绵羊瘤胃主要纤维降解细菌的分离鉴定及不同氮源对其纤维降解能力的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究从内蒙古地区绵羊瘤胃内容物中分离主要纤维素降解细菌并对其进行了系统全面的鉴定。对其中几株典型的、具有代表性的主要纤维素降解细菌的生长特性、纤维降解特性进行了研究。在此基础上研究氮源对瘤胃主要纤维素降解细菌纤维降解能力的影响及初步探讨其可能机理。
     从蒙古绵羊瘤胃内容物中分离到23株纤维素降解细菌,通过初步形态学观察和生理生化实验,对所有23株菌进行了初步鉴定。从23株菌中选出12株纤维素降解率较高并具有代表性的菌株进行(G+C) mol%测定,再对其中的11株菌进行16S rDNA测序和系统发育分析研究,结果表明:其中4株溶纤维丁酸弧菌(Butyrivibrio fibrisolvens)、1株白色瘤胃球菌(Rumincoccus albus)、2株黄色瘤胃球菌(R. flavefaciens)、2株产琥珀酸丝状杆菌(Fibrobacter succinogenes)、1株解多糖梭菌(Clostridium polysaccharolyticum)、1株粪肠球菌(Enterococcus faecalis)。从白色瘤胃球菌、黄色瘤胃球菌、产琥珀酸丝状杆菌和溶纤维丁酸弧菌中各选出1株有代表性的菌株进行生长和纤维降解特性研究以及氮源影响研究。
     4株菌的生长特性和纤维降解特性研究表明:球菌的生长速度大于杆菌和弧菌。4株菌的纤维素降解率和纤维素酶活力趋势一致,在4株菌中,产琥珀酸丝状杆菌的纤维素降解率和纤维素酶活力均最高。纤维素酶活力测定结果表明:外切-β-1,4-葡聚糖酶是3种纤维素酶中的限速酶;4株菌的纤维素酶大部分是胞内酶或与细胞相连的胞外酶。纤维素与纤维二糖的质量比对纤维素降解率有显著影响,4株菌达到最大纤维素降解率时的纤维素与纤维二糖质量比均在7:3或其附近。
     所选4株菌和混合瘤胃微生物既能在氨氮为唯一氮源的合成培养基中生长,又能在含有肽和氨基酸的合成培养基中生长。相对于氨态氮,肽、混合氨基酸和单个氨基酸对所选择的4株纤维素降解细菌的纤维素降解能力具有明显的促进作用。氮源对混合瘤胃微生物、白色瘤胃球菌、黄色瘤胃球菌、产琥珀酸丝状杆菌和溶纤维丁酸弧菌纤维素降解率的影响存在种属差异。在所有氮源中,Phe无论对混合瘤胃微生物还是对4株纤维素降解细菌均具有明显的促进纤维素降解的作用,但作用机制不同。对于4株纤维素降解细菌,酪蛋白酸水解物对纤维素降解率的促进作用大于酪蛋白酶水解物对纤维素降解率的促进作用,而二者对混合瘤胃微生物的影响没有差异。大豆蛋白酸水解物、酪蛋白酸水解物和酪蛋白酶水解物相对于其它氮源对混合瘤胃微生物纤维素降解能力的促进作用较大;酪蛋白酸水解物和大豆蛋白酸水解物对溶纤维丁酸弧菌WH-1的纤维素降解能力具有促进作用;Met、Leu和大豆蛋白酸水解物对白色瘤胃球菌VI3、黄色瘤胃球菌CCQ和产琥珀酸丝状杆菌LBG-1的纤维素降解能力具有促进作用。通过比较固液相菌体蛋白浓度和酶活力发现,4株菌的菌体和酶均有大部分黏附在纤维素颗粒上,而且纤维素降解率与黏附程度基本成正比。从研究结果可见,氮源对本研究所分离的单株纤维素降解细菌的影响与对混合瘤胃微生物的影响存在一定的差异,说明研究氮源对瘤胃主要纤维降解细菌的影响是完全必要的,对我们更好地认识和理解氮源对反刍动物瘤胃纤维素降解的影响机理具有一定指导意义。
Major cellulolytic bacteria were isolated from the rumen of the sheep in Inner Mongolia. The isolates were systemically identified. The characteristics of cell growth and cellulose degradation of the cellulolytic bacteria were studied. The effects of nitrogen sources on cellulolytic activity of the rumen cellulolytic bacteria were discussed and the possible mechanisms for the effects of nitrogen sources on improving cellulolytic activity were suggested.
     23 strains of cellulolytic bacteria were isolated from the rumen of the sheep in Inner Mongolia and identified by morphological and physiological characteristics in the first place. 12 strains of 23 strains of cellulolytic bacteria were selected for (G+C) mol% identification. The 16S rDNA gene sequences of 11 strains of the 12 strains of cellulolytic bacteria were sequenced. Based on the 16S rDNA gene sequences, phylogenetic trees were constructed. The result of the identification showed that there were 4 strains of Butyrivibrio fibrisolvens, 1 strain of Rumincoccus albus, 2 strains of R. flavefaciens, 2 strains of Fibrobacter succinogenes, 1 strain of Clostridium polysaccharolyticum and 1 strain of Enterococcus faecalis among the 11 strains of cellulolytic bacteria. One strain of representative bacterium was selected for further research from every type of strain of Rumincoccus albus, Rumincoccus flavefaciens, Fibrobacter succinogenes and Butyrivibrio fibrisolvens respectively.
     The following results were concluded by the studies on the characteristics for cell growth and cellulose degradation of the 4 strains. The rumen coccus grows faster than rivibrio and bacillus. The trend in cellulose degradative rate is consistent with the trend in cellulose activity for all the 4 strains. Fibrobacter succinogenes has the highest cellulose degradative rate and highest cellulase activity among the 4 strains. The exo-β-1,4-glucanases is the rate-limiting enzyme of 3 kinds of cellulase out of the 4 strains of cellulolytic bacteria. The cellulase either exists in cells or is attached to cell membrane. The ratio of cellulose to cellobiose affects the degradative rate for cellulose markedly. When the ratio of cellulose to cellobiose is 7:3 or so, the degradative rate for cellulose reaches the maximum for all the 4 strains.
     All the 4 strains of cellulolytic bacteria and mixed rumen microbes can grow in the chemically defined medium with ammonia-nitrogen or peptide or amino acid as the sole nitrogen source. Compared with ammonia-nitrogen, peptide and amino acid promote the degradative rate for cellulose of the 4 strains selected significantly. The influence of nitrogen source on the degradative rate for cellulose displays species differences with mixed rumen microbes, Rumincoccus albus, Rumincoccus flavefaciens, Fibrobacter succinogenes and Butyrivibrio fibrisolvens. Phe increases the degradative rate for cellulose of both the mixed rumen microbes and the 4 strains of cellulolytic bacteria, but the effects of Phe on the growth of bacteria are different with strains. Acidic hydrolysates of casein promote the degradation of cellulose of the 4 strains of cellulolytic bacteria, and enzymic hydrolysates of casein don’t. Both acidic hydrolysates of casein and enzymic hydrolysates of casein have the same effect on mixed rumen microbes. Acidic hydrolysates of soybean protein, acidic hydrolysates of casein and enzymic hydrolysates of casein enhance the degradative rate for cellulose of mixed rumen microbes. Acidic hydrolysates of casein and acidic hydrolystes of soybean protein improve the degradative rate for cellulose of Butyrivibrio fibrisolvens WH-1. Met, Leu and acidic hydrolysates of soybean protein increase the degradative rate for cellulose of Rumincoccus albus VI3, Rumincoccus flavefaciens CCQ and Fibrobacter succinogenes LBG-1 respectively. The comparison between BCP concentration and cellulase activity in both the solid and liquid phases indicates that the bacteria and cellulase exist mainly by adhesion to cellulose particles. The degradative rate for cellulose is proportional to the extent of adhension of bacteria and cellulose to cellulose particles. Due to the result that there are differences between the effect of nitrogen sources on mixed rumen microbes and that on the major rumen cellulolytic bacteria, it is necessary to investigate the influence of different kinds of nitrogen sources on the major rumen cellulolytic bacteria. The research contributes to a better understanding of the mechanism of nitrogen sources working on cellulolytic activity in the rumen of ruminants.
引文
1 Lynd LR, Wyman CE, Gerngross TU. Biocommodity engineering[J]. Biotechnol prog, 1999, 15:777-793.
    2安登第.瘤胃发酵调控研究进展[J].甘肃农业大学学报, 2002, 37(1): 10-15.
    3冯仰廉主编.反刍动物营养学[M].北京:科学出版社, 2004.
    4 Beguin P, Aubert JP. The biological degradation of cellulose[J]. FEMS Microbiol, 1994, 13(1): 25-58.
    5 Kuzmanova S, Vandeska E, Dimitrovski A. Production of mycelial protein and cellulolytic enzymes from food wastes[J]. J Ind Microbiol, 1991, 7: 257-261.
    6 Moo-young M, Chahal DS, Swan JE, et al. SCP production by Chaetomium cellulolyticum, a new thermotolerant cellulolytic fungus[J]. Biotechnol Bioeng, 1977, 19(4): 527-538.
    7 Andren RT, Mandels M, Modeiros JE. Production of sugar from waste cellulose by enzymatic hydrolysis: Primary evolution of substrates[J]. Process Biochem, 1976, 11: 2-11.
    8徐赦,龙敏南,乌小兵,等.高产纤维素酶菌株的筛选及产酶条件研究[J].厦门大学学报(自然科学版), 2005, 44(1): 107-111.
    9 Lutzen NW, Nielsen MH, Oxenboell KM, et al. Cellulase and their applications in the conversion of lignocellulases to fermentable sugars[J]. Phil Trans Royal Soc, 1983, 300: 283-291.
    10王巧兰,郭刚,林范学.纤维素酶研究综述[J].湖北农业科学, 2004, 3: 14-19.
    11孟雷,陈冠军,王怡,等.纤维素酶的多型性[J].纤维素科学与技术, 2002, 10(2):47-55.
    12张启先.纤维素和纤维素酶[J].微生物学通报, 1976, 3(2):31-34.
    13 Lynd LR, Paul JW, Vanzyl WH, et al. Microbial cellulose utilization: Fundamentals and biotechnology[J]. Microbiology and biology reviews, 2002, 66(3):506 -577.
    14戴上凯.热稳定性纤维素分解细菌分离株之特性探讨与亲缘关系的研究[D].国立中山大学生物科学研究所博士学位论文, 2005年.
    15 Awafo VA. Evaluation of combination treatments of sodium hydroxide and steam explosion for the production of cellulose-systems by two T.reesei mutants under solid-state fermentation conditions[J]. Bioresource Technology, 2000, 73(3):235 -245.
    16 Helena Nevalainen. The biochemical nature of the cell envelope of a high cellulase-secreting mutant differs from that of the Trichoderma reesei wild type[J]. Journal of Biotechnology, 1995,42(1):53-59.
    17 Castellanos OF, Sinitsyn AP. Evaluation of hydrolysis conditions of cellulosic materials by penicillum cellulase[J]. Bioresource Technology, 1995, 52(2):109-117.
    18 Hungate RE. The Rumen and Its Microbes[M]. New York and London: Academic Press, 1966.
    19 Hungate RE. A roll-tube method for cultivation of strict anaerobes[J]. MethodsMicrobiol, 1969, 3B:117-132.
    20 Theodorou MK, Gill M, King-Spooner C, et al. Enumeration of Anaerobic Chytridiomycetes as Thallus-Forming Units: Novel Method for Quantification of Fibrolytic Fungal Populations from the Digestive Tract Ecosystem[J]. Appl Environ Microbiol, 1990, 56(4): 1073-1078.
    21 Halliwell G. Microcrystalline Forms of Cellulose as Substrates for Strains of Clostridium thermocellum and Cellulase Formation Process[J]. Bioehemistry, 1995, 30(3):243-250.
    22 PonPium P, Ratanakhanokchai K, Kyu KL. Isolation and properties of a cellulosome-type multienzyme complex of thermophilic Bacteroides sp. strain P-1[J]. Eenzyme Microb Technol, 2000, 26(5-6):459-465.
    23 Taya M, Hinok H, Kobashi T, et al. Requirement of an extremely thermophilic, cellulolytic, anaerobic baeterium[J]. Applied Microbiology and Biotechnology, 1988,32:474-479.
    24张晓华,刘敏雄,谭蓓英.一个分解纤维素的瘤胃梭菌新种[J].微生物学报, 1995, 35(6): 397-399.
    25于洪日,高培基,王祖农.一株热纤梭菌的分离及其酶学性质的初步研究[J].山东大学学报, 1989, 24(2):86-92.
    26贺延龄.一个水解纤维素的嗜热厌氧菌新种[J].微生物学报, 1991, 31(2):85-89.
    27 EdwardA Bayer, LindaJ W, Shimon Y. Cellulosomes-Structure and Ultrastructure[J]. Journal of Structural Biology, 1998, 124(2-3):221-234.
    28 Morrison M, Miron J. Adhesion to cellulose by Ruminococcus albus: a combination of cellulosomes and Pil-proteins[J]. FEMS Microbiol Lett, 2000, 185(2):109-15.
    29管家发.芽孢杆菌E菌株纤维素酶形成条件的研究[J].微生物学报, 1992,32(6): 412- 417.
    30石晶瑜,张功.分解纤维素菌HT3的筛选及酶活力测定[J].内蒙古师范大学报, 1998, 27(1): 66-68.
    31熊世勤,彭谦,王书晖,等.耐热纤维素酶产生菌及产酶条件[J].云南大学学报, 1998, 20(2):91-94.
    32刘东波,高培基,王祖农.纤维素诺卡氏菌的一个新菌株[J].微生物学报, 1990,30:70-72.
    33中国科学院上海植物生理研究所,上海酒精二厂.二株高活力纤维素分解菌EA-867和N-78的获得及其特性的比较[J].微生物学报, 1978, 18(1):27-38.
    34 Orpin CG. Studies on the rumen flagellate Neocallimastix frontalis[J]. Gen Microbiol, 1975, 91(2):249-262.
    35 Wood TM, Wilson CA, McCrae SI. et al. A highly active extracellular cellulase from the anaerobic rumen fungus Neocallimastix frontalis[J]. FEMS Microbiol Lett, 1986,34(1):37-40.
    36 Williams AG, Orpin CG. Glycoside hydrolase enzymes present in the zoospore and vegetative growth stages of the rumen fungi Neocallimastix patriciarum, piromonas communis and an unidentified isolate, grown on a range of carbohydrates[J]. Can J Microbiol, 1987, 33(5):427-434.
    37 Japtag S, Rao M. Purification and properties of a low molecular weight, 4-beta-d-glucan glucohydrolase having one activesite for carboxymethyl cellulose and xylan from an alkalothermophilic Thermomonospora Sp.[J]. Biochem Biophys Res Commun, 2005, 329(l): 111-116.
    38 Tuncer M, Ball AS. Degradation of lignocellulose byextracellulases Produced by Thermomonospora fusca BD25[J]. Appl Microbiol Biotechnol, 2002, 58(5):608-611.
    39 Henrissat B. Cellulases and their interaetion with cellulose[J]. Cellulose, 1994, l: 169-196.
    40 Knowles J, Lethtovaara P, Reeri T. Cellulase families and their genes[J]. Trends Biotechnol, 1987, 5(9):255-261.
    41 Teeri T. Crystalline cellulose degradation: new insight into the on function of cellobiohydrolases[J]. Trends Bioteehnol, 1997, 15(5):160-167.
    42 Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems[J]. Biotechnol Bioeng, 2004, 88(7): 797-824.
    43刘家建.纤维素酶的研究及应用综述[J].林产化工通讯, 1995, 1:6-10.
    44刘秀华.纤维弧菌低温纤维素酶的分离纯化与性质探讨[D].山东大学硕士学位论文, 2007.
    45高培基,陈冠军,汪天虹,等.微紫青霉外切葡聚糖纤维二糖水解酶(CBHI)的纤维素结合结构域及其链结区非水解性破坏纤维素结晶区结构[J].生物化学与生物物理学报, 2001, 33(1): 13-18.
    46 B.施特马赫著,钱嘉渊译.酶的测定方法[M].北京:中国轻工业出版社, 1992,103-177.
    47张丽萍.几种离子对纤维素酶活力的影响[J].河北省科学院学报, 2000, 17(4): 235-23.
    48李建武,萧能,余瑞元.生物化学实验原理和方法[M].北京:北京大学出版社, 1997.
    49 Wood TM, Bhat KM. Methods for cellulase activities[M]. In Wood W A, and Kellong S T eds. Methods in Enzymology Academic Press, Inc San Diego, California, 92101. 1988, Vol.160 Part A
    50 Ghose TK. Measurement of cellulase activities[J]. Pure & Appl Chem, 1987, 59: 257-268.
    51 Zhang YH, Lynd LR. Toward an aggregated understanding of enzymatic hydrolysis of cellulose: noncomplexed cellulose systems[J]. Biotechnol Bioeng, 2004, 88(7): 797-824.
    52 Hobson PN, Stewart CS. The rumen microbial ecosystem(the second edition)[M]. London: Blackie Academic & professional, 1997.
    53 Stewart CS, Flint HJ. The rumen bacteria. In: The Rumen Microbial Ecosystem[C], Hobson PN and Stewart CS. Eds. 1997, 10-72. Blackie, Melbourne.
    54 Krause DO, Russell JB. How many ruminal bacteria are there[J]. Journal of Dairy Science, 1996, 79(8):1467-1475.
    55 Stahl DA, Flesher B, Mansfield HR, et al. Use of phylogenetically based hybridization probes for studies of ruminal microbial ecology[J]. Applied and Environmental Microbiology, 1988, 54(5): 1079-1084.
    56 Michalet-Doreau B, Fernandez I, Peyron C, et al. Fibrolytic activities and cellulolytic bacterial community structure in the solid and liquid phases of rumen contents[J]. Reprod Nutr Dev, 2001, 41(2):187-194.
    57 Martin C, Liliane M, Fonty G, et al. Cereal supplementation modified the fibrolytic activity but not the structure of the cellulolytic bacterial community associated with rumen solid digesta[J]. Reprod Nutr Dev, 2001, 41(5): 413-424.
    58 Weimer PJ, Waghorn GC, Odt CL, et al. Effect of diet on populations of three species of ruminal cellulolytic bacteria in lactating dairy cows[J]. J Dairy Sci, 1999, 82(1):122-134.
    59 Weimer PJ. Manipulating ruminal fermentation: a microbial ecolo-gical perspective[J]. J Anim Sci, 1998, 76(12):3114-3122.
    60 Collings GF, Yokoyama MT. Gas-liquid chromatography for evaluating polysaccharide degradation by Ruminococcus flavefaciens C94 and Bacteroides succinogenes S85[J]. Appl Environ Microbiol, 1980, 39(3):566-571.
    61 Dehority BA. 1993. Microbial ecology of cell wall fermentation, p. 425-453. In H. G. Jung et al. (ed.), Forage cell wall structure and digestibility. American Society for Agronomy, Crop Science Society of America, Soil Science Society of America, Madison.
    62 Bryant MP, Small N. The anaerobic monotrichous butyric acid-producing curved rod shaped bacteria of the rumen[J]. J Bacteriol, 1956, 72: 16-20.
    63 Makkar HP, Viljoen GJ. Applications of gene-Based technologies for improving animal production and health in developing countries[M]. Netherland: IEAE, 2005, 349-355.
    64 McSweeney CS, Dulieu A, Bunch R. Butyrivibrio spp. and other xylanolytic micro-rganisms from the rumen have cinnamoyl esterase activity[J]. Anaerobe, 1998, 4(1):57-65.
    65 Koike S, Yoshitani S, Kobayashi Y, et al. Phylogenetic analysis of fiber-associatedrumen bacterial community and PCR detection of uncultured bacteria[J]. FEMS Microbiol Lett, 2003, 229(1):23-30.
    66邓茂常,胡代泽,朗家文,等.生态条件和瘤胃丛密度与纤维分解的关系[J].资源开发与市场, 1997, 13(2):55-57.
    67 Kopecny J, Zorec M, Mrazek J, et al. Butyrivibrio hungatei sp. nov. and Pseudobutyrivibrio xylanivorans sp. nov., butyrate-producing bacteria from the rumen[J]. Int J Syst Evol Microbiol, 2003, 53(Pt 1): 201-220.
    68 Kopecny J, Logar RM, Kobayashi Y. Phenotypic and genetic data supporting reclassification of Butyrivibrio fibrisolvens isolates[J]. Folia Microbiol, 2001,46 (1):45-48.
    69 Diez-Gonzalez F, Bond DR, Jennings E, et al. Alternative schemes of butyrate production in Butyrivibrio fibrisolvens and their relationship to acetate utilization, lactate production, and phylogeny[J]. Arch Microbiol, 1999, 171(5):324-330.
    70 Willems A, Amat-Marco M, Collins MD. Phylogenetic analysis of Butyrivibrio strains reveals three distinct groups of species within the Clostridium subphylum of the gram-positive bacteria[J]. Int J Syst Bacteriol, 1996, 46(1):195-199.
    71 Paillard Delphine, McKain Nest, Chaudhary Lal C, et al. Relation between phylogenetic position, lipid metabolism and butyrate production by different Butyrivibrio-like bacteria from the rumen[J]. Antonie van Leeuwenhoek, 2007, 91:417-422.
    72 Smith WR, Yu I, Hungate RE. Factors affecting cellulolysis by Ruminococcus albus[J]. J Bacteriol, 1973, 114(2):729-737.
    73 Patterson H, Irvin R, Costerton JW, et al. Ultrastructure and adhesion properties of Ruminococcus albus[J]. J Bacteriol, 1975, 122(1):278-287.
    74 Pegden RS, Larson MA, Grant RJ, et al. Adherence of the gram-positive bacterium Ruminococcus albus to cellulose and identification of a novel form of cellulase binding protein which belongs to the Pil family of proteins[J]. J Bacteriol, 1998, 180(22): 5921-5927.
    75 Mosoni P, Gaillard-Martinie B. Characterization of a spontaneous adhesion-defective mutant of Ruminococcus albus strain 20[J]. Arch Microbiol, 2001, 176(1-2): 52-61.
    76 Rakotoarivonina H, Jubelin G, Hebraud M, et al. Adhesion to cellulose of the Gram-positive bacterium Ruminococcus albus involves type IV pili[J]. Microbiology, 2002, 148(6): 1871-1880.
    77 Rakotoarivonina H, Larson MA, Morrison M, et al. The Ruminococcus albus pilA1-pilA2 locus: expression and putative role of two adjacent pil genes in pilus formation and bacterial adhesion to cellulose[J]. Microbiology, 2005, 151(4):1291-1299.
    78 Weimer PJ, Price NP, Kroukamp O, et al. Studies of the extracellular glycocalyx of the anaerobic cellulolytic bacterium Ruminococcus albus 7[J]. Appl Environ Microbiol, 2006, 72(12):7559-7566.
    79 Miron J, Jacobovitch J, Bayer EA, et al. Subcellular distribution of glycanases and related components in Ruminococcus albus SY3 and their role in cell adhesion to cellulose[J]. J Appl Microbiol, 2001, 91(4):677-685.
    80 Latham MJ, Brooker BE, Pettipher GL, et al. Ruminococcus flavefaciens cell coat and adhesion to cotton cellulose and to cell walls in leaves of perennial ryegrass (Lolium perenne)[J]. Appl Environ Microbiol, 1978, 35(1):156-165.
    81 Rincon MT, Martin JC, Aurilia V, et al. ScaC, an adaptor protein carrying a novel cohesin that expands the dockerin-binding repertoire of the Ruminococcus flavefaciens 17 cellulosome[J]. J Bacteriol, 2004, 186(9):2576-2585.
    82 Rincon MT, Cepeljnik T, Martin JC, et al. Unconventional mode of attachment of the Ruminococcus flavefaciens cellulosome to the cell surface[J]. J Bacteriol, 2005, 187(22):7569-7578.
    83 Rincon MT, Cepeljnik T, Martin JC, et al. A novel cell surface-anchored cellulose- binding protein encoded by the sca gene cluster of Ruminococcus flavefaciens[J]. J Bacteriol, 2007, 189(13):4774-4783.
    84 Alber O, Noach I, Lamed R. Preliminary X-ray characterization of a novel type of anchoring cohesin from the cellulosome of Ruminococcus flavefaciens[J]. Acta Crystallogr Sect F Struct Biol Cryst Commun. 2008, 64(2):77-80.
    85 Gong J, Forsberg CW. Factors affecting adhesion of Fibrobacter succinogenes subsp. succinogenes S85 and adherence-defective mutants to cellulose[J]. Appl Environ Microbiol, 1989, 55(12):3039-3044.
    86 Maglione G, Russell JB, Wilson DB. Kinetics of Cellulose Digestion by Fibrobacter succinogenes S85[J]. Appl Environ Microbiol, 1997, 63(2):665-669.
    87 Roger V, Fonty G, Komisarczuk-Bony S, et al. Effects of Physicochemical Factors on the Adhesion to Cellulose Avicel of the Ruminal Bacteria Ruminococcus flavefaciens and Fibrobacter succinogenes subsp. succinogenes[J]. Appl Environ Microbiol, 1990, 56(10):3081-3087.
    88 Mitsumori M, Minato H, Sekizaki T, et al. Cloning, nucleotide sequence and expression of the gene encoding the cellulose-binding protein 1 (CBP1) of fibrobacter succinogenes S85[J]. FEMS Microbiol Lett, 1996, 139(1):43-50.
    89 Mitsumori M, Minato H. Identification of the cellulose-binding domain of fibrobacter succinogenes endoglucanase F [J]. FEMS Microbiol Lett, 2000, 183(1):99-103.
    90 Mitsumori M, Xu L, Kajikawa H. Properties of cellulose-binding modules in endoglucanase F from fibrobacter succinogenes S85 by means of surface plasmon resonance[J]. FEMS Microbiol Lett, 2002, 214(2):277-281.
    91 Mitsumori M, Minato H. Characteristics of the cellulolytic ruminal bacterium fibrobacter succinogenes and its attachment to cellulose[J]. Nippon Saikingaku Zasshi, 1997, 52(4):719-726.
    92 Jun HS, Qi M, Gong J, et al. Outer membrane proteins of fibrobacter succinogenes with potential roles in adhesion to cellulose and in cellulose digestion [J]. J Bacteriol, 2007, 189(19):6806-6815.
    93 Wood TM, Wilson CA, Stewart CS. Preparation of the cellulase from the cellulolytic anaerobic rumen bacterium Ruminococcus albus and its release from the bacterial cell wall[J]. Biochem J, 1982, 205(1):129-137.
    94 Ohara H, Karita S, Kimura T, et al. Characterization of the cellulolytic complex (cellulosome) from Ruminococcus albus[J]. Biosci Biotechnol Biochem, 2000, 64(2): 254-260.
    95 Bae H J, Turcotte G, Chamberland H, et al. A comparative study between an endoglucanase IV and its fused protein complex Cel5-CBM6. FEMS Microbiology Letter, 2003, 227: 175-181.
    96 Flint H J, Martin J, McPherson CA, et al. A bifunctional enzyme, with separate xylanase and beta(1,3-1,4)-glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens[J]. J Bacteriol, 1993, 175(10):2943-2951.
    97 Doerner KC, White BA. Assessment of the endo-1,4-beta-glucanase components of Ruminococcus flavefaciens FD-1[J]. Appl Environ Microbiol, 1990, 56(6):1844-1850.
    98 Ding SY, Rincon MT, Lamed R, et al. Cellulosomal scaffoldin-like proteins from Ruminococcus flavefaciens[J]. J Bacteriol, 2001, 183:1945-1953.
    99 Rincon MT, Ding SY, McCrae SI, et al. Novel organization and divergent dockerin specificities in the cellulosome system of Ruminococcus flavefaciens [J]. J Bacteriol, 2003, 185(3):703-713.
    100 Rincon MT, McCrae SI, Kirby J, et al. EndB, a multidomain family 44 cellulase from Ruminococcus flavefaciens 17, binds to cellulose via a novel cellulose-binding module and to another R. flavefaciens protein via a dockerin domain[J]. Appl Environ Microbiol, 2001, 67(10):4426-4431.
    101 Jindou S, Borovok I, Rincon MT, et al. Conservation and divergence in cellulosome architecture between two strains of Ruminococcus flavefaciens[J]. J Bacteriol, 2006, 188(22):7971-7976.
    102 Jindou S, Brulc JM, Levy-Assaraf M, et al. Cellulosome gene cluster analysis for gauging the diversity of the ruminal cellulolytic bacterium Ruminococcus flavefaciens[J]. FEMS Microbiol Lett, 2008, 285(2):188-194.
    103 Qi M, Jun HS, Forsberg CW. Characterization and synergistic interactions of Fibrobacter succinogenes glycoside hydrolases[J]. Appl Environ Microbiol, 2007, 73(19):6098-6105.
    104 Qi M, Jun HS, Forsberg CW. Cel9D, an atypical enzyme from Fibrobacter succinogenes: characteristics, catalytic residues, and synergistic interactions with other cellulases[J]. J Bacteriol, 2008, 190(6):1976-1984.
    105 Matulova M, Nouaille R, Capek P, et al. Degradation of wheat straw by Fibrobacter succinogenes S85: a liquid- and solid-state nuclear magnetic resonance study[J]. Appl Environ Microbiol, 2005, 71(3):1247-1253.
    106 Bera-Maillet C, Broussolle V, Pristas P, et al. Characterisation of endoglucanases EGB and EGC from Fibrobacter succinogenes[J]. Biochim Biophys Acta, 2000, 1476(2): 191-202.
    107 Matheron C, Delort AM, Gaudet G, et al. Simultaneous but differential metabolism of glucose and cellobiose in Fibrobacter succinogenes cells, studied by in vivo 13C-NMR[J]. Can J Microbiol, 1996, 42(11):1091-1099.
    108 Forsberg CW, Malburg J, Zhu JL, et al. Cellulases and hemicellulases of fibrobacter succinogenes and their roles in fibre digestion, p. 125-136. InIn K Shimada et al. (ed.), Genetics, biochemistry and ecology of lignocellulose degradation. Unipublishers Co. Proceedings of the MIE Bioforum, Japan 1994, 125-136.
    109 Teather RM, Erfle JD. DNA sequence of fibrobacter succinogenes mixed-linkageβ-glucanase (1,3-1,4-β-d-glucan 4-glucanohydrolase) gene. J Bacteriol, 1990, 172(7): 3837-3841.
    110 Smith DC, Forsberg CW.α-Glucuronidase and other hemicellulase activities in Fibrobacter succinogenes S85 grown on crystalline cellulose or ball-milled barley straw[J]. Appl Environ Microbiol, 1991, 57(12):3552 -3557.
    111 McDermid KP, McKenzie CR, Forsberg CW. Esterase activities of Fibrobacter succinogenes subsp. succinogenes S85. Appl Environ Microbiol, 1990, 56(1):127-132.
    112 Morrison M, Nelson KE, Cann IKO. The Fibrobacter succinogenes strain S85 genome sequencing project. Abstr. 3rd ASM-TIGR Conf. Microb. Genomes, 2003, pp33.
    113 Gong J, Forsberg CW. Separation of outer and cytoplasmic membranes of Fibrobacter succinogenes and membrane and glycogen granule locations of glycanases and cellobiase [J]. J Bacteriol, 1993, 175(21):6810-6821.
    114 McGavin M, Lam J, Forsberg CW. Regulation and distribution of Fibrobacter succinogenes subsp. succinogenes S85 endoglucanases[J]. Appl Environ Microbiol, 1990, 56(5):1235-1244.
    115朱军莉,韩剑众,励建荣.纤维素分解菌BSX5的分离、鉴定及产酶条件[J].食品与生物技术学报, 2006, 25(3):15-18.
    116房兴堂,陈宏,赵雪锋,等.秸秆纤维素分解菌的酶活力测定[J].生物技术通讯, 2007, 18(4):628-630.
    117高巍,孟庆翔.白色瘤胃球菌对秸秆细胞壁和微晶纤维素的附着比较[J].中国畜牧杂志,2004, 40(6):17-19.
    118林万明.细菌遗传学分类鉴定法[M].上海:上海科学技术出版社, 1990.
    119黄庆生.酵母培养物对瘤胃发酵影响及16S rRNA定量分析技术的应用研究[D].中国农业科学院硕士学位论文, 2002.
    120宋大新.微生物学实验技术教程[M].复旦大学出版社, 1993.
    121沈萍.微生物学[M].高等教育出版社, 2000.
    122 Mehling A, Wehmeier UF. Nucleotide sequences of streptomycete 16S ribosomal DNA: towards a specific identification system for streptomycetes using PCR[J]. Microbiology, 1995, 141(Pt9):2139-2147.
    123谭志远,朱茗莪,程丽娟,等.黄土高原根瘤菌数值分类及DNA-DNA杂交[J].微生物学报, 1995, 35(3):223-228.
    124 Stackebrandt E, Goebel M. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology[J]. Int J Bacteriol, 1994, 44:846-849.
    125 Fox GE, Wisotzkey JD, Jurtshuk PJ. How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity[J]. Int J Syst Bacteriol, 1992, 42:166-170.
    126 Clayton RA, Sutton G, Hinkle PS, et al. Intraspecific variation in small-subunit rRNA sequences in GenBank: why single sequences may not adequately represent prokaryotic taxa[J]. Int J Syst Bcateriol, 1995, 45(3):595-599.
    127 Kolbert CP, Persing DH. Ribosomal DNA sequencing as a tool for identification of bacterial pathogens[J]. Curr Microbiol, 1999, 2(3):229-305.
    128赵广永.瘤胃发酵调控研究进展[J].动物营养学报,1999,11(增刊):21-28.
    129许丽,韩友文,张淑芳.不同处理方法对玉米秸干物质和粗纤维瘤胃降解率的影响[J].黑龙江畜牧兽医, 2002, 5:15-16.
    130谢勇,邹霞青.不同处理甘蔗渣纤维类物质的瘤胃降解特性[J].福建农林大学学报(自然科学版), 2002, 31(2):238-243.
    131王加启,冯仰廉.不同粗饲料日粮发酵规律及合成瘤胃微生物蛋白效率研究[J].黄牛杂志, 1994, 20(Suppl.):82-85.
    132关意寅,文秋燕,黄锋,等.补饲糖蜜-尿素舔砖对秸秆营养成分在水牛瘤胃中降解率的影响[J].畜牧与兽医, 2001,33(3):15-16.
    133王丽娟.酵母及其培养物在动物生产中的作用[J].饲料工业, 1999,20(9):37-39.
    134 Lynch HA, Martin SA. Effects of Saccharomyces cerevisiae culture and Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation[J]. J Dairy Sci, 2002, 85(10):2603-2608.
    135 Fiems LO, Cottyn BG, Dussert L, et al. Effect of a viable yeast culture on digestibility and rumen fermentation in sheep fed different types of diets[J]. Reprod Nutr Dev, 1993, 33(1):43-49.
    136 Lesmeister KE, Heinrichs AJ, Gabler MT. Effects of supplemental yeast (Saccharo -myces cerevisiae) culture on rumen development, growth characteristics, and blood parameters in neonatal dairy calves[J]. J Dairy Sci, 2004, 87(6):1832-1839.
    137 Miller-Webster T, Hoover WH, Holt M, et al. Influence of yeast culture on ruminal microbial metabolism in continuous culture[J]. J Dairy Sci, 2002, 85(8):2009-2014.
    138 Sullivan HM, Martin SA. Effects of a Saccharomyces cerevisiae culture on in vitro mixed ruminal microorganism fermentation[J]. J Dairy Sci, 1999, 82(9):2011-2016.
    139 Callaway ES, Martin SA. Effects of a Saccharomyces cerevisiae culture on ruminal bacteria that utilize lactate and digest cellulose[J]. J Dairy Sci, 1997, 80(9): 2035-2044.
    140 Newbold CJ, Wallace RJ, Chen XB, et al. Different strains of Saccharomyces cerevisiae differ in their effects on ruminal bacterial numbers in vitro and in sheep[J]. J Anim Sci, 1995, 73(6):1811-1818.
    141李声永,王加启,龚月生,等.酵母培养物在反刍动物日粮中的应用研究进展[J].中国畜牧兽医, 2002, 29(5):18-22.
    142 Wiedmeier RD, Arambel MJ, Walters JL. Effect of yeast culture and Aspergillus oryzae fermentation extract on ruminal characteristics and nutrient digestibility[J]. J Dairy Sci, 1987, 70(10):2063-2068.
    143 Yoon IK, Stern MD. Effects of Saccharomyces cerevisiae and Aspergillus oryzae cultures on ruminal fermentation in dairy cows[J]. J Dairy Sci, 1996, 79(3):411-417.
    144 Jouany JP, Mathieu F, Senaud J, et al. The effect of Saccharomyces cerevisiae and Aspergillus oryzae on the digestion of the cell wall fraction of a mixed diet in defaunated and refaunated sheep rumen[J]. Reprod Nutr Dev, 1998, 38(4):401-416.
    145 Kung LJ, Kreck EM, Tung RS, et al. Effects of a live yeast culture and enzymes onin vitro ruminal fermentation and milk production of dairy cows[J]. J Dairy Sci, 1997, 80(9):2045-2051.
    146 Mwenya B, Santoso B, Sar C, et al. Effects of yeast culture and galactooli- gosaccharides on ruminal fermentation in holstein cows[J]. J Dairy Sci, 2005, 88(4): 1404-1412.
    147卢忠民,陈杰,韩正康.日粮添加硫、磷提高水牛瘤胃纤维素消化率的研究[J].动物营养学报, 1998, 10(3):10-13.
    148郑晓中,冯仰廉,莫放,等.日粮中添加长链脂肪酸钙对肉牛瘤胃发酵及营养物质消化率影响的研究[J].动物营养学报, 1999, 11(Supple.):157-163.
    149郑晓中,冯仰廉,莫放,等.日粮中添加豆油对肉牛瘤胃发酵及营养物质消化率影响的研究[J].中国粮油学报, 1999, 14(4):157-163.
    150 Hristov AN, Kennington LR, McGuire MA, et al. Effect of diets containing linoleic acid-or oleic acid-rich oils on ruminal fermentation and nutrient digestibility, and performance and fatty acid composition of adipose and muscle tissues of finishing cattle[J]. J Anim Sci, 2005, 83(6):1312-1321.
    151 Busquet M, Calsamiglia S, Ferret A, et al. Effects of cinnamaldehyde and garlic oil on rumen microbial fermentation in a dual flow continuous culture[J]. J Dairy Sci, 2005, 88(7):2508-2516.
    152 Gomez JA, Tejido ML, Carro MD. Influence of disodium malate on microbial growth and fermentation in rumen-simulation technique fermenters receiving medium-and high-concentrate diets[J]. Br J Nutr, 2005, 93(4):479-484.
    153 Garcia-Martinez R, Ranilla MJ, Tejido ML, et al. Effects of disodium fumarate on in vitro rumen microbial growth, methane production and fermentation of diets differing in their forage:concentrate ratio[J]. Br J Nutr, 2005, 94(1):71-77.
    154 Roger V, Fonty G, Andre C, et al. Effects of glycerol on the growth, adhesion, and cellulolytic activity of rumen cellulolytic bacteria and anaerobic fungi[J]. Curr Microbiol, 1992 25(4):197-201.
    155 Morales Silva, Maria Sol. Role of ionized calcium and magnesium in cellulose degradation by ruminal bacteria[D]. Dissertation for the Degree Doctor of Philosophy in the Ohio State University, 2005.
    156 Grubb JA, Dehority BA. Effects of an abrupt change in ration from all roughage to high concentrate upon rumen microbial numbers in sheep[J]. Appl Environ Microbiol, 1975, 30(3):404-412.
    157 Dehority BA, Tirabasso PA. Effect of Ruminal Cellulolytic Bacterial Concentrations on In Situ Digestion of Forage Cellulose[J]. J Anim Sci, 1998, 76(11):2905-2911.
    158 Leedle JA, Bryant MP, Spell RB. Diurnal Variations In Bacterial Numbers And Fluid Parameters In Ruminal Contents Of Animals Fed Low- Or High-Forage Diets[J]. Applied And Environmental Microbiology, 1982, 44(2):402-412.
    159 Orpin CG. Ecology of rumen anaerobic fungi in relation to the nutrition of the host animal. In The Roles of Protozoa and Fungi in Ruminant Digestion [C] (J. V. Nolan, R. A. Leng & D. I. Demeyer, eds), 1989:29-38.
    160 Mackie RI, Gilchrist MC, et al. Microbiological and chemical changes in the rumen during the stepwise adaptation of sheep to high concentrate diets[J]. J Agric Sci, 1978, 90:241-254.
    161 Varel VH, Dehority BA. Ruminal cellulolytic bacteria and protozoa from bison, cattle-bison hybrids, and cattle fed three alfalfa-corn diets[J]. Appl Environ Microbiol, 1989, 55(1):148-153.
    162孙云章,毛胜勇,姚文,等.不同精粗比底物下瘤胃真菌和纤维降解细菌共培养发酵特性及菌群变化[J].微生物学报, 2006, 46(3):422-426.
    163王海荣.不同精粗比不同氮源日粮对瘤胃纤维降解菌群和纤维物质降解的影响[D].内蒙古学农业大学博士学位论文, 2006.
    164王加启,冯仰廉等.不同来源可发酵碳水化合物和可降解氮合成瘤胃微生物蛋白质效率的研究[J].畜牧兽医学报, 1994, 27(2):97-104.
    165谭支良,卢德勋,等.绵羊日粮不同碳水化合物比例对纤维物质在消化道不同部位流通量和消化率的影响[J].动物营养学报, 1999, 11(4):29-38.
    166沈赞明,韩正康,等.不同日粮条件下水牛瘤胃真菌纤维素酶活力的体外研究[J].南京农业大学学报, 1995, 18(2):84-89.
    167霍鲜鲜,侯先志,赵志恭,等.不同精粗比日粮对绵羊瘤胃内纤维素酶活的影响[J].甘肃畜牧兽医, 2003, 33(6):16-20.
    168 Hiltner Peggy, Dehority BA. Effect of Soluble Carbohydrates on Digestion of Cellulose by Pure Cultures of Rumen Bacteria[J]. Applied and Environmental Microbiology, 1983, 46(3):642-648.
    169 Mirona J, Ben-Ghedaliaa D, Yokoyamab MT, et al. Some aspects of cellobiose effect on bacterial cell surface structures involved in lucerne cell walls utilization by fresh isolates of rumen bacteria [J]. Animal Feed Science and Technology, 1990, 30(1-2): 107-120.
    170 Groleau D, Forsberg CW. Cellulolytic activity of the rumen bacterium Bacteroides succinogenes[J]. Can J Microbiol, 1981, 27(5):517-530.
    171 Vercoe PE, Kocherginskaya SA, White BA. Differential protein phosphorylation- dephosphorylation in response to carbon source in Ruminococcus flavefaciens FD-1[J].J Appl Microbiol, 2003, 94(6):974-980.
    172 Rajoka MI, Malik KA. Enhanced production of cellulases by Cellulomonas strains grown on different cellulosic residues[J]. Folia Microbiologica, 1997, 42(1):59-64.
    173 Bezerra RM, Dias AA. Enzymatic kinetic of cellulose hydrolysis: inhibition by ethanol and cellobiose[J]. Appl Biochem Biotechnol, 2005, 126(1):49-59.
    174段新源,辛玮,张为灿.纤维二糖在纤维素生物降解中调控作用的探讨[J].微生物学通报, 2003, 30(5):94-98.
    175赵越,武彬,阎伯旭.纤维二糖抑制外切纤维素酶水解作用机理分析[J].中国科学(C辑), 2003, 33(5):454-460.
    176王晓芳,徐旭士,吴敏.不同碳源对两株真菌纤维素酶合成的诱导和调控[J].应用与环境生物学报, 2002, 8(6):653-657.
    177艾云灿,孟繁梅,高培基, et al.纤维二糖诱导阻遏真菌合成纤维素酶的特异性基础[J].中山大学学报(自然科学版), 2000, 39(3):73-77.
    178艾云灿,高培基, Kubicek C P,等. Major transglycosylation products ofβ-glucosidase and their introduction effects on cellulose biosynthesis[J].中山大学学报(自然科学版), 1999, 38 (1):70-74.
    179 Frattini CJ, Leduc LG, Ferroni GD. Strain variability and the effects of organic compounds on the growth of the chemolithotrophic bacterium Thiobacillus ferrooxidans[J]. Antonie van Leeuwenhoek, 2000, 77(1):57-64.
    180 NRC. Nutrient Requirements of Dairy cattle Seventh Revised edition[M]. National Academy Press, Washington D C, 2001.
    181李俐,丁角立.肽对体外混合培养瘤胃微生物发酵和生长影响的研究[J].畜牧兽医学报, 2000,2:113-119.
    182吕芳.瘤胃微生物对肽的利用.国外畜牧科技, 1998, 25(4):2-5.
    183 Carro DM, Miller EL. Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC)[J]. Br J Nutr, 1999, 82(2):149-157.
    184 Chikunya S, Newbold CJ, Rode L, et al. Influence of dietary rumen-degradable protein on bacterial growth in the rumen of sheep receiving different energy sources[J]. Anim Feed Sci Technol, 1996, 63(1-4):333-340.
    185 Griswold KE, Hoover WH, Miller TK, et al. Effect of form of nitrogen on growth of ruminal microbes in continuous culture[J]. J Anim Sci, 1996, 74(2):483-491.
    186 Merry RJ, McAllan AB, Smith RH. In vitro continuous culture studies on the effect of nitrogen source on microbial growth and fibre digestion[J]. Anim Feed Sci Technol, 1990, 31(1-2):55-64.
    187 Bandla Srinivas, Gupta BN. Rumen fermentation, bacterial and total votatile fatty acid(TVFA) production rates in cattle fed on urea-molasses-mineral block licks supplement[J]. Animal feed Science Technology, 1997, 65(1-4):275-286.
    188 Galina MA, Guerrero M, Puga C, et al. Effect of a slow-intake urea supplementation on growing kids fed corn stubble or alfalfa with a balanced concentrate[J]. Small Ruminant Research, 2004, 53(1-2):29-38.
    189张永根,单安山,谢晓来,等.脲酶抑制剂氢醌对纤维类物质瘤胃降解率的影响[J].黑龙江畜牧兽医, 2003, 2:5-7.
    190 Russell JB, O’Connor JD, Fox DG, et al. A net carbohydrate and protein system for evaluating cattle diets: I.Ruminal fermentation[J]. J Anim Sci, 1992, 70(11):3551-3561.
    191 Bryant MP, Robinson IM. Some nutritional characteristics of predominant culturable ruminal bacteria[J]. J Bacteriol, 1962, 84:605-614
    192 Bryant MP. Nutritional requirements of the predominant rumen cellulolytic bacteria[J]. Fed Proc, 1973, 32(7):1809-1813.
    193 Bryant MP, Robinson IM, Chu H. Observations on the nutrition of Bacteroides succinogenes—a ruminal cellulolytic bacterium[J]. J Dairy Sci, 1959, 42:1831-1847.
    194 Bryant MP, Robinson IM. Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria[J]. J Dairy Sci, 1963, 46: 150-154.
    195 Bryant MP, Robinson IM. Studies on the nitrogen requirements of some ruminal cellulolytic bacteria[J]. Appl Microbiol, 1961, 9:96-103.
    196 Gill JW, King KW. Nutritional characteristics of a butyrivibrio[J]. J Bacteriol, 1958, 75:666.
    197 Hobson PN, McDougall EI, Summers R. The nitrogen sources of Bacteroides amylophilus[J]. J Gen Microbiol, 1968, 50(3):suppl.i.
    198 Kernick BL. The effect of form of nitrogen on the efficiency of protein synthesis by rumen bacteria in continuous culture[D]. PhD Thesis, University of Natal, 1991.
    199 Fujimaki T, Kobayashi M, Wakita M, et al. Influence of amino acid supplement on cellulolysis and microbial yield in sheep rumen[J]. Journal of Animal Physiology and Animal Nutrition, 1989, 62:119-124.
    200 Maeng WJ, Baldwin RL. Factors influencing rumen microbial growth rates and yields: effect of amino acid additions to a purified diet with nitrogen from urea[J]. J Dairy Sci, 1976, 59(4):648-655.
    201 Argyle JL, Baldwin RL. Effects of amino acids and peptides on rumen microbial growth yields[J]. J Dairy Sci, 1989, 72(8):2017-2027.
    202 Allison JM, Bryant MP, Doetsch RN. Volatile fatty acid growth factor for cellulolytic cocci of bovine rumen[J]. Science, 1958, 128(3322):474-475.
    203 Stack RJ, Hungate RE, Opsahl WP. Phenylacetic acid stimulation of cellulose digestion by Ruminococcus albus 8[J]. Appl Environ Microbiol, 1983, 46(3):539-544.
    204 Robert A, MacLeod, Murray JF. Some Factors Affecting Cellulose Digestion by Rumen Microorganisms in Vitro[J]. J Nutr, 1956, 60(2):245-259.
    205 Chen G, Strobel HJ, Russell JB, et al. Effect of hydrophobicity on utilization of peptides by ruminai bacterial in vitro[J]. Appl Environ Microbiol, 1987, 53(9): 2021-2025.
    206 Depardon N, Debroas D, Blanchart G. Breakdown of peptides from a soya protein hydrolysate by rumen bacteria,simultaneous study of enzyme activities and of two physicochemical parameters: molecular weight and hydrophobicity[J]. J Sci Food Agric, 1995, 68:25-31.
    207 Carro MD, Miller EL. Effect of supplementing a fibre basal diet with different nitrogen forms on ruminal fermentation and microbial growth in an in vitro semi-continuous culture system (RUSITEC)[J]. British Journal of Nutrition, 1999, 82(2):149-157.
    208 Griswold KE, Hoover WH, Miller TK, et al. Effect of Form of Nitrogen on Growth of Ruminal Microbes in Continuous Culture[J]. J Anim Sci, 1996, 74(2):483-491.
    209 Griswold KE, Mackie RI. Degradation of protein and utilization of the hydrolytic products by a predominant ruminal bacterium, Prevotella ruminicola B1(4)[J]. J Dairy Sci, 1997, 80(1):167-175.
    210 Broderick GA, Wallace RJ, McKain N. Uptake of small neutral peptides by mixed rumen microorganisms in vitro[J]. J Sci Food Agriculture, 1988, 42:109.
    211 Fox GE, Stackebrandt E, Hespell RB, et al. The Phylogeny of Prokaryotes[J]. Science, 1980, 209(4455):457-463.
    212 Wallace RJ,Mckain N,Newbold CJ. Metabolism of small peptides in rumen fluid: Accumulation of intermediates during hydrolysis of alanine oligomers,and comparison of peptidolytic activities of bacteria and protozoa[J]. J Sci Food Agric, 1990, 50:191
    213 Copper PB, Ling JR. The uptake of peptides and amino acids by rumen bacteria [J]. Proc Nutr Soc, 1985, 44:144.
    214 Pittman KA, Bryant MP. Peptides and other nitrogen sources for growth of Bacteroides ruminicola[J]. J Bacteriol, 1964, 88:401-410.
    215 Pittman K A, Lakshman S, Bryant M P. Oligopeptide uptake by Bacteroides ruminicola[J].J Bacteriol, 1967, 93(5):1499-1508.
    216 Jones DF, Hoover WH, Miller Webster TK, et al. Effects of concentrations of peptides on microbial metabolism in continuous culture[J]. J Anim Sci, 1998, 76(2):611-616.
    217程茂基,卢德勋,王洪荣.瘤胃微生物体外降解不同来源肽的速度研究[J].南京农业大学学报, 2003, 26(1):50-55.
    218 Wright DE. Metabolism of Peptides by Rumen Microorganisms[J]. Appl Envir Microbiol, 1967, 15(3):547-550.
    219 Cotta MA, Russell JB. Effect of peptides and amino acids on efficiency of rumen bacterial protein synthesis in continue culture[J]. J Dairy Sci, 1982, 65(2):226-234.
    220 Prins RA, van Hal-Van Gestel JC, Counotte GH. Degradation of amino acids and peptides by mixed micro-organmisms[J]. Z Tierphysiol Tierernahr Futtermittelkd, 1979, 42(6):333-339.
    221 Cruz Soto, Muhammed SA, Newbold CJ, et al. Influence of peptides, amino acids and urea on microbial activity in the rumen of sheep receiving grass hay on the growth of rumen bacteria in vitro[J]. Anim Feed Sci Technol, 1994, 49:151-161.
    222 Ling JR, Armstead IP. The in vitro uptake and metabolism of peptides and amino acids by five species of rumen bacteria [J]. J Appl Bacteriol, 1995, 78(2):116-124.
    223 Atasoglu Cengiz, Newbold James C, Wallace John R. Incorporation of [15N]Ammonia by the Cellulolytic Ruminal Bacteria Fibrobacter succinogenes BL2, Ruminococcus albus SY3,and Ruminococcus flavefaciens 17[J]. Applied and Environmental Microbiology, 2001, 67(6):2819-2822.
    224 Chikunya SC, Newbold L, Rod L, et al. The influence of non protein nitrogen, performed amino acids and protein on microbial activity in the rumen of sheep receiving diets containing rapidly and slowly degraded fibre sources[J]. Anim Feed Sci Technol, 1996, 63:333-340.
    225 Williams AP, and Cockburn JE. Effect of slowly and rapidly degraded protein sources on the concentration of amino acids and peptides in the rumen of steers[J]. J Sci Food Agric, 1991, 56:303-314.
    226 Wallace RJ, McKain N. A comparison of methods for determining the concentration of extracellular peptides in rumen fluid of sheep[J]. J Agric Sci, 1990, 114:101-105.
    227 Chen G, Russell JB, Sniffen CJ. A procedure for measuring peptides in rumen fluid and evidence that peptide uptake can be a rate-limiting step in ruminal protein degradation [J]. J Dairy Sci, 1987, 70(6):1211-1219.
    228 Atasoglu C, Valdes C, Walker ND, et al. De novo synthesis of amino acids by the ruminalbacteria Prevotella bryantii B14, Selenomonas ruminantium HD4, and Streptococcus bovis ES1[J]. Appl Environ Microbiol, 1998, 64(8):2836-2843.
    229 Atasoglu C, Valdes C, Newbold CJ, et al. Influence of peptides and amino acids on fermentation rate and de novo synthesis of amino acids by mixed micro-organisms from the sheep rumen[J]. British Journal of Nutrition, 1999, 81(4):307-314.
    230 Hiristov AN, McAllister TA, Cheng KJ. Effect of carbohydrate level and ammonia availability on utilization of alpha amino nitrogen by mixed ruminal microorganisms in vitro[J]. Proc Western Section, Amer Soc Anim Sci, 1997, 48:186-189.
    231 Bryant MP, Robinson IM. Apparent incorporation of ammonia and amino acid carbon during growth of selected species of ruminal bacteria [J]. J Dairy Sci, 1963, 46:150-154.
    232刁其玉.动物氨基酸营养与饲料[M].化学工业出版社, 2007
    233 Allison MJ. Phenylalanine biosynthesis from phenylacetic acid by anaerobic bacteria from the rumen[J]. Biochem Biophys Res Commun, 1965, 18:30-35.
    234 Morrison M, Mackie RI, Kistner A. 3-Phenylpropanoic acid improves the affinity of Ruminococcus albus for cellulose in continuous culture[J]. Appl Environ Microbiol, 1990, 56(10):3220-3222.
    235 Russell JB, Martin SA. Effects of various methane inhibitors on the fermentation of amino acids by mixed rumen microorganisms in vitro[J]. J Anim Sci, 1984, 59: 1329-1338.
    236 Bentley OG, Johnson RR, Vanecko S, et al. Studies on Factors Needed by Rumen Microorganisms for Cellulose Digestion In Vitro[J]. J Anim Sci, 1954,13:581-593.
    237王梦芝,王洪荣,曹恒春,等.特定氨基酸缺省底物对体外培养混合瘤胃微生物及其发酵的影响[J].中国农业科学, 2008, 41(7):2136-2142.
    238 Jones GA, Pickard MD. Effect of titanium(III) citrate as reducing agent on growth of rumen bacteria[J]. Appl Environ Microbiol, 1980, 39(6):1144-1147.
    239 Kajikawa H, Mitsumori M, Ohmomo S. Stimulatory and inhibitory effects of protein amino acids on growth rate and efficiency of mixed ruminal bacteria[J]. J Dairy Sci, 2002, 85(8):2015-2022.
    240 Bach A, Calsamiglia S, Stern MD. Nitrogen metabolism in the rumen[J]. J Dairy Sci, 2005, 88(E.suppl.):E9-E21.
    241李莉.体外法研究肽对瘤胃液pH值、氨氮浓度、菌体蛋白氮浓度、中性洗涤纤维降解率及其产气量的影响[D].内蒙古学农业大学硕士学位论文, 2001.
    242 Antonopoulos DA, Nelson KE, Morrison M, et al. Strain-specific genomic regions of Ruminococcus flavefaciens FD-1 as revealed by combinatorial random-phase genome sequencing and suppressive subtractive hybridization[J]. Environ Microbiol, 2004,6(4):335-346.
    243高巍,孟庆翔.白色瘤胃球菌对秸秆细胞壁和微晶纤维素的附着比较[J].中国畜牧杂志, 2004, 40(6):17-19.
    244 Joblin KN. Isolation enumeration,and maintenance of rumen anaerobic fungi in roll tubes[J]. Appl Environ microbial, 1981, 42(6):1119-1122.
    245 Hungate RE. Methods in Microbiology[M]. Inc.JR.Norris, Riboons DW, 1969, 3B:117 -132.
    246 Miller TL, Wolin MJ. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes[J]. Appl Microbiol, 1974, 27(5):985-987.
    247东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    248 Holt JG, Krieg NR, Sneath PHA, et al. Bergey's Manual of Deteminative Bacteriology (Nith Edition)[M]. Maryland:Williams & Witkins Baltimore,1994,574-590.
    249秦为琳.应用气相色谱测定瘤胃挥发性脂肪酸方法的研究改进[J].南京农学院学报, 1982, 4:111-115.
    250 Joblin KN. Bacterial and protozoal interactions with ruminal fungi, In D. E. Akin, L. G. Ljungdahl. Microbial and plant opportunities to improve lignocellulose utilization by ruminants[C]. Elsevier, New York, 1990:311-324.
    251 Miron J, Ben-Ghedalia D. Digestion of cell-wall monosaccharides of ryegrass and alfalfa hays by the ruminal bacteria Fibrobacter succinogenes and Butyrivibrio fibrisolvens[J]. Can J Microbiol, 1993, 39(8):780-786.
    252 Cheng KJ, Forsberg CW. Microbial ecology and physiology of feed degradation within the rumen. In Physiological Aspects of Digestion and Metabolism in Ruminants, ed. T. Tsuda, Y. Sasaki and R. Kawashima[C]. Academic Press, Toronto: 1991, 595-624.
    253 Bernalier A, Fonty G. Inhibition of the cellulolytic activity of Neocalli -mastix frontalis by Ruminococcus flavefaciens[J]. Gen Microbiol, 1993, 139(4): 873-880.
    254 Odenyo AA, Mackie RI, Stahl DA, et al. The use of 16S rRNA-targeted oligonucleotide probes to study competition between ruminal fibrolytic bacteria: development of probes for Ruminococcus species and evidence for bacteriocin production[J]. Appl Environ Microbiol, 1994, 60(10):36-88.
    255 Fondevila M, Dehority BA. Interactions between Fibrobacter succinogenes, Prevotella ruminicola, and Ruminococcus flavefaciens in the digestion of cellulose from forages[J]. J Anim Sci, 1996, 74(3):678-684.
    256王志超,陆文静,王洪涛.好氧堆肥中高温纤维素分解菌的筛选及性状研究[J].北京大学学报(自然科学版), 2006, 42(2):259-264.
    257颜霞,秦魏.降解纤维素真菌的分离筛选及其环境适应性初探[J].中国农学通报, 2008, 24(5):44-49.
    258曹月青,殷幼平,董亚敏,等.桑粒肩天牛肠道纤维素分解细菌的分离和鉴定[J].微生物学通报, 2001, 28(1):9-11.
    259 Gouws L, Kistner A. Bacteria of the ovine rumen.IV. Effect of change of diet on the predominant type of cellulose-digesting bacteria[J]. J Agric Sci, 1965, 64: 51-57.
    260 Michalet-Doreau B,Fernandez I,Fonty G. A comparison of enzymatic and molecular approaches to characterize the cellulolytic microbial ecosystems of the rumen and the cecum[J]. J Anim Sci, 2002, 80(3):790-796.
    261 Celine Robert, Annick Bernalier-Donadille. The cellulolytic microflora of the human colon: evidence of microcrystalline cellulose-degrading bacteria in methane- excreting subjects[J]. FEMS Microbiology Ecology, 2003, 46(1):81-89.
    262 Forster RJ, Teather RM, Gong J. 16S rDNA analysis of Butyrivibrio fibrisolvens–phylogenetic position and relation to butyrate-producing anaerobic bacteria from the rumen of white-tailed deer[J]. Lett Appl Microbiol, 1996, 23(4):218-222.
    263陈月琴,周世宁,戴欣,等.海洋产灵菌红素细菌的基因分析与鉴定[J].中山大学学报, 1999, 38(1):115-117.
    264杨官品,朱艳红,陈亮,等.土壤细菌16S rRNA基因变异型及其与植被的相关研究[J].应用生态学报, 2001, 12(5):757-760.
    265曾静,窦岳坦,王磊,等.新疆地区盐湖的中度嗜盐菌16S rDNA全序列及DNA同源性分析[J].微生物学报, 2002, 42(2):133-135.
    266孙磊,赵立平.芽孢杆菌型益生菌YK-1R的分子分类机系统发育地位的研究[J].中国微生态学杂志, 2003, 15(1):7-9.
    267张莉莉,张苓花,史剑斐,等.利用氯化苄提取真菌基因组DNA及其分子生物学分析[J].大连轻工业学院学报, 2000, 19(1):36-39.
    268 [美]J.萨姆布鲁克, D.W.拉塞尔著,黄培堂等译.分子克隆实验指南(第三版)下册[M].北京:科学出版社, 2002.
    269 Weissburg WG, Barns SM, Pelletier DA, et al. 16S ribosomal DNA amplification for phylogenetic study[J]. J Bacteriology, 1991, 173(2):697-703.
    270赵小蓉,林启美,孙焱鑫,等.纤维素分解菌对不同纤维类物质的分解作用[J].微生物学杂志, 2000, 20(3):12-14.
    271 Weimer PJ, Waghorn GC, Odt CL, et al. Effect of cellulose fine structure on kinetics of its digestion by mixed ruminal microorgamisms in vitro[J]. Appl Environ Microbiol, 1990, 56(8):2421-2429.
    272刘东波,王秀然,张青,等.一株生孢噬纤维菌的纤维素酶的定位研究[J].东北师范大学学报(自然科学版), 2005, 37(4):107-110.
    273 Wilson JR. Structural and chemical changes of cell wall types during stem development:consequences for fibre degradation by rumen microflora[J]. Australian Journal of Agricultural Research, 1997, 48(2):165.
    274 Fusee MC, Leatherwood JM. Regulation of cellulase from Ruminococcus[J]. Can J Microbiol, 1972, 18(3):347-353.
    275 Russell JB, Baldwin RL. Substrate preferences in rumen bacteria: evidence of catabolite regulatory mechanisms[J]. Appl Environ Microbiol, 1978, 36(2):319-329.
    276 Smith WR, Yu I, Hungate RE. Factors affecting cellulolysis by Ruminococcus albus[J]. J Bacteriol, 1973, 114(2):729-737.
    277 Cheng KJ, Forsberg CW, Minato H, et al. Microbial ecology and physiology of feed degradation within the rumen[A]. Tsuda T, Sasaki Y, Kawashima R. Physiological Aspects of Digestion and Metabolism in Ruminants[M]. Toronto, ON: AcademicPress, Toronto, ON, 1991:595-624.
    278 Hungate RE, Stack RJ. Phenylpropanoic acid: growth factor for Ruminococcus albus[J]. Appl Environ Microbiol, 1982, 44(1):79-83.
    279 Kappeler S, Farah Z, Puhan Z. Sequence analysis of Camelus dromedarius milk caseins[J]. J Dairy Res, 1998, 65(2):209-222.
    280黄友如,华欲飞,郁达,等.脂肪氧合酶催化亚油酸氧化对大豆蛋白氨基酸组成的影响[J].食品科技, 2008, 4,19-24.
    281 Whitehouse NL, Olson VM, Schwab CG, et al. Improved Techniques for Dissociating Particle-Associated Mixed Ruminal Microorganisms from Ruminal Digesta Solids[J]. J Anim Sci, 1994, 72(5):1335-1343.
    282冯宗慈,高民.通过比色法测定瘤胃液氨氮含量方法的改进[J].内蒙古畜牧科学, 1993, 4:40-41.
    283 Weimer PJ. Effect of dilution rate and pH on the ruminal cellulolytic bacteria fibrobacter succinogenes S85 in cellulose-fed continuous culture[J]. Appl Microbiol, 1993, 160():288-295.
    284 McDonald IW. The extent of conversion of food protein to microbial protein in the rumen of sheep[J]. J Biochem, 1988, 56(1):120-125.
    285 Jones DF, Hoover WH, Miller Webster TK. Effects of concentrations of peptides on microbial metabolism in continuous culture[J]. J Anim Sci, 1998, 76(2):611-616.
    286 Perdok HB, Leng RA. Effect of supplementation with protein to microbial protein meal on the growth of cattle given a basal diet of untreated or ammoniated rice straw[J]. Asian-Aust J Anim Sci, 1990, 3:269-279.
    287卢德勋.乳牛营养技术精要[M].动物营养学术研讨会论文集,2001.
    288 Scatter LD, Slyter LL. Effect of ammonia concentration on rumen microbial proteinproduction in vitro[J]. Br J Nutr, 1974, 32(2):199-208.
    289 Ranilla MJ, Carro MD, Lopez S, et al. Influence of nitrogen source on the fermentation of fibre from barley straw and sugarbeet pulp by ruminal microorganisms in vitro[J]. British Journal of Nutrition, 2001, 86:717-724.
    290 Burroughs W, Gall LS, Gerlaugh P, et al. The influence of casein upon roughage digestion in cattle with rumen bacteriological studies[J]. J Anim Sci, 1950, 9(2): 214-220.
    291 Hembry FG, Pfander WH, Preston RL. Utilization of nitrogen from soybean meal, casein, zein, and urea by mature sheep[J]. J Nutr, 1975, 105(3):267-273.
    292朱伟云,毛胜勇,王全军,等.厌氧真菌体外发酵筛选技术的研究[J].南京农业大学学报, 2001, 24(3): 44-48.
    293 Stack RJ, Hungate RE. Effect of 3-phenylpropanoic acid on capsule and cellulases of Ruminococcus albus 8[J]. Appl Environ Microbiol, 1984, 48(1):218-223.
    294 Stack RJ, and Cotta MA. Effect of 3-phenylpropanoic acid on growth of and cellulose utilization by cellulolytic ruminal bacteria[J]. Appl Environ Microbiol, 1986, 52(1):209-210.
    295 Bryant MP, Robinson IM. Studies on the nitrogen requirements of some ruminal cellulolytic bacteria[J]. Appl Microbiol, 1961, 9(2):96-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700