光泉.地下水位下降对井壁破坏的影响分析[J].现代地质,1999,13(3):359-362
    [36] 崔广心,杨维好,吕恒林,等.深厚表土层中的冻结壁和井壁[M].徐州: 中国矿大出版社,1998:18-19
    [37] 刘文燕,黄鼎业,华毅杰.混凝土表面对流换流系数测试研究[J].建筑材料学报,2004,7(2):232-235
    [38] 白冰.岩土颗粒介质非等温—维热固结特性研究[J].工程力学,2005,22(5):186-191
    [39] 肖树芳,杨淑碧.岩体力学[M].北京:地质出版社,1987:96
    [40] 姚武,郑欣.配合比参数对混凝土热膨胀系数的影响[J].同济大学学报(自然科学版),2007,35(1):77-81,87
    [41] 位云生,胡永全,赵金洲.井筒与地层非稳态换热数值计算方法[J].天然气工业,2005,25(11):66-68
    [42] 吴国挺,章明灿.补偿收缩混凝土的工程应用[J].浙江建筑,2000,(4):20-21
    [43] 王铁行,刘自成,卢靖等.黄土导热系数和比热的实验研究[J].岩土力学,2007,28(4):655-658
    [44] 刘光廷,黄达海.混凝土湿热传导与湿热扩散特性试验研究(Ⅱ)—试验成果及其分析[J].三峡大学学报(自然科学版),2002,24(2):97-100,106
    [45] 张建荣,刘照球.混凝土对流换热系数的风洞实验研究[J].土木工程学报2006,(9):39-42,61
    [46] 李文平,于双忠,王柏荣,等.煤矿区深部粘性土吸附结合水含量测定及其意义[J].水文地质工程地质,1995,(3):31-34
    [47] 龙荣生.矿井地质学[M].北京:煤炭工业出版社,1991:105
    [48] 汪峰,王雷,于宝海,等.高温矿井风流热力参数测定及其变化规律和热湿源的分析[J].煤矿现代化 2004,(3):51-53
    [49] 张平文,李铁军.数值分析[M].北京:北京大学出版社,2007:57
    [50] 徐延春,耿德庸,官云章.深厚含水松散层的工程特性及其在矿区的应用[M].北京:煤炭工业出版社,2003:165
    [51] 胡汉平,程文龙.热物理学概论[M].合肥:中国科学技术大学出版社,2006:219-268
    [52] David Muir Wood. Geotechnical Modelling[M]. Abbots Leigh: Bristol University Press, 2004
    [53] 百度百科.边界层词条.北京:http://bk.baidu.com/view/268366.htm, 2007
    [54] Carslaw, HS and Jaeger, JC. Conduction of Heat in Solids (2nd edition) [M]. Oxford: Clarendon Press, 1959

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700